Syntheses of Polyhedranes and Polyhedral Carboranes

R. B. King

U. S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

Approved for public release; distribution unlimited.

Polyhedral cage molecules containing the light elements boron or carbon at each of the vertices of the polyhedron are of considerable current interest to the Army as intermediates for the preparation of materials for diverse applications ranging from high energy propellants...
and explosives to thermally stable polymers. The scientific goal of
this research program was the discovery and development of fundamental
chemistry relevant to the synthesis of polyhedral cage molecules of
importance to the Army.
FINAL REPORT

to the
Army Research Office
Post Office Box 12211
Research Triangle Park
North Carolina 27709

on

SYNTHESSES OF POLYHEDRANES AND POLYHEDRAL CARBORANES

Period Covered:
June 15, 1980 to June 30, 1984

Contract Covered:
DAAG-29-80-K-0030

by

Dr. R. B. King
Regents' Professor of Chemistry
University of Georgia
Athens
Georgia 30602
PERSONNEL ASSOCIATED WITH THIS RESEARCH PROGRAM

(1) Dr. R. B. King, Regents' Professor of Chemistry and Principal Investigator

 June 15, 1980 to June 30, 1984

(2) Dr. M. A. Gutierrez, Post-doctoral Fellow

 January 1, 1981 to August 31, 1981

(3) Dr. Lester Borodinsky, Post-doctoral Fellow

 September 14, 1981 to February 28, 1983

(4) Mr. R. W. Murray, Graduate Student (Ph.D. expected August, 1984)

 June 15, 1980 to June 30, 1984

(5) Dr. T. F. Moore, Visiting Lecturer

 March 1, 1981 to June 30, 1981
INTRODUCTION

Polyhedral cage molecules containing the light elements boron or carbon at each of the vertices of the polyhedron are of considerable current interest to the Army as intermediates for the preparation of materials for diverse applications ranging from high energy propellants and explosives to thermally stable polymers. The scientific goal of this research program was the discovery and development of fundamental chemistry relevant to the synthesis of polyhedral cage molecules of important to the Army.

The target molecules of this research project can be classified into the following two types:

(1) Polyhedral boranes of the type \(\text{B}_n\text{H}_{n+2}^2^- \) and carboranes of the type \(\text{C}_2\text{B}_n\text{H}_{n+2} \) and their substitution products: Such compounds are based on polyhedra having exclusively triangular faces (deltahedra). These compounds, known as closo compounds, are extensively delocalized systems having \(2v + 2 \) skeletal electrons where \(v \) is the number of vertices of the deltahedron, each BH vertex contributes two skeletal electrons, and each CH vertex contributes three skeletal electrons.\(^1,2,3\) The neutral species \(\text{C}_2\text{B}_n\text{H}_{n+2} \) and their substitution products are of greater interest than the ionic species \(\text{B}_n\text{H}_{n}^2^- \) since ionic species are necessarily accompanied by a counterion which might interfere with ultimate practical applications.

(2) Polyhedranes of the type \(\text{(CH)}_n \) and their substitution products where \(n \) in principle can be any even number other than 2: Such compounds are based on polyhedra in which three edges meet at each vertex. These systems exhibit localized chemical bonding in which each edge of the polyhedron corresponds to a normal two-electron two-center carbon-carbon
single bond. Tetrahdreane (n = 4), cubane (n = 8), dodecahdreane (n = 20), and prismane (n = 6) are the four most obvious of the many possible polyhedranes.4

Both of these types of compounds are based on polyhedra having boron or carbon atoms at each vertex and one external monovalent group (hydrogen, alkyl, halogen, cyano, nitro, etc.) bonded to each of the vertex atoms.

The general synthetic approach investigated in this project was the coupling of polyhedral fragments to form the desired polyhedral cage molecule. In connection with the development of improved syntheses of polyhedral boranes and carboranes we sought more direct routes for the conversion of borohydride to these systems through intermediates such as borane adducts and the octahydrotriborate anion.5 In connection with the synthetic of functionalized tetrahdreanes and cubanes, we sought new approaches for the dimerization of functionalized alkynes.

The experiments in borane chemistry, discussed below in further detail, were uniformly unsuccessful although some observations on the reaction of B_3H_8^- with WCl_6 suggested that interesting species might be obtainable from reactions of B_3H_8^- with early transition metal halide derivatives provided appropriate stabilizing ligands can be found. The experiments on the dimerization of functionalized alkynes led to the discovery of the head-to-tail 2+2 cyclodimerization of dialkylamino-trimethylsilylacetylenes, $\text{R}_2\text{NC}=\text{CSi(CH}_3)_3$ ($\text{R}_2\text{N} =$ diethylamino, piperidino, etc.) with iron carbonyls to give the corresponding cyclobutadiene complexes I. Unfortunately, conditions were not found for the degradation of the iron tricarbonyl complexes I to the corresponding free cyclobutadienes or compounds derived therefrom despite attempts using most of the oxidizing agents (e.g., CeIV, Fe^{III}, lead tetraacetate, trimethyl-
amine N-oxide, etc.) effective at liberating other cyclobutadienes from their iron tricarbonyl complexes. A variety of attempts were also made to functionalize the tetralithiotetrahedrane of Schleyer and co-workers using the halides (CH$_3$)$_3$ECI (E = Si or Sn) in an attempt to obtain a tetrahedrane of the type [(CH$_3$)$_3$E]$_4$C$_4$ analogous to the stable* [((CH$_3$)$_3$C]$_4$C$_4$. However, these were uniformly unsuccessful. In fact at the present time there seems to be a valid question as to whether the Li$_4$C$_4$ reagent reported by Schleyer and co-workers is really tetralithiotetrahedrane as claimed by them in 1978.\(^7\)
NEW RESULTS FROM THIS RESEARCH PROGRAM

(1) New Approaches to the Synthesis of Polyhedral Boranes and Carboranes

The general objective of our work on polyhedral borane synthesis was the development of new methods for converting the relatively inexpensive borohydride to polyhedral boranes, metallaboranes, and carboranes. Initially we attempted condensation reactions of the BH₃ units in borane complexes using transition metal complexes. In this connection the following transition metal complexes were exposed to ultraviolet irradiation for 24 hr. in pentane solution in the presence of excess borane-tetrahydrofuran or borane-dimethyl sulfide: (C₅H₅)₂Ni, [C₅H₅Ni(CO)]₂, (C₅H₅Ni)₂C₂R₂ (R = H, CH₃, and C₂H₅), HCCO₃(CO)₉, R₂C₂Co₂(CO)₆ (R = H and C₂H₅), Fe₂(CO)₉, and Mn(CO)₅Br. These complexes were selected in order to provide potential sources of C₅H₅Ni, Co(CO)₃, and RC vertices which are known building blocks for deltahedral metallo-carboranes.

In general these photochemical reactions gave dark suspensions. Solvent was removed from these reaction mixtures in vacuum. The residues were extracted with solvents such as pentane, dichloromethane, and acetone. Such extracts were concentrated to about 10 ml. and chromatographed on alumina. The chromatograms were eluted with pentane, dichloromethane, and finally acetone. The only observed organometallic compounds from such chromatograms were some unchanged organometallic starting material in a few cases.

The reactions of (C₅H₅)₂Ni and Fe₂(CO)₉ with borane-tetrahydrofuran were also investigated in boiling tetrahydrofuran in the absence of ultraviolet irradiation. A similar workup procedure as outlined above led to negative results in all cases.
These results suggest that photochemical reactions of transition metal complexes with BH$_3$ derivatives are not promising for the synthesis of deltahedral carboranes. We therefore turned to an investigation of transition metal derivatives of the octahydrotriborate anion, B$_3$H$_8$\(^-\) which can be obtained readily in good yield\(^5\) by iodination of tetrahydroborate according to the following equation:

\[
3 \text{BH}_4^- + I_2 \rightarrow \text{B}_3\text{H}_8^- + 2 \text{I}^- + 2 \text{H}_2
\]

(1)

Furthermore, at the start of this work the octahydrotriborate ligand was known to form a variety of metal carbonyl complexes\(^10\) such as B$_3$H$_8$Mn-(CO)$_4$, HFe(CO)$_3$B$_3$H$_8$, and C$_5$H$_5$Fe(CO)B$_3$H$_8$. From the point of view of the transition metal chemist the B$_3$H$_8$ ligand may be regarded as a three-electron donor like the trihaptoallyl ligand. From the point of view of the boron hydride chemist these B$_3$H$_8$ transition metal complexes can be regarded as analogues of tetraborane, B$_4$H$_{10}$, in which one of the boron vertices is replaced by a transition metal vertex. In this context the B$_3$H$_8$ transition metal complexes can be viewed as relatively open boranes potentially susceptible towards reactions with alkynes to form six-vertex metallacarboranes. For example, a species of the composition R$_2$C$_2$B$_3$H$_4$Mn(CO)$_3$ potentially obtainable from B$_3$H$_8$Mn(CO)$_4$ and an appropriate alkyne would have the 14 skeletal electrons expected for a closo metallacarborane with a C$_2$B$_3$Mn octahedron.\(^1\)

These considerations led to a study of the reactions of B$_3$H$_8$Mn(CO)$_4$ with various alkynes. At room temperature B$_3$H$_8$Mn(CO)$_4$ appeared to be unreactive towards even unsubstituted acetylene in dichloromethane solution. However, ultraviolet irradiation of B$_3$H$_8$Mn(CO)$_4$ with either unsubstituted acetylene or diethylacetylene resulted in reactions to give complex mixtures of manganese carbonyl derivatives in low yield. Since infrared and mass spectrometric studies of these manganese carbonyl...
derivatives indicated the absence of borane ligands, they were not investigated in detail. These studies suggest that reactions of $B_3H_8Mn-(CO)_4$ with alkynes result in facile cleavage of the B_3H_8-Mn bond.

A metallaborane with interesting potential chemical reactivity is $HFe(CO)_3B_3H_8$, a volatile, thermally unstable yellow liquid readily prepared from $Fe(CO)_4X_2$ ($X = Br$ or I) and $R_4N^+B_3H_8^-$ (ref. 10). This iron carbonyl hydride can be viewed either as an analogue of B_4H_{10} or as an analogue of $HMn(CO)_5$ or $HCo(CO)_4$. Furthermore, a particularly interesting chemical property of $HFe(CO)_3B_3H_8$ is its thermal conversion to the known $^{11}B_4H_8Fe(CO)_3$ at room temperature. The yield of the reaction is low (~3%), which is scarcely surprising since the conversion of an FeB_3 system to an FeB_4 system in the absence of additional boron hydride species must involve nearly total destruction of some of the $HFe(CO)_3B_3H_8$ to generate the extra boron vertex. Since the conversion of $HFe(CO)_3B_3H_8$ to $B_4H_8Fe(CO)_3$ represents a further key step in the conversion of BH_4^- to higher boranes, this reaction was investigated. The yield of $B_4H_8Fe(CO)_3$ from the decomposition of $HFe(CO)_3B_3H_8$ at room temperature was found to be improved rather significantly from ~3% to ~15% if excess borane-tetrahydrofuran was added, presumably to provide a space of the fourth boron atom. However, even this improved yield was too low to make this reaction a promising source of the ferraborane $B_4H_8Fe(CO)_3$, which is of particular interest since it is an analogue of B_5H_9 with an $Fe(CO)_3$ vertex in place of the apical BH vertex.

The analogy of $HFe(CO)_3B_3H_8$ to $HMn(CO)_5$ and $HCo(CO)_4$ suggested the possibility of the preparation of a nitrosyl derivative $B_3H_8Fe-(CO)_2NO$ analogous to $Mn(CO)_4NO$ and $Co(CO)_3NO$. However, reaction of $HFe(CO)_3B_3H_8$ with Diazald (p-$CH_3C_6H_4SO_2N(NO)CH_3$) resulted in the
replacement of not only the hydride but also the B_3H_8 ligand with NO groups to give ultimately the well-known $^{12}\text{Fe(CO)}_2(\text{NO})_2$ in relatively good yields (≈80%). The fate of the boron in this reaction was not determined.

Reactions of $[\text{R}_4\text{N}][\text{B}_3\text{H}_8]$ (R = methyl or n-butyl) were also investigated with a variety of other metal carbonyl halide derivatives including $\text{C}_3\text{F}_7\text{Fe(CO)}_4\text{I}$, $\text{C}_5\text{H}_5\text{Co(CO)}_2\text{I}_2$, $\text{C}_5\text{H}_5\text{Re(CO)}_2\text{Br}_2$, $\text{Ir(CO)}_3\text{Cl}_1$, $[\text{C}_5\text{H}_5\text{Mn-(CO)}_3\text{Cl}]^+$, and $\text{C}_5\text{H}_5\text{W(CO)(NO)}\text{I}_2$. However, none of these reactions gave any well-defined B_3H_8 or B_3H_7 complexes at least in quantities sufficient for characterization.

Another possible approach for the synthesis of polyhedral boranes involves the coupling of two or three B_3H_8 ligands attached to a single transition metal. In this connection we sought homoleptic derivatives of early transition metals containing two to four B_3H_8 ligands. In attempts to synthesize such derivatives, reactions of $[\text{R}_4\text{N}][\text{B}_3\text{H}_8]$ (R = methyl or n-butyl) were investigated with several early transition metal halides including ZrCl_4, TaCl_5, WCl_4, and WCl_6. The most interesting such reaction was that of WCl_6 with $[\text{CH}_3\text{N}_4][\text{B}_3\text{H}_8]$ in diethyl ether or tetrahydrofuran which at -78°C gave a clear yellow solution. Warming this solution to room temperature, however, led to decomposition of the yellow species to give insoluble dark solids. The stability of this yellow solution was improved by addition of a tertiary amine (e.g., triethylamine or $\text{N},\text{N},\text{N}',\text{N}'$-tetramethylethylenediamine) or pyridine but definite products could not even be isolated from the amine-stabilized solutions.

In view of the difficulties in obtaining diverse series of transition metal triborane derivatives from reactions of B_3H_8^- salts with transition metal halides, we also investigated reactions of various
metal carbonyls with $C_4H_8O\cdot B_3H_7$ (generated in situ by the reaction of $B_3H_8^-$ with Hg_2Cl_2 in tetrahydrofuran according to the published procedure13). However, attempted reactions of $C_4H_8O\cdot B_3H_7$ with $Fe_2(CO)_9$, $Co_2(CO)_8$, $(C_5H_5)_3Ni_3(CO)_2$, $C_5H_5W(CO)_2NO$, and $C_4H_8OW(CO)_5$ gave no evidence for the production of stable metal carbonyl triborane derivatives.

For several years the principal investigator (R. B. King) has been interested in the bonding topology of polyhedral boranes, carboranes, and metal clusters.4 During the course of this research project he extended his theoretical research to the development of simple bonding schemes for eight-vertex D_{2d} dodecahedral clusters violating Wade's rules.14 A result from this work is the first rationalization of the different geometries of the two D_{2d} dodecahedral complexes $(C_5H_5)_4Co_4B_4H_4$ and $(C_5H_5)_4Ni_4B_4H_4$. In the cobalt complex the C_5H_5M units occupy the vertices of degree 4. Understanding the chemical bonding in polyhedral boranes and carboranes is likely to suggest ultimately new and improved approaches for their synthesis.

(2) Polyhedrane Synthesis

The following general scheme is of interest for the oligomerization of alkynes to give tetrahedrane and cubane derivatives:

\[
\begin{align*}
\text{\textbf{111}} & \xrightarrow{x2} \text{\textbf{\textbullet \textbullet \textbullet}} \xrightarrow{h\nu} \text{\textbullet \textbullet \textbullet} \\
\downarrow & \xrightarrow{x2} \text{\textbullet \textbullet \textbullet} \xrightarrow{h\nu} \text{\textbullet \textbullet \textbullet \textbullet}
\end{align*}
\]
A key to the success of this general scheme is finding the right substituents on the alkyne to promote the necessary chemical reactivity. Also the specific interest of the Army in high energy high density explosives makes of particular interest polyhedranes having substituents which can readily be converted into nitro groups.

In connection with this general scheme Schleyer and co-workers7 reported in 1978 that the photolysis of dilithium acetylide, Li\textsubscript{2}C\textsubscript{2}, results in dimerization to give tetralithium tetrahedrane, Li\textsubscript{4}C\textsubscript{4}. This appeared to be an attractive potential direct route to a variety of substituted tetrahedranes since a priori it seemed that diverse functionalities could be introduced into the tetrahedrane nucleus by reactions of Li\textsubscript{4}C\textsubscript{4} with appropriate halides or other electrophiles. In this connection we investigated the reaction of the alleged tetralithium tetrahedrane with the halides (CH\textsubscript{3})\textsubscript{3}ECl (E = Si and Sn) since the corresponding tetrahedrane, [(CH\textsubscript{3})\textsubscript{3}E]\textsubscript{4}C\textsubscript{4}, is stable.8,9

The results of these experiments were quite disappointing. We attempted numerous photolyses of dilithium acetylide in liquid ammonia under conditions similar to those used by Schleyer and co-workers.7 The liquid ammonia was then removed and an aprotic solvent such as tetrahydrofuran, diethyl ether, hexamethylphosphoramide, or dimethyl sulfoxide was added to the residue. Trimethylchlorosilane or trimethyltin chloride was then added. After stirring at room temperature, attempts were made to isolate any covalent products by conventional methods. However, none of these experiments gave the desired tetrahedrane [(CH\textsubscript{3})\textsubscript{3}E]\textsubscript{4}C\textsubscript{4} (E = Si or Sn), any conceivable decomposition products thereof, or any other [(CH\textsubscript{3})\textsubscript{3}E]\textsubscript{n}C\textsubscript{n} polyhedranes. Attempts to photolyze dilithium acetylide in ethereal solvents such as tetrahydrofuran were prevented by the insolubility of dilithium
acetylide in organic solvents in accord with the high stability15 of solid dilithium acetylide relative to other lithium carbides. We are not sure how to interpret these negative results, but it is clear that the photolysis of dilithium acetylide followed by addition of (CH\textsubscript{3})\textsubscript{3}ECI (E = Si or Sn) is not as easy a synthetic route to the substituted tetrahedranes [(CH\textsubscript{3})\textsubscript{3}E]\textsubscript{4}C\textsubscript{4} as it might have seemed immediately after appearance of the report by Schleyer and co-workers7 on tetralithium tetrahedrane.

Reaction of methylacetylene with excess n-butyllithium also gives a perlithiocarbon16 Li\textsubscript{4}C\textsubscript{4}, which is considerably more soluble in organic solvents than Li\textsubscript{2}C\textsubscript{2}. However, photolysis of Li\textsubscript{4}C\textsubscript{4} in tetrahydrofuran solution followed by addition of (CH\textsubscript{3})\textsubscript{3}SiCl gave only the persilylated allene [(CH\textsubscript{3})\textsubscript{3}Si]\textsubscript{2}C=C=C[Si(CH\textsubscript{3})\textsubscript{3}]\textsubscript{2} also obtained when the photolysis step is omitted.16

These negative results on the photolysis of lithiocarbons followed by (CH\textsubscript{3})\textsubscript{3}ECI addition turned our attention to bis(dialkylamino)acetylenes as a source of per(dialkylamino)polyhedranes. The synthesis of bis-(dialkylamino)acetylenes is somewhat of an adventure. Two general schemes are available. Scheme I, developed by Delavarenne and Viehe,17 uses a nucleophilic reaction of trichloroethylene or preferably 1,1-dichloro-2-fluoroethylene with a lithium dialkylamide followed by dehalogenation. In our hands this method worked for lithium dimethylamide and lithium diethylamide but not for lithium diisopropylamide, lithium pyrrolidide, or lithium piperidide. Scheme II, developed by Wilcox and Breslow,18 involves decarbonylation of the corresponding bis(dialkylamino)cyclopropenone, which is obtained ultimately from tetrachlorocyclopropene and the corresponding secondary amine. Since
Scheme 1: Bis(dialkylamino)acetylenes via 1,1-dichloro-2-fluoroethylene
Scheme 2: Bis(dialkylamino)acetylenes via bis(dialkylamino)cyclopropenones
bis(diisopropylamino)cyclopropenone is especially readily available\(^{19}\) and since the large diisopropylamino substituents on the corresponding acetylene should make this acetylene especially susceptible to oligomerization giving three-dimensional polyhedra rather than two-dimensional polygons, we studied the pyrolysis of bis(diisopropylamino)cyclopropeneone at various temperatures using a conventional tube furnace and analyzing the products by gas chromatography-mass spectrometry. Attempted pyrolysis of bis(diisopropylamino)cyclopropenone at \(250^\circ\text{C}\) resulted in recovery of unchanged cyclopropenone as the major volatile product. Pyrolysis of the cyclopropenone at \(350^\circ\text{C}\) gave some mass spectroscopic evidence for the desired decarbonylation to bis-(diisopropylamino)acetylene but the major products did not have \([(\text{Me}_2\text{CH})_2\text{N}]_n\text{C}_n\) stoichiometries and involved isopropyl fragmentation and migration. Thus the diisopropylamino group does not appear to be thermally robust enough to survive pyrolysis at temperatures sufficient for decarbonylation of bis(diisopropylamino)cyclopropenone.

Since we were unable to pyrolyze bis(diisopropylamino)cyclopropenone to the corresponding acetylene, we investigated other chemistry of this cyclopropenone which might lead ultimately to new per(diisopropylamino)polyhedranes. Photolysis of bis(diisopropylamino)cyclopropenone in either tetrahydrofuran or 1,2-dimethoxyethane gave a low yield of a complex mixture of liquid products: gas chromatography-mass spectrometry indicated that no acetylene or other \([(\text{Me}_2\text{CH})_2\text{N}]_n\text{C}_n\) products were produced. Reaction of bis(diisopropylamino)cyclopropenone with Fe\(_2\text{(CO)}_9\) in benzene solution gave a 15% yield of \([(\text{Me}_2\text{CH})_2\text{NC}]_2\text{Fe}_2\text{(CO)}_6\) (II: \(R = \text{isopropyl}\)), an interesting example of an unprecedented removal of a non-carbonyl carbon vertex from a cyclopropenone ring. However,
we did not obtain this complex in sufficient quantities for a detailed study of its chemical reactivity.

In view of these difficulties in obtaining appropriate derivatives of bis(dialkylamino)acetylenes for polyhedrane syntheses, we turned to investigation of the chemistry of the unsymmetrical acetylenes \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\) \((R = \text{CH}_3, \text{C}_2\text{H}_5, \text{and } (\text{CH}_3)_2\text{CH} \text{ and } R_2\text{N} = \text{piperidino})\). These acetylenes are readily obtained from trichloroacetic acid by the following sequence of reactions\(^{20}\):

1. Conversion of trichloroacetic acid to its acid chloride followed by reaction with a secondary amine to give an amide \(\text{CCl}_3\text{C}(\text{O})\text{NR}_2\).
2. Deoxygenation of this amide with a trivalent phosphorus reagent (tri-n-butyl phosphine or triethyl phosphite) to give the trichlorovinylamine \(\text{CCl}_2\text{C}=(\text{Cl})\text{NR}_2\).
3. Reaction of \(\text{CCl}_2\text{C}=(\text{Cl})\text{NR}_2\) with n-butyllithium to give \(\text{LiC}=\text{CNR}_2\) which is quenched by \((\text{CH}_3)_3\text{SiCl}\) to give \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\).

We investigated the reactions of these acetylenes with metal carbonyls hoping that metal-catalyzed oligomerizations would provide intermediates of potential value for polyhedrane syntheses.

The most extensive studies were done with iron carbonyls. Thus reaction of \(\text{Fe(CO)}_5\) with \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\) \((R_2\text{N} = \text{diethylamino or...})\)
piperidino) in boiling heptane gave mixtures of the yellow cyclobutadiene complex \([-((CH_3)_3Si)_2(R_2N)_2C_4Fe(CO)_3\] and the red tricarbonylferrole-iron tricarbonyl complex \([-((CH_3)_3Si)_2(R_2N)_2C_4Fe_2(CO)_6\]. A structural study by X-ray diffraction on the cyclobutadiene complex \((R_2N = \text{piperidino})\) in collaboration with Prof. Ray Davis of the University of Texas at Austin indicated it to be the 1,3-isomer I formed by "head-to-tail" dimerization of the unsymmetrical acetylene rather than the 1,2-isomer formed by "head-to-head" dimerization. These products are different from the products obtained from reactions of Fe(CO)_5 with the corresponding symmetrical acetylenes \((CH_3)_3SiC=CSi(CH_3)_3\) and \((C_2H_5)_2NC≡CN(C_2H_5)_2\) which give the simple acetylene \(π\)-complex \([-((CH_3)_3SiC_2Si(CH_3)_3)Fe(CO)_4\] and a mixture of the alkyne dichotomy product \([-((C_2H_5)_2NC)_2Fe_2(CO)_6\] (II: \(R = C_2H_5\)) and cyclopentadienone complex \([-((C_2H_5)_2N)C_4COFe(CO)_3\], respectively.

Dimerization of \((CH_3)_3SiC≡CNR_2\) with iron carbonyls is prevented if the reaction is carried out under milder conditions. Thus reactions of Fe_2(CO)_9 with \((CH_3)_3SiC≡CNR_2\) (\(R = C_2H_5\) or \((CH_3)_2CH\)) in tetrahydrofuran at room temperature gave red \([-((CH_3)_3SiC_2NR_2)Fe_2(CO)_6\] tentatively formulated as III (\(R' = (CH_3)_3Si\)) analogous to the reported \([C_6H_5C_2NR_2]_2Fe_2(CO)_6\) (III: \(R = CH_3\), \(R' = C_6H_5\)).
Some exploratory experiments were performed on the oxidative degradation of the cyclobutadiene complex \[(\text{CH}_3)_3\text{Si} _2[\text{C}_2\text{H}_5)_2\text{N}]_2\text{C}_4\text{Fe(CO)}_3 \] (I; \(R = \text{C}_2\text{H}_5 \)) in attempts to liberate the free cyclobutadiene or its dimer which would be useful for the synthesis of polyhedranes having equal numbers of dialkylamino and trimethylsilyl pendant groups, both of which could conceivably be converted to nitro groups to give polynitropolyhedranes. However, these experiments appeared to be very unpromising. Thus treatment of \[(\text{CH}_3)_3\text{Si} _2[\text{C}_2\text{H}_5)_2\text{N}]_2\text{C}_4\text{Fe(CO)}_3 \] (I; \(R = \text{C}_2\text{H}_5 \)) at room temperature with ammonium hexanitratocerate (IV) in ethanol or trimethylamine N-oxide hydrate in acetone or benzene resulted in recovery of most of the iron carbonyl complex. Extended treatment of \[(\text{CH}_3)_3\text{Si} _2[\text{C}_2\text{H}_5)_2\text{N}]_2\text{C}_4\text{Fe(CO)}_3 \] (I; \(R = \text{C}_2\text{H}_5 \)) at room temperature in acetone solution with ammonium hexanitratocerate (IV) or ferric chloride or reaction of the iron carbonyl complex with anhydrous trimethylamine N-oxide in boiling benzene failed to give any evidence for \[(\text{CH}_3)_3\text{SiC}_2\text{N}(\text{C}_2\text{H}_5)_2]_n \] oligomers as indicated by gas chromatography/mass spectrometry analysis of the crude products. We suspect that the bulky \((\text{CH}_3)_3\text{Si}\) and \((\text{C}_2\text{H}_5)_2\text{N}\) substituents in \[(\text{CH}_3)_3\text{Si} _2[\text{C}_2\text{H}_5)_2\text{N}]_2\text{C}_4\text{Fe(CO)}_3 \] (I; \(R = \text{C}_2\text{H}_5 \)) shield the iron atom so that more vigorous reagents are needed for oxidative removal of the \text{Fe(CO)}_3 group relative to other cyclobutadiene-iron tricarbonyl complexes.\(^6\)

In view of the difficulties outlined above in obtaining intermediates useful for polyhedrane syntheses from reactions of the alkynes \((\text{CH}_3)_3\text{SiC}^\equiv\text{CNR}_2\) with iron carbonyls, reactions of these alkynes with other metal carbonyl derivatives were also investigated. Reactions of the alkynes \((\text{CH}_3)_3\text{SiC}^\equiv\text{CNR}_2\) (\(R = \text{CH}_3, \text{C}_2\text{H}_5, (\text{CH}_3)_2\text{CH}, \) or \(R_2\text{N} = \text{piperidino} \)) with \(\text{Co}_2(\text{CO})_8\) in diethyl ether solution at room temperature...
gave the corresponding \([(\text{CH}_3)_3\text{SiC}_2\text{NR}_2]\text{Co}_2(\text{CO})_6\) derivatives as dark green solids. Analytical and spectroscopic studies of these complexes suggest formulation as the alkyne-dicobalt hexacarbonyls (IV) although the green colors of these complexes contrast with the dark red colors of known\(^{23}\) alkyne-dicobalt hexacarbonyls containing exclusively hydrocarbon substituents. Reactions of \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\) \((R = \text{C}_2\text{H}_5, (\text{CH}_3)_2-\text{CH}, \text{or R}_2\text{N} = \text{piperidino})\) with \(\text{C}_5\text{H}_5\text{Co}(\text{CO})_2\) in boiling \(n\)-octane for 24 hr. gave the corresponding \([(\text{CH}_3)_3\text{SiC}_2\text{NR}_2]\text{CoC}_5\text{H}_5\) derivatives as black solids. These derivatives are formulated as the trigonal bipyramidal clusters V analogous to products obtained from reactions of other alkynes with \(\text{C}_5\text{H}_5\text{Co}(\text{CO})_2\).\(^{22}\) Ultraviolet irradiation of \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\) \((\text{R}_2\text{N} = \text{diethylamino or piperidino})\) with \(\text{Mn}_2(\text{CO})_{10}\) in tetrahydrofuran solution gave low yields of the corresponding \([(\text{CH}_3)_3\text{SiC}_2\text{NR}_2]\text{Mn}_2(\text{CO})_8\) derivatives as orange solids. Spectroscopic properties of these manganese carbonyl derivatives suggest structure VI. This cobalt and manganese carbonyl chemistry of the alkynes \((\text{CH}_3)_3\text{SiC}=\text{CNR}_2\) appeared to be of limited value for polyhedrane synthesis since no alkyne oligomerization occurred in any of these reactions.

\[\text{IV}\]

\[\text{V}\]

\[\text{VI}\]
LITERATURE REFERENCES

(14) King, R. B. Polyhedron 1982, 1, 133.

PUBLICATIONS AND MEETING PRESENTATIONS ARISING FROM THIS CONTRACT

(6) R.B. King, R.E. Davis, R.M. Murray, and P.K. Ross, "Metal Carbonyl Derivatives of Dialkylaminotrimethylsilylacetylenes: Crystal and Molecular Structure of a Cyclobutadiene-iron Tricarbonyl Complex formed by Head-to-tail Dimerization of a Dialkylaminotrimethylsilylacetylene," to be written up for publication as soon as the complete crystallographic data are received from Prof. R.E. Davis.