SPECTROPHOTOMETRIC STUDIES OF IODINE COMPLEXES IN AN ALUMINUM CHLORIDE - (U) STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY Z J KARPINSKI ET AL. JUL 84
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - C
Spectrophotometric Studies of Iodine Complexes In An Aluminum Chloride - Butylpyridinium Chloride Ionic Liquid

Zenon J. Karpinski and Robert A. Osteryoung

Department of Chemistry
State University of New York at Buffalo

Office of Naval Research
Chemistry Program
Arlington, VA 22217

Approved for Public Release: Distribution Unlimited

Iodine Complexes; Spectrophotometry; Molten Salts

Iodine, iodine chloride, tetraethylammonium iodide and tetraethylammonium triiodide solutions in aluminum chloride - \(\text{N-(1-butyl)pyridinium chloride} \) ambient temperature ionic liquids have been studied by u.v. - visible spectrophotometry. The different oxidation states of iodine show a distinct dependence on the solvent acidity. Iodine\(+1\) exists in the form of \(\text{ICl} \) in acidic melts and in the form of \(\text{ICl}^- \) in basic \(\text{AlCl}_3\text{-BuPyCl} \) mixtures. Molecular iodine does not form strong complexes in acidic or neutral solutions. Triiodide ion is stable.
In neutral butylpyridinium tetrachloroaluminate, but not in acidic melts. In solutions of iodine or triiodide in basic AlCl$_3$-BuPyCl ionic liquids equilibrium mixtures of I$_2$Cl$^-$, I$_3^-$, ICl$_2^-$ and I$^-$ are formed.

The charge transfer band observed for iodide solutions in neutral and basic melts reveal the formation of iodide ion–butylpyridinium cation ion pairs. Similar bands in pure basic AlCl$_3$-BuPyCl mixtures indicate the association of chloride ion and butylpyridinium cation.
Spectrophotometric Studies of Iodine Complexes
In An Aluminum Chloride - Butylpyridinium Chloride
Ionic Liquid
by
Zenon J. Karpinski and Robert A. Osteryoung

Prepared for Publication
in
Inorganic Chemistry

Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214

July, 1984
ABSTRACT

Iodine, iodine chloride, tetraethylammonium iodide and tetraethylammonium triiodide solutions in aluminum chloride - N-(1-butyl)pyridinium chloride ambient temperature ionic liquids have been studied by u.v. - visible spectrophotometry. The different oxidation states of iodine show a distinct dependence on the solvent acidity. Iodine(+1) exists in the form of ICl in acidic melts and in the form of ICl₂⁻ in basic AlCl₃-BuPyCl mixtures. Molecular iodine does not form strong complexes in acidic or neutral solutions. Triiodide ion is stable in neutral butylpyridinium tetrachloroaluminate, but not in acidic melts. In solutions of iodine or triiodide in basic AlCl₃-BuPyCl ionic liquids equilibrium mixtures of I₂Cl⁻, I₃⁻, ICl₂⁻ and I⁻ are formed.

The charge transfer band observed for iodide solutions in neutral and basic melts reveal the formation of iodide ion - butylpyridinium cation ion pairs. Similar bands in pure basic AlCl₃-BuPyCl mixtures indicate the association of chloride ion and butylpyridinium cation.
INTRODUCTION

Our electrochemical investigations of iodine in aluminum chloride-N-(1-butyl) pyridinium chloride (BuPyCl) ambient temperature molten salts (1,2) showed that in this solvent iodine and its compounds are involved in extensive acid-base and redox equilibria. Variations in the AlCl₃:BuPyCl mole ratio lead to wide changes in Lewis acidity of the medium. Neutral equimolar mixture of AlCl₃ and BuPyCl can be made acidic by adding excess AlCl₃ or basic with excess BuPyCl. The present study was undertaken to obtain additional information on interactions of iodine in different oxidation states with the ionic solvent. The electrochemical experiments did not directly identify all the iodine species formed in basic AlCl₃-BuPyCl ionic liquid (2). They did not indicate the formation of I₂⁺ ion in acidic ambient temperature melts although this ion has been postulated on the basis of spectral results for mixtures of I₂ and Cl₂ dissolved in high temperature AlCl₃-NaCl molten salts (3).

It was also of interest to seek in this medium, containing high concentration of butylpyridinium cation, charge transfer bands for iodide and chloride ions. Charge transfer, (CT), transitions for alkylpyridinium iodides have been observed in many different solvents (4-7). CT bands have also been reported for myristylpyridinium chloride solutions in chloroform (6). It was assumed (5-7) that these transitions occur for contact ion pairs; a possible contribution of solvent separated ion pairs to ionic association equilibria in these systems was however unclear (6-A). Ionic association equilibria in AlCl₃-BuPyCl ionic liquids are different in this respect in that in this medium only contact ion pairs should be formed. Formation of this type of ionic association between butylpyridinium cation and iodide and chloride ions is indicated by charge transfer bands reported herein.
EXPERIMENTAL

The procedures used for purification of AlCl_3 (Fluka), synthesis and purification of $\text{N-}(1\text{-butyl})\text{pyridinium chloride}$ and preparation of the melts were similar to those described previously (9). Iodine (Malinckrodt AR), iodine chloride (Eastman Kodak), and tetraethylammonium iodide (TEAI) (Eastman Kodak) were used as received. Tetraethylammonium triiodide (TEAI$_3$) was prepared according to Chattaway and Hoyle (10) and dried under vacuum.

Absorption spectra were obtained with a Perkin Elmer Model Coleman 750 spectrophotometer using 0.1 cm matched quartz cells (Wilmad). Cells were filled and sealed under a purified argon atmosphere in a Vacuum Atmosphere dry box with an HE 493 Dri Train.
RESULTS

Iodide and chloride ions.

Iodide ion, which in acidic melts does not exhibit any absorption in the accessible u.v. region (1), shows a single absorption band with a maxima at ca 330 nm in neutral and basic solutions (Figure 1). This band was found to obey Lambert's law at iodide concentrations from \(3 \times 10^{-4}\) to \(7 \times 10^{-3}\) mol dm\(^{-3}\) and the apparent molar absorptivity at 330 nm was \(3 \times 10^3\) dm\(^3\) mol\(^{-1}\) cm\(^{-1}\) in the neutral as well as in basic 0.95:1 and 0.75:1 melts (Table I).

Visible or near u.v. absorption bands observed for alkylpyridinium iodides in many different solvents (4-7) have been assigned to charge transfer transitions (4-7) and taken as an evidence for contact ion pair formation (5-7). The observed independence of the apparent molar absorptivity on iodide concentration in butylpyridinium tetrachloroaluminates indicates full association of iodide ions with butylpyridinium cations. It is also interesting to note that the molar absorptivity in the ionic liquid is distinctly higher than in the other solvents where its value varied between 300 and 1600 dm\(^3\) mol\(^{-1}\) cm\(^{-1}\) (4-7). Since in the ionic liquid only contact ion pairs are formed, the measured value can be regarded as the molar absorptivity of the contact BuPy\(^{+}\)I\(^{-}\) ion pair. Lower values of apparent molar absorptivity observed in the other solvents (4-7) suggest that solvent separated ion pairs are a significant fraction of ionic associations formed there.

Spectra recorded for pure melts at different AICl\(_3\):BuPyCl mole ratios revealed a dependence of the short wavelength "cut off" on the melt composition. In acidic and neutral melts the "cut offs" were essentially
an absorbance equal to 1 at 284 nm for 1.5:1 and at 285 nm for
the neutral AlCl₃:BuPyCl mole ratios (1.0:1.0) melt (at 0.1 cm
pathlengths, the spectra recorded versus air). For basic melt compositions
these "cut offs" shifted to 313 nm for 0.95:1, 319 nm for 0.9:1 and to 325
nm for 0.75:1 AlCl₃:BuPyCl mole ratios. In acidic and neutral melts the
"cut offs" are due to butylpyridinium cation \(\pi \rightarrow \pi^* \) transitions (8). In
aqueous solutions, maxima of alkylpyridinium cation absorption bands were
observed at ca 260 nm (5). The slight difference between 1.5:1 and 1:1
melts results from an increase in BuPy⁺ concentration which is 3.5 mol
dm⁻³ in 1.5:1 and 4.1 mol dm⁻³ in 1:1 melt. In basic melts, however,
the BuPy⁺ concentration increase cannot account for the observed shift of
the cut off; BuPy⁺ concentration in the 0.75:1 melt is 4.45 mol dm⁻³.
On the other hand, an absorbance edge observed between 285 and 310 nm
increased when excess BuPyCl was added to the neutral butylpyridinium
tetrachloroaluminate (Figure 2). The absorbance at constant wavelength
varied linearly with the concentration of "free" chloride (in excess over
AlCl₃) (Figure 3). This shows that the absorption at these wavelengths is
due to charge transfer transitions for a butylpyridinium cation-chloride
ion pair, similar to the BuPy⁺...I⁻ association. The proportionality
between the absorbance and excess chloride concentration (at 305 nm Beer's
law was obeyed in the chloride ion concentration range from \(5 \times 10^{-3} \) to
0.1 mol dm⁻³) indicates full association of butylpyridinium cation and
chloride ion under the conditions employed (large excess of RuPy⁺).

The charge transfer band observed in the u.v. spectrum of AlCl₃-
BuPyCl ionic liquid is a good indication of basic melt composition. It is
especially useful at very low chloride concentrations, close to the neutral
butylpyridinium tetrachloroaluminate. It was found, that at concentrations below \(\sim 5 \times 10^{-3} \text{ mol dm}^{-3} \), neither chloride nor heptachloroaluminate ions effect the electrochemical window of the molten butylpyridinium tetrachloroaluminate (2) which can be used as a criterion of the neutrality of the solvent (11). However, in u.v. spectra analogous to those shown in Figure 2, \(1 \times 10^{-3} \text{ mol dm}^{-3} \) excess chloride could be detected (at 290 nm the absorbance value corresponding to \(1 \times 10^{-3} \text{ mol dm}^{-3} \) chloride was 0.043). This method did not require the preparation of an ideally equimolar neutral melt as the reference solution. Since, as discussed above, spectra of neutral and acidic melts were essentially the same, an acidic melt could be used as the reference.

Iodine, iodine chloride and triiodide ion.

For solutions of iodine in neutral butylpyridinium tetrachloroaluminate a broad absorption band with a maxima at ca 480 nm (\(\epsilon_{12}^{480} = 800 \text{ dm}^{-3} \text{ mol}^{-1} \text{ cm}^{-1} \)), identical to one previously observed in acidic solutions containing iodine (1), was found. A difference between the position of this band for iodine solution in liquid butylpyridinium tetrachloroaluminate and in \(\text{CCl}_4 \) (\(\epsilon_{\text{max}}^{517} \text{ nm} \) (12)) reflects some weak intermolecular interactions between iodine molecules and solvent ions; nevertheless iodine in neutral as well as acidic \(\text{AlCl}_3-\text{BuPyCl} \) mixtures does not form strong complexes and is dissolved in the form of \(\text{I}_2 \) molecules.

Spectra obtained for iodine solutions in basic \(\text{AlCl}_3-\text{BuPyCl} \) ionic liquids (Figure 4) indicated the formation of polyhalogen ions; the uncomplexed iodine band at 480 nm was not observed. The dependence of the spectra on concentration of iodine and melt composition indicated
equilibria involving chloride ion. The solvent "cut off" did not allow a
direct observation of polyhalogen ion absorption maxima at wavelengths
shorter than 320 nm. Only the band at ca 365 nm due to triiodide ion (vide
infra) could be observed (Figure 4). Its formation in solutions of iodine
dissolved in basic AlCl₃-BuPyCl melts shows that I₂ is involved in some
redox reaction. Reversible changes of the spectra at varying melt
compositions, an independence of the spectra on time, and the fact that
more than 90% of the amount of iodine initially added to a basic melt could
be observed by rotating disc voltammetry after the melt was made acidic by
AlCl₃ addition (2), showed that the possible reactions of iodine,
reduction by chloride ion and/or solvent impurities as well as the reaction
with the organic cation could not account for the observed reaction. On the
other hand, electrochemical experiments showed the presence of iodine (+1)
as well as iodide in the solutions of iodine in basic melts (2), thus
indicating that the redox reaction involving iodine is the
disproportionation equilibrium

$$I₂Cl^- + Cl^- = ICl₂^- + I^-$$ \hspace{1cm} (1)

Triiodide ion is formed in the consecutive equilibrium:

$$I₂Cl^- + I^- = I_3^- + Cl^-$$ \hspace{1cm} (2)

Similar equilibria have been reported for I₂Cl⁻ solutions in
acetonitrile (13), and in water (14) and recently for I₂/CsCl-LiCl
melts (15). Since in the acidic melts the iodine disproportionation
equilibrium is shifted far to the left (1), the addition of AlCl₃ to the
equilibrium mixture of polyhalogen ions existing in the solution of iodine
in basic AlCl₃-BuPyCl melt causes the formation of molecular iodine.

Iodine chloride reacts with the acidic melt and is partly reduced to
iodine (1), so the spectra obtained for ICl solutions in acidic AlCl₃-BuPyCl melts consisted of bands due to ICl as well as I₂. Since the molar absorptivity of iodine is five times larger than the absorptivity of iodine chloride (16), and the two bands appear in the same wavelength range (the ICl band maximum was reported to be at 343 to 466 nm depending on solvent used (16)), only one very broad band was observed. The maximum of this band shifted from ca 450 to 490 nm (in 2:1 AlCl₃:BuPyCl melt) over a period of 24 hours reflecting the progress of the reaction

\[2 \text{ICl} = \text{I}_2 + \text{Cl}_2 \]

(3)

The spectra recorded for ICl solutions in acidic AlCl₃-BuPyCl mixtures were different than the spectrum reported for equimolar mixture of iodine and chlorine dissolved in the 2:1 AlCl₃-NaCl melt (3). No band in the 600-800 nm region was observed; thus there was no evidence for the I₂⁺ ion formation under the employed conditions. For ICl₂⁻ ion two absorption bands were reported (12,13,14,15), the main one at ca. 230 nm \((ε^{230} = \text{ca. 5.5 x 10}^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})\) and the second, much less intense \(\text{ICl}_2^-\) band at ca 340 nm \((ε^{340} = \text{ca. 300 cm}^3 \text{ mol}^{-1} \text{ cm}^{-1})\). The spectra obtained for iodine chloride solutions in basic AlCl₃-BuPyCl melts indicated the formation of ICl₂⁻; however only the less intense band at 338 nm could be observed. Additionally, for the latter solutions a small maximum at ca. 420 nm was evident. This band decreased at higher chloride concentrations; it probably reflected the presence of the small equilibrium concentrations of molecular ICl in the solution.

The spectra obtained for TEAl₃ solutions at melt compositions close to the neutral (as judged by the electrochemical window of the solvent (11)), were qualitatively similar to the spectra recorded in acetonitrile,
with two absorption maxima at 295 and 365 nm. However, apparent molar absorptivities were found to be very sensitive to small additions of AlCl$_3$ and BuPyCl to the solution. These variations reflect changes in the conditional stability of I$_3^-$ ion, which result from acid-base interactions of iodide with AlCl$_3$(I) or iodine with chloride ion (vide supra). Even at concentrations of Cl$^-$ or Al$_2$Cl$_7^-$ ions below 5 x 10$^{-3}$ mol dm$^{-3}$, which did not affect the electrochemical window of the solvent, the apparent molar absorptivity of I$_3^-$ distinctly changed.

When the melt composition was adjusted to a true "neutral" state, however, the molar absorptivity of I$_3^-$ in neutral butylpyridinium tetrachloroaluminate (ε$^{365}_{I_3^-} = 2.25 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$) agreed well with literature data (5,13). The value of the I$_3^-$ ion molar absorptivity in neutral butylpyridinium tetrachloroaluminate confirmed the high stability of I$_3^-$ ion observed in electrochemical experiments (2).

Shapes of the spectra recorded for TEAI$_3^-$ solutions in basic solvent compositions were dependent on triiodide and/or chloride ion concentrations (Figure 5). These variations were consistent with the reaction described by equilibrium 2. Thus reactions 1 and 2 lead to the formation of the equilibrium mixtures of all the ions: I$_2$Cl$^-$, ICl$_2^-$, I$_3^-$, I$^-$ and Cl$^-$ in basic AlCl$_3$-BuPyCl ionic liquids. In triiodide solutions reaction 2 is followed by reaction 1 (the presence of ICl$_2^-$ and I$^-$ ions in triiodide solutions in basic AlCl$_3$-BuPyCl melts was observed in electrochemical experiments (2)). On the other hand, in iodine solutions iodide ion formed in reaction 1 reacts with I$_2$Cl$^-$ ion according to equilibrium 2.
DISCUSSION

U.v.-visible spectrophotometric studies characterized the species formed by iodine in different oxidation states at widely varied acidities of the AlCl$_3$-BuPyCl ionic liquid. The summary of these results, which are in agreement with electrochemical experiments (1,2), is shown in Table 1. The variety of species formed at different solvent acidities reflects characteristic features of the acid-base interactions in chloroaluminate molten salts. The ionic nature of the solvent promotes strong interactions between Lewis acids and chloride ion in basic melt compositions and between Lewis bases and heptachloroaluminate ion present in acidic melts. At the same time the high stability of triiodide ion in neutral butylpyridinium tetrachloroaluminate indicates relatively weak intermolecular interactions in this solvent.

Charge transfer transitions observed for butylpyridinium cation - iodide and butylpyridinium cation - chloride ion pairs indicate a high degree of association between these ions in basic AlCl$_3$-BuPyCl ionic liquids. The results obtained in the solutions containing a large excess of BuPy$^+$ over Cl$^-$ and I$^-$ did not allow a quantitative analysis of the association equilibria. Qualitatively, however, the results observed for basic AlCl$_3$-BuPyCl mixtures agreed with the conclusions drawn from the analysis of the conductivity measurements for ambient temperature chloroaluminate ionic liquids (18). The proportionality between the absorbance at 305 nm and chloride ion concentration observed up to 0.1 mol dm$^{-3}$ indicates that at formal concentrations of butylpyridinium cation up to 4 mol dm$^{-3}$, at least 90% of the chloride is involved in the charge transfer transition, thus is associated with BuPy$^+$ cation (accuracy of
the measurements was arbitrarily assumed to be ±10%. This gave an estimated value for the association constant

$$K = \frac{[\text{RuPy}...\text{Cl}^-]}{[\text{BuPy}^+][\text{Cl}^-]} > 2.3,$$

which favorably compares with the value of the association constant for a similar low temperature chloroaluminate system, aluminum chloride - imidazolium chloride, which was estimated as 2 (18). The ionic association of butylpyridinium cation with chloride ion has been indicated by NMR (19,20,21) and FTIR (22) studies of AlCl₃:RuPyCl melts.

For solutions of iodine and TEAI₃ in basic AlCl₃-BuPyCl ionic liquids the spectrophotometric studies confirmed polyhalogen equilibria deduced from the electrochemical results (2). In particular, the formation of I_3^- in iodine solution, expected from the values of equilibrium constant for reactions 1 and 2 estimated in the electrochemical studies (2), was directly observed. Attempts to obtain more accurate estimates of the equilibrium constants for reactions 1 and 2 from the spectral data were unfortunately unsuccessful. Spectra recorded for I₂ and TEAI₃ solutions in basic AlCl₃-BuPyCl mixtures were limited to a narrow range of wavelengths and consisted of overlapping bands of all ions involved in the polyhalogen equation, i.e., ICl_2^-, $I_2\text{Cl}^-$, I_3^- and I^-. Additionally a spectrum for $I_2\text{Cl}^-$ ion could not be obtained separately, thus molar absorptivity values for this ion were uncertain. However, the spectra obtained for iodine and triiodide solutions at low chloride concentrations (Figures 4 and 5) confirmed the approximate values of the equilibrium constants for reactions 1 and 2. Concentrations of I_3^- ions calculated from these equilibria agreed reasonably well with the I_3^- concentrations estimated from the absorbance measured of 365 nm.
This work was supported in part by the office of Naval Research and the Air Force Office of Scientific Research.
REFERENCES

Table 1

Apparent molar absorptivity of TEAI band at 330 nm in AlCl$_3$-RuPyCl melt.

<table>
<thead>
<tr>
<th>Melt composition</th>
<th>TEAI concentration $\times 10^3$ mol dm$^{-3}$</th>
<th>$\epsilon \times 10^3$ dm3 mol$^{-1}$ cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_A/N_B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:1</td>
<td>3.7</td>
<td>2.97</td>
</tr>
<tr>
<td>0.95:1</td>
<td>0.85</td>
<td>2.85</td>
</tr>
<tr>
<td>0.95:1</td>
<td>1.99</td>
<td>3.04</td>
</tr>
<tr>
<td>0.95:1</td>
<td>4.65</td>
<td>2.99</td>
</tr>
<tr>
<td>0.95:1</td>
<td>7.7</td>
<td>2.98</td>
</tr>
<tr>
<td>0.75</td>
<td>1.8</td>
<td>2.95</td>
</tr>
<tr>
<td>0.75</td>
<td>5.9</td>
<td>3.05</td>
</tr>
</tbody>
</table>

N_A - Number of moles of AlCl$_3$

N_B - Number of moles of RuPyCl
TABLE 2
Iodine species at different AlCl$_3$-BuPyCl ionic liquid compositions.

<table>
<thead>
<tr>
<th>Iodine oxidation state</th>
<th>Acidic</th>
<th>Neutral</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>ICl</td>
<td>ICl</td>
<td>ICl$_2$</td>
</tr>
<tr>
<td>0</td>
<td>I$_2$</td>
<td>I$_2$</td>
<td>I$_2$Cl$^-$</td>
</tr>
<tr>
<td>-0.33</td>
<td>---</td>
<td>I$_3^-$</td>
<td>I$_3^-$</td>
</tr>
<tr>
<td>-1</td>
<td>AlCl$_3$I$^-$, Al$_2$Cl$_6$I$^-$</td>
<td>I$^-$($\text{BuPy}^+...I^-$)</td>
<td>I$^-$($\text{BuPy}^+...I^-$)</td>
</tr>
</tbody>
</table>
Fig. 1. Absorption spectra of tetraethylammonium iodide solution in 0.95:1 AlCl₃:BuPyCl melt. C_{TEAI}: (1) 4.65; (2) 1.99; (3) 0.85 mM.

Fig. 2. Absorption spectra of butylpyridinium chloride added to neutral butylpyridinium tetrachloroaluminate. Excess of BuPyCl; (1) 18; (2) 11; (3) 5.4 mM.

Fig. 3. Absorbance at constant wavelength measured for spectra shown in Fig. 2 plotted against chloride concentration. Wavelength: (1) 290; (2) 295; (3) 300; (4) 305 nm.

Fig. 4. Absorption spectra of iodine in 0.95:1 AlCl₃-BuPyCl melt. Cl: (1) 3.5; (2) 1.68; (3) 0.85 mM.

Fig. 5. Absorption spectra of tetraethylammonium triiodide in 0.95:1 AlCl₃-BuPyCl melt. C_{TEAI}_3: (1) 1.89; (2) 1.42; (3) 0.85; (4) 0.35 mM.
FIGURE 1
Figure 2
FIGURE 5
<table>
<thead>
<tr>
<th>Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217</th>
<th>2</th>
<th>Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106</td>
<td>1</td>
<td>Naval Weapons Center Attn: Dr. A. B. Amster Chemistry Division China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401</td>
<td>1</td>
<td>Dean William Tolles Naval Postgraduate School Monterey, California 93940</td>
</tr>
<tr>
<td>Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375</td>
<td>1</td>
<td>U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314</td>
<td>12</td>
<td>Mr. Vincent Schaper DTNSRDC Code 2830 Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401</td>
<td>1</td>
<td>Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232</td>
<td>1</td>
<td>Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801</td>
</tr>
</tbody>
</table>
Dr. M. B. Denton
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. J. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. B. R. Kowalski
Department of Chemistry
University of Washington
Seattle, Washington 98105

Dr. H. Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. H. Chernoff
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Zirino
Naval Undersea Center
San Diego, California 92132

Professor George H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Alan Bewick
Department of Chemistry
Southampton University
Southampton, Hampshire
ENGLAND 5095NA

Dr. S. P. Perone
Lawrence Livermore Laboratory L-370
P.O. Box 808
Livermore, California 94550

Dr. L. Jarvis
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Dr. G. M. Hieftje
Department of Chemistry
Indiana University
Bloomington, Indiana 47401

Dr. Christie G. Enke
Department of Chemistry
Michigan State University
East Lansing, Michigan 48824

Dr. D. L. Venezky
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840

Professor Isiah M. Warner
Department of Chemistry
Emory University
Atlanta, Georgia 30322

Dr. Kent Eisentraut
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. B. E. Douda
Chemical Sciences Branch
Code 50 C
Naval Weapons Support Center
Crane, Indiana 47322

Dr. John Eyler
Department of Chemistry
University of Florida
Gainesville, Florida 32611
OL/413/83/01
051B/413-2

TECHNICAL REPORT DISTRIBUTION LIST, 0518

Professor J. Janata
Department of Bioengineering
University of Utah
Salt Lake City, Utah 84112

Dr. J. DeCorpo
NAVSEA
Code 05R14
Washington, D.C. 20362

Dr. Charles Anderson
Analytical Chemistry Division
Athens Environmental Laboratory
College Station Road
Athens, Georgia 30613

Dr. Ron Fleming
B 108 Reactor
National Bureau of Standards
Washington, D.C. 20234

Dr. David M. Hercules
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania

Dr. Frank Herr
Office of Naval Research
Code 422CB
800 N. Quincy Street
Arlington, Virginia 22217

Professor E. Keating
Department of Mechanical Engineering
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. M. H. Miller
1133 Hampton Road
Route 4
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. Clifford Spiegelman
National Bureau of Standards
Room A337 Bldg. 101
Washington, D.C. 20234

Dr. Denton Elliott
AFOSR/NC
Boiling AFB
Washington, D.C. 20362

Dr. B. E. Spielvogel
Inorganic and Analytical Branch
P.O. Box 12211
Research Triangle Park, NC 27709

Ms. Ann De Witt
Material Science Department
160 Fieldcrest Avenue
Raritan Center
Edison, New Jersey 08818

Dr. A. Harvey
Code 6110
Naval Research Laboratory
Washington, D.C. 20375

Dr. John Hoffsommer
Naval Surface Weapons Center
Building 30 Room 208
Silver Spring, Maryland 20910

Mr. S. M. Hurley
Naval Facilities Engineering Command
Code 032P
200 Stovall Street
Alexandria, Virginia 22331

Ms. W. Parkhurst
Naval Surface Weapons Center
Code R33
Silver Spring, Maryland 20910

Dr. M. Robertson
Electrochemical Power Sources Division
Code 305
Naval Weapons Support Center
Crane, Indiana 47522

CDR Andrew T. Zander
10 Country Club Lane
ONR Boston
Plaistow, New Hampshire 03865
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. Marvin Wilkerson
Naval Weapons Support Center
Code 30511
Crane, Indiana 47522

Dr. J. Wyatt
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dean William Tolles
Naval Post Graduate School
Spanaugel Hall
Monterey, California 93940

Dr. H. Wohltjen
Naval Research Laboratory
Code 6170
Washington, D.C. 20375
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheo, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
710 E. Ogden Avenue #108
Naperville, Illinois 60540

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234
Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
M.S. 68025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. William Ayers
ECD Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. A. P. B. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Loco 6343, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science
and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical
and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering &
Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Department of Physics
Washington State University
Pullman, Washington 99164

Dr. Carl Kannewurf
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, Illinois 60201