SUBSTITUTION AND ADDITION REACTIONS OF A
(METHYLENE)PHOSPHINE WITH ALKYLL... (U) TEXAS CHRISTIAN
UNIV FORT WORTH DEPT OF CHEMISTRY B L LI ET AL.
UNCLASSIFIED 18 MAY 84 TCU/DC/TR-84-04 N00014-79-C-0632 F/G 7/3
Substitution and Addition Reactions of a (Methylene)phosphine with Alkylolithium Reagents

by

Bi-L. Li and R.H. Neilson

Prepared for Publication

in

Inorganic Chemistry

Texas Christian University
Chemistry Department
Fort Worth, TX 76129

May 18, 1984

Reproduction in whole or in part is
Permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Substitution and Addition Reactions of a (methylene)phosphine with Alkylthium Reagents

Bi-L. Li and R.H. Neilson

Texas Christian University
Fort Worth, Texas 76129

Office of Naval Research

Approved for public release; distribution unlimited

Prepared for Publication in Inorganic Chemistry

Treatment of the (methylene)phosphine \((\text{Me}_3\text{Si})_2\text{NP} = \text{CHSiMe}_3\) (1) with alkylthium reagents and \(\text{Me}_3\text{SiCl}\) affords either the diphosphinomethane derivative \(\text{R}_2\text{P}-\text{CH(SiMe}_3)-\text{F(R)CH(SiMe}_3)_2\) (2, \(R = \text{Me}\)) or the trialkylphosphine \(\text{R}_2\text{PCH(SiMe}_3)_2\) (3, \(R = t-\text{Bu}\)). A reaction pathway involving both nucleophilic substitution and addition reactions at the P=CH moiety is suggested. Compound 2 exhibits hindered rotation about the P-CH bond with a measured \(\Delta C^+\) of 17.7 kcal/mole.
Substitution and Addition Reactions of a (Methylene)phosphine with Alkyllithium Reagents

Bei-Li Li and Robert H. Neilson*

Department of Chemistry
Texas Christian University
Fort Worth, Texas 76129

Abstract

Treatment of the (methylene)phosphine (Me₃Si)₂NP=CHSiMe₃ (1) with alkyllithium reagents and Me₃SiCl affords either the diphosphinomethane derivative R₂P-CH(SiMe₃)-P(R)CH(SiMe₃)₂ (2, R = Me) or the trialkylphosphine R₂PCH(SiMe₃)₂ (3, R = t-Bu). A reaction pathway involving both nucleophilic substitution and addition reactions at the P=C moiety is suggested. Compound 2 exhibits hindered rotation about the P-CH(SiMe₃)₂ bond with a measured ΔG° of 17.7 kcal/mole.
Many recent reports have dealt with the preparative chemistry of (methylene)phosphines \(RP=CR'2 \) as well as their structural and bonding characteristics.\(^1\) Moreover, some relatively clear and consistent patterns of reactivity of such compounds are now emerging. The types of reactions of (methylene)phosphines reported thus far include: (1) addition of polar electrophilic reagents to the \(P=C \) bond\(^2\), (2) oxidation to 3-coordinate \(P(V) \) derivatives\(^3\), (3) complexation of transition metals to the phosphorus lone pair or to the \(P=C \) \(\pi \) bond\(^4\), and (4) various cycloaddition processes such as Diels-Alder reactions.\(^5\)

In another general mode of reactivity, we find that these coordinatively unsaturated phosphorus compounds will also react smoothly with nucleophiles.\(^6\) We report here some novel examples involving both substitution and addition reactions of a bis(trimethylsilyl)amino substituted (methylene)phosphine with alkyllithium reagents.

Treatment of \([\text{bis(trimethylsilyl)amino}](\text{trimethylsilyl-methylene})\text{phosphine}\)\(^2c\) \(\equiv \) in \(Et_2O \) at \(-78^\circ C \) with \(MeLi \), followed by quenching with \(Me_3SiCl \), does not yield the expected\(^7\) phosphine \((Me_3Si)2NP(Me)CH(SiMe3)2 \). Instead, the reaction takes a much more complicated course, forming the novel diphosphinomethane derivative \(\sim \) (eq 1). The product \(\sim \) is isolated as a colorless liquid in 88% yield by fractional distillation. The characterization of \(\sim \) is based mainly on NMR data (Table I) with the \(AB \) pattern in the \(^{31}P \) NMR spectrum being especially diagnostic. A satisfactory elemental analysis and the
appropriate mass spectral fragmentation pattern were also obtained for 2.

\[2 \text{(Me}_3\text{Si)}_2\text{NP}=\text{CHSiMe}_3 + 3 \text{MeLi} + 3 \text{Me}_3\text{SiCl} \rightarrow \]

\[\text{Me}_2\text{P}-\text{CHSiMe}_3 + 3 \text{LiCl} + 2 \text{(Me}_3\text{Si)}_3\text{N} \] (1)

Under similar conditions, the reaction of 1 with t-BuLi occurs in a 1:2 stoichiometry (eq 2) to afford the di(t-butyl)-phosphine 3 in 69% yield rather than a P-C-P product analogous to 2.

\[\text{(Me}_3\text{Si)}_2\text{NP}=\text{CHSiMe}_3 + 2 \text{t-BuLi} + 2 \text{Me}_3\text{SiCl} \rightarrow \]

\[(\text{t-Bu})_2\text{P}-\text{CH(SiMe)}_3 + 2 \text{LiCl} + \text{(Me}_3\text{Si)}_3\text{N} \] (2)

These remarkably clean reactions of the (methylene)phosphine 1 with alkylithium reagents must involve both nucleophilic displacement of the bis(trimethylsilyl)amide group as well as addition across the P=C bond. The reaction pathway proposed in Scheme I is strongly suggested by the following experimental observations: (1) The byproduct (Me3Si)3N can be isolated and identified by NMR, indicating that (Me3Si)2NLi is indeed formed.
Moreover, the 1H NMR integration of the crude reaction product is consistent with the stoichiometry given by equation 1. (2) The use of 1:1 mole ratios of \sim to RLi yields only unreacted \sim in addition to products 2 or 3. (3) The formation of \sim in the t-BuLi reaction rather than a product similar to \sim is consistent with increased steric hindrance at phosphorus in intermediates A and B when R = t-Bu. (4) When the reaction with MeLi is monitored by low-temperature 31P NMR, the (methylene)phosphine intermediate A is not seen but an AB pattern (δ_A -1.8, δ_B -6.8, $J_{AB} = 69.3$ Hz) assignable to the diphosphorus anion C is clearly observed prior to the addition of Me$_3$SiCl.

A final point of interest concerns the 1H and 13C NMR spectra of the di(t-butyl)phosphine \sim which reveal non-equivalence of the t-Bu signals at room temperature. A high temperature 1H NMR study shows that the two t-butyl doublets coalesce to a single doublet at 65°C (in C$_6$H$_6$ solution) indicating a barrier to rotation about the P-CH(SiMe$_3$)$_2$ bond of approximately 17.7 kcal/mole. The extreme steric hindrance caused by the bis(trimethylsilyl)methyl group in phosphorus (III) compounds has been previously noted.9

Experimental Section

Materials and General Procedures. The (methylene)phosphine \sim was prepared according to the published procedure.2c Alkyllithium reagents were used as received from commercial sources. Ether and hexane were distilled from CaH$_2$ prior to use.
Proton NMR spectra were recorded on a Varian EM-390 spectrometer; 13C and 31P, both with 1H decoupling, were obtained on a JEOL FX-60 instrument. Mass spectral data were obtained on Finnigan OWA 1020 GC-MS system. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.

All reactions and other manipulations were carried out under an atmosphere of dry nitrogen or under vacuum. The procedures described below are typical of those which gave the best yields of compounds 2 and 3. Preliminary experiments using equimolar quantities of 1 and the alkyllithium reagents afforded the same products together with unreacted (methylene)phosphine.

Reaction of 1 with MeLi. Methylithium (30 mmol, 21.5 mL, 1.4 M in Et$_2$O) was added at -78°C to a stirred solution of 1 (20 mmol, 5.6 g) in Et$_2$O (50 mL) to yield a light yellow precipitate, presumably anion C (Scheme I). After stirring the mixture for 2.5 h at -78°C, Me$_3$SiCl (30 mmol, 3.8 mL) was added and the mixture was allowed to warm to room temperature. After stirring overnight, Et$_2$O was removed under vacuum and hexane (20 mL) was added. The mixture was then filtered and the solvent and (Me$_3$Si)$_3$N (identified by 1H NMR) were removed under vacuum. Distillation through a short path column afforded compound 2 as a colorless liquid (3.1 g, 87% yield, bp 99-105°C/0.05 mm). Anal. Calcd: C, 47.73; H, 10.80. Found: C, 47.51; H, 10.77. Mass spectrum, m/e (relative intensity): 352 (2), 337 (9), 291 (22), 279 (6), 205 (4), 193 (10), 147 (14), 73 (100).
Reaction of 1 with t-BuLi. By means of a similar procedure, 1 (20 mmol) was treated with t-BuLi (40 mmol, 22.2 mL, 1.8 M in pentane) at -78°C in Et₂O (50 mL). After quenching with Me₃SiCl (40 mmol) and work-up as described above, distillation gave 3 as a colorless liquid (4.2 g, 69% yield, bp 82-83°C/0.15 mm). Anal. Calcd: C, 59.21; H, 12.17. Found: C, 59.08; H, 12.05. Mass spectrum, m/e (relative intensity): 304 (22), 289 (25), 248 (81), 159 (28), 145 (14), 73 (100).

Acknowledgment. We thank the U.S. Office of Naval Research and the Robert A. Welch Foundation for generous financial support.
References and Notes

(f) Neilson, R.H.; Thoma, R.J.; Vickovic, I.; Watson, W.H. Organometallics, submitted for publication.

(c) van der Knaap, Th. A.; Bickelhaupt, F. Tetrahedron 1983, 38, 3189.

(6) Nucleophilic displacement of chloride from P-Chloro substituted methylenephosphines is known:

(7) Addition of MeLi to the analogous iminophosphine
(Me$_3$Si)$_2$NP=NSiMe$_3$ does yield the simple P-Me derivative:

(8) Displacement of the (Me$_3$Si)$_2$N group from the analogous iminophosphine by very bulky organolithium compounds has recently been reported: Romanenko, V.D.; Ruben, A.V.; Markovski, L.N. J. Chem. Soc., Chem. Commun. 1983, 187.

<table>
<thead>
<tr>
<th>compd</th>
<th>Signal</th>
<th>1H</th>
<th>3C</th>
<th>31P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ</td>
<td>J_{PH}</td>
<td>δ</td>
<td>J_{PC}</td>
</tr>
<tr>
<td>$\text{Me}_2\text{P}-\text{CHSiMe}_3$</td>
<td>Me_3SiC</td>
<td>0.14</td>
<td>1.0</td>
<td>2.56</td>
</tr>
<tr>
<td>$\text{Me}_2\text{P}-\text{CH(}\text{SiMe}_3\text{)}_2$</td>
<td>($\text{Me}_3\text{Si})_2\text{C}$</td>
<td>0.10</td>
<td>0.4</td>
<td>1.89</td>
</tr>
<tr>
<td>Me_2PC</td>
<td></td>
<td>1.15</td>
<td>4.8</td>
<td>22.80</td>
</tr>
<tr>
<td>Me_2PC</td>
<td></td>
<td>1.16</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>MeP</td>
<td></td>
<td>1.30</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Si_2CH</td>
<td></td>
<td>1.04</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>P_2CH</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-$\text{Bu})_2\text{P}-\text{CH(}\text{SiMe}_3\text{)}_2$</td>
<td>Me_3SiC</td>
<td>0.12</td>
<td>0.2</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td>5.12</td>
</tr>
<tr>
<td>Me_3CC</td>
<td></td>
<td>1.15</td>
<td>13.5</td>
<td>28.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.17</td>
<td>12.3</td>
<td>30.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.09</td>
<td>10.8</td>
<td>32.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.42</td>
</tr>
</tbody>
</table>

^a Chemical shifts are downfield from Me_4Si for ^1H and ^13C spectra and from H_3PO_4 for ^{31}P spectra; coupling constants in Hz. Solvents: ^1H, CH_2Cl_2; ^13C and ^{31}P, CDCl_3.

^b AB pattern with $J_{PP} = 95.2$ Hz.

^c Diastereotopic groups observed in ^1H and/or ^13C NMR spectra.

^d Multiplet of ca. 16 overlapping peaks in range δ 9.8 - δ 15.1.

^e Signals obscured by MeP resonances.
Scheme I

Si$_2$NP=CHSi$_1$ \xrightarrow{RLi} RP=CHSi + Si$_2$NLi

A \xrightarrow{SiCl} Si$_3$N

Li$^+$ R$_2$P=CHSi$_B$ \xrightarrow{A} $\begin{array}{c} Me_2P\cdots CHSi \\ Me\cdots P\cdots CHSil
\end{array}$

Si = Me$_3$Si

R = Me

R = t$_{Bu}$