Molecular and Biological Studies on Visual Processes (Studies on Vision)

H. Gobind Khorana

Massachusetts Institute of Technology
Dept. of Chemistry, 18-511
77 Massachusetts Ave., Cambridge, MA 02139

Molecular Biology Program, Code 441MB
Office of Naval Research
800 N. Quincy St., Arlington, VA 22217

Office of Naval Research
Massachusetts Institute of Technology
Rm. EL9-628
Cambridge, MA 02139

See attached progress report.
PROGRESS REPORT SUBMITTED TO THE OFFICE OF NAVAL RESEARCH

Full Title: Molecular and Biological Studies on Visual Processes
Abbreviated Title: Studies on Vision

Principal Investigator: H. Gobind Khorana
Alfred P. Sloan Professor of Biology and Chemistry

Institution: Massachusetts Institute of Technology
Address: Department of Biology and Chemistry
Room 18-511
77 Massachusetts Avenue
Cambridge, Massachusetts 02139
(617) 253-1871

June 15, 1984

84 07 06 047
I. STRUCTURE FUNCTION STUDIES ON BACTERIORHODOPSIN, THE PROTON PUMP OF HALOBACTERIUM HALOBIIUM

Previously, we have reported the identification and cloning of the gene for the purpose of specific amino acid replacements. We have used three different and general methods for codon alterations at the gene level.

(a) Point Mutagenesis: This has been carried out using gene fusion and passing the plasmids through mutator strains.

(b) Amber Mutations and their Suppression: This has been done by using gene fusion and passing the plasmids through mutator strains.

(c) Replacement of Restriction Fragments by Synthetic DNA Duplexes: This uses the method that we have previously developed for the chemical and enzymatic synthesis of DNA fragments.

1. The Identification of the Messenger RNA, the Nature of the Promoter Region and Initiation of Transcription

mRNA for BR has been purified by hybrid selection methods. The messenger RNA starts only two nucleotides beyond the 5' end of the structural gene. The promoter region has thus been identified.

2. Characterization of Insertion Elements that Inactivate the Bacteriorhodopsin Gene

Insertion elements have now been shown to provide a general mechanism for inactivation of the BR gene.
II. STUDIES ON BIOCHEMISTRY OF VISION

1. Bovine Rhodopsin

 (a) cDNA and genomic clone banks have been prepared. Sequence of rhodopsin cDNA corresponding to most of the structural gene has been determined.

 (b) Originally the plan was to express the rhodopsin cDNA in a suitable expression vector. Following this, we were to begin structure-function studies by changing amino acid codons. We have now undertaken the total synthesis of the structural gene. This would allow unrestricted capacity to change or delete any given regions of the rhodopsin protein.

 (c) Denaturation and Renaturation of Rhodopsin: This study is in progress. It is fundamental to our obtaining functional or properly folded rhodopsin after expression of the gene in E.coli or other hosts.

2. Cloning and Sequencing of the GTPase and cGMP Phosphodiesterase

 The cDNA's for these enzymes that are involved in the amplification mechanism in the ROS are being cloned by using polyclonal antibodies against them as the probes. Antibodies that react against α, β and γ subunits have been prepared. cDNA's prepared from enriched mRNA's have been cloned into the phage λgt11 system. Partial amino acid sequence of γ subunit has been determined.

3. Nature of the Na⁺ Channel in ROS

 Work on this has just been started.

III. JUSTIFICATION FOR EQUIPMENT

Beckman Ultracentrifuge Rotors: The Beckman 50Ti rotor is one of the most highly demanded rotors in the lab. It is used at least 100 hours per month in various applications such as isolating plasmid DNA from bacterial cultures and fractionating cellular extracts. The rotor presently in use (serial no. 1803) is 14 years old, and should be replaced to avoid a potential safety hazard.

The Beckman SW28 rotor is a large-capacity swinging bucket rotor that is used for differential centrifugation of
cellular extracts, in particular, for the preparation of purple membrane from H. Halobium in the course of purifying bacteriorhodopsin. Formerly, there were two SW27 rotors in the lab. One of these (serial no. 1717) was retired in June, 1983 after a Beckman inspection determined that the hangers were bent and the buckets corroded, presenting a serious safety problem. The second (serial no. 4127) is out of warranty and can no longer safely be used at maximum speeds.

RC-3B Centrifuge and Rotor H-6000A: The existing centrifuges in the laboratory do not permit centrifugation of cultures larger than 300 ml at a time per bottle. Therefore, it involves repeated centrifugation involving time up to 2 hours to spin down cells from a litre of culture, especially when multiple samples are to be handled causing delay and mechanical damage to the sample. The addition of RC-3B and the rotor H-6000A would decrease the time involved to 15 min. and increase the handling capacity to 6 litres at a time. In addition, it would provide versatility to use tubes of capacity from 1-45 ml which are so frequently used in the laboratory.
List of Publications

PROPOSED BUDGET
July 15, 1984 - July 14, 1985

SALARIES AND WAGES:

<table>
<thead>
<tr>
<th>Position</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Gobind Khorana, Principal Investigator, 10%*</td>
<td>$ 0</td>
</tr>
<tr>
<td>One Postdoctoral Associate</td>
<td>20,000</td>
</tr>
</tbody>
</table>

EMPLOYEE BENEFITS:

39% of Salaries and Wages | 7,800

TRAVEL:

To attend scientific meetings | 1,000

MATERIALS AND SERVICES:

Chemicals, glassware, radioisotopes, lab supplies, dry ice, etc. | 15,623

EQUIPMENT:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorval HB4 rotor</td>
<td>2,000</td>
</tr>
<tr>
<td>Beckman SW28 rotor</td>
<td>6,045</td>
</tr>
<tr>
<td>Beckman 50Ti rotor</td>
<td>5,680</td>
</tr>
<tr>
<td>RC-3B centrifuge and rotor H-6000A</td>
<td>13,095</td>
</tr>
</tbody>
</table>

OTHER DIRECT COSTS:

Telephone, postage, publications and xeroxing | 750

INDIRECT COSTS:

62% of the Modified Total Direct Cost Base | 28,007

TOTAL PROPOSED BUDGET | $100,000

*Dr. Khorana holds the Alfred P. Sloan Professorship in the Departments of Biology and Chemistry and his salary is paid from this source.