PRODUCTION OF PLASMA WITH VARIABLE RADIAL ELECTRIC FIELDS (U) IOWA UNIV IOWA CITY DEPT OF PHYSICS AND ASTRONOMY & KUSTOM ET AL. FE 84 U. OF IOWA-84-3
PRODUCTION OF PLASMA WITH VARIABLE, RADIAL ELECTRIC FIELDS

by

Brittan Kustom, Robert L. Merlino, and Nicola D'Angelo

Department of Physics and Astronomy
The University of Iowa
Iowa City, Iowa 52242

ABSTRACT

A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, we have been able to produce plasmas with a radial electric field \(E_r \leq 5 \, \text{V/cm}. \)
A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, we have been able to produce plasmas with a radial electric field $E_r < 5$ V/cm.
I. INTRODUCTION

In this paper we describe a method for applying a relatively large (< 5 V/cm), variable, radial electric field in a cylindrical, argon discharge column. This is an extension of previous work\(^1\) in which radial electric fields, \(E_r = 0.5\) V/cm were applied in order to study the low-frequency Farley-Buneman instability\(^2,3\) which is driven by a relative \(\nabla \times B\) drift of electrons and ions on the order of \(C_s\), the ion-acoustic speed. Lee et al.\(^4\) have shown that for higher relative drifts the maximum growth rate of the instability shifts to higher frequencies. In order to study this instability larger radial electric fields, \(E_r > 1\) V/cm, are required. The ability to vary \(E_r\) while keeping the density approximately constant is also desirable.

A laboratory test of the (low-frequency) Farley-Buneman instability was carried out by D'Angelo et al.\(^5\) in a Q-machine. In their setup the usual tantalum hot plate used to ionize the Cs atoms was replaced by a double-wound spiral of 2 mm diameter tantalum wire, with a spiral diameter of 6 cm. The spiral was heated by applying a 5.9 V potential difference between its edge (positive) and its center (negative). With this arrangement an average radial (inward) electric field of ~ 2 V/cm was produced in the plasma.
Although this electric field was sufficient to produce the required $E \times B$ drift, it could not be varied, since it was largely determined by the applied heating voltage.

Subsequent experiments on EM backscatter from Farley-Buneman waves by Alport et al.1 were carried out in a hot filament discharge in argon. In their setup a radial electric field variable from ~ 0 V/cm to ~ 1 V/cm was produced by applying a positive potential to anode rings concentric with the plasma column (cf. Fig. 4 Alport et al.)1 The average radial electric field tended to increase as the anode voltage, V_A, was increased, but saturated to $E_r = 0.5$ V/cm for $V_A \geq 40$ V. A similar arrangement had also been used by John and Saxena6 and Saxena and John7 in their observations of the Farley-Buneman instability and the gradient-drift (cross-field) instability. (See Saxena6 for a review of experiments on these instabilities.)

II. EXPERIMENTAL SETUP

We describe in this section the experimental apparatus and the operation of a device used to produce a plasma with a large, variable, radial electric field.

A schematic of the plasma device is shown in Fig. 1. This setup is a modification of the one used by Alport et al.1 employing the same vacuum vessel, magnet coils, core plasma filament
structure, and anode rings. We have added a cylindrical aluminum can, 30 cm in diameter, which is electrically connected to anode rings A₂ and A₃, and an additional set of filaments (AP, annular plasma radial filament structure) mounted on anode ring A₂. The anode end plate (EP) and ring A₄ are connected to the vacuum chamber which is grounded. Plasma and primary electrons from the discharge chamber (right side) stream through the aperture in anode ring A₄, thus producing a central (or core), CP, plasma (with a diameter determined mainly by the aperture in A₄) which is terminated in the main chamber on the (grounded) end plate attached to A₁. Typically the main discharge (CP) is operated with a background argon pressure of \(p = 10^{-3} \) Torr, with a discharge current \(I_{d}^{CP} = 1 - 4 \) A, discharge voltage \(V_{d}^{CP} = 50 \) V and at a magnetic field \(B = 225 \) G in the center of the main chamber. The axial variation of the magnetic field is about 15% over 40 cm.

The annular plasma is produced by a discharge between the AP filaments and anode rings A₂, A₃, and the aluminum can. This discharge is operated at \(I_{d}^{AP} = 10 \) mA - 15 mA and \(V_{d}^{AP} = 50 \) V. The potential of the annular plasma is controlled by varying the anode bias \(V_{A} \). The power supplies for producing and biasing the annular plasma are independent of those for the central plasma.

The operation of the device described above is similar to that of a standard double-plasma (DP) device. In a DP device two plasmas separately produced in a common vacuum chamber are partially
isolated by a negatively biased grid which prevents the two electron species from intermixing. In our setup, which may be described as a coaxial DP device, the axial magnetic field inhibits the mobility of the primary ionizing electrons, their gyroradius being \(\approx 1 \text{ mm} \).

The radial electric field is produced when the AP anode structure \((A_2, A_3)\) and aluminum can is biased to a potential \(V_{A}\) from 0 V to 20 V. When this potential is applied, the space potential of the annular plasma rises to a value \(\geq V_{A}\). The core plasma anodes \(A_1\) and \(A_4\) are kept at earth potential, and as \(V_{A}\) is increased the CP space potential rises, but by only a small fraction of \(V_{A}\). The resulting radial profiles of density, \(n_{e}\), and space potential, \(V_{sp}\), are shown in Fig. 2. The discharge parameters for this case are \(I_{d}^{CP} = 4 \text{ A}, I_{d}^{AP} = 10.5 \text{ mA},\) and \(V_{d}^{CP} = V_{d}^{AP} = 50 \text{ V}\), with the anode voltage \(V_{A} = 8 \text{ V}\). Under these conditions a nearly parabolic potential profile is measured as a Langmuir probe is moved across the column over a distance \(-2.5 \text{ cm} < R < +2.5 \text{ cm}\), with a corresponding average radial electric field, \(E_{r} = 1.4 \text{ V/cm}\). Similar curves are obtained for different \(V_{A}\)'s, which show a general increase of the radial electric field with increasing \(V_{A}\). This is illustrated in Fig. 3, where the difference in space potential, \(\Delta V_{sp}\), as measured by a movable Langmuir probe, between \(R = 5 \text{ cm}\) and \(R = 0 \text{ cm}\), is plotted as a function of \(V_{A}\). The discharge conditions for Fig. 3 are \(I_{d}^{CP} = 1.8 \text{ A}, I_{d}^{AP} = 10 \text{ mA with } V_{d}^{CP} = V_{d}^{AP} = 50 \text{ V}\). If the anode voltage \(V_{A}\) is increased above approximately 20 V, the core plasma
potential suddenly jumps to a value \(V_{sp} < V_A \), thus resulting in a small value of \(E_r \). The results of Fig. 3 are in contrast to the earlier data of Alport et al.\(^1\) which showed the radial electric field saturating at \(E_r = 0.5 \, \text{V/cm} \) for \(V_A > 30 \, \text{V} \).

III. SUMMARY AND CONCLUSIONS

We have described a device suitable for plasma wave studies requiring relatively large, variable, radial electric fields. By generating a very low density annular plasma surrounding a denser plasma core we are able to impose radial electric fields \(E_r < 5 \, \text{V/cm} \) by separately fixing the space potentials of each plasma. This represents roughly a factor of 4-5 improvement in \(E_r \) over the setup used by Alport et al.\(^1\)

ACKNOWLEDGMENTS

We thank A. Scheller for his skillful technical assistance. This work was supported by the U.S. Office of Naval Research, contract N00014-83-K-0452 and in part by NASA grant NGL-16-001-043.
REFERENCES

FIGURE CAPTIONS

Fig. 1. (a) The experimental setup, showing a topview of the coaxial plasma device. (b) Core plasma and annular plasma filament structures.

Fig. 2. Radial profiles of plasma electron density, \(n_e \), and space potential, \(V_{\text{sp}} \). Plasma densities are in the range of \(10^9 \sim 10^{10} \text{ cm}^{-3} \).

Fig. 3. Difference in space potential \(\Delta V_{\text{sp}} \), between \(R = 0 \text{ cm} \) and \(R = 5 \text{ cm} \) as a function of the anode bias voltage \(V_A \).
Fig. 2

$V_A = 8$ V
$B = 225$ G
$\rho \approx 10^{-3}$ Torr
$B = 225 \text{G}$

$p \approx 10^{-3} \text{ Torr}$

Fig. 3
END

FILMED

5-84

DTA