STRUCTURE OF SILVER (100) AND (111) SINGLE-CRYSTAL SURFACES OBTAINED BY CHEMICAL POLISHING (U) CASE-WESTERN RESERVE UNIV CLEVELAND OH R R ADZIC ET AL. 01 DEC 83 UNCLASSIFIED TR-55 N00014-75-C-0953 F/G 9/1
Structure of Silver (100) and (111) Single-Crystal Surfaces Obtained by Chemical Polishing

R.R. Adzic, M.E. Hanson, and E.B. Yeager

Dept. of Chemistry & Case Cntr. for Electrochem. Case Western Reserve University / Sciences Cleveland, Ohio 44106

Submitted for publication as a technical note in the Journal of the Electrochemical Society.
surfaces the LEED patterns have surprisingly well-defined spots indicating a high two-dimensional periodicity, although not as ordered as the UHV cleaned and annealed surfaces. Highly diffuse background and weak fractional-order spots are present in the LEED pattern of the chemically polished surfaces, probably due to random and ordered impurity adsorption during transfer to the vacuum chamber. The Auger electron spectra before sputtering indicate the main impurity to be carbonaceous with no nitrogen detected. Voltammetry curves in 0.1M HF in a thin-layer cell are generally featureless over the potential range -0.1 to +0.45V vs RHE. These data indicate that chemical polishing can yield silver single-crystal surfaces of sufficient quality to produce LEED patterns but still short of the quality for UHV cleaned and annealed surfaces.
STRUCTURE OF SILVER (100) AND (111) SINGLE-CRYSTAL SURFACES
OBTAINED BY CHEMICAL POLISHING

by

R.R. Adzic, M.E. Hanson, and E.B. Yeager

Case Center for Electrochemical Sciences
and The Chemistry Department
Case Western Reserve University
Cleveland, Ohio 44106

Submitted for publication in the Journal of the Electrochemical Society

1 December 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
STRUCTURE OF SILVER (100) AND (111) SINGLE-CRYSTAL SURFACES OBTAINED BY CHEMICAL POLISHING

Radoslav R. Adžic**, Michael E. Hanson*, and Ernest B. Yeager*

Case Center for Electrochemical Sciences and the Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

*Electrochemical Society active member.
+Electrochemical Society student member.
#Visiting faculty member, July-August 1983, from the Institute of Electrochemistry, ICTM and Center for Multidisciplinary Studies, University of Belgrade, Belgrade, Yugoslavia.
Key Words: LEED, silver single-crystals, chemical polishing.
Interest has been increasing in the investigation of electrochemical reactions on single-crystal electrode surfaces (see e.g. Ref. 1-7). Electrode processes having a pronounced dependence on the particular single-crystal surface include hydrogen adsorption (8-11), underpotential deposition of metals (4), oxidation of organic molecules (6) and oxygen reduction (7). Inadequately characterized single-crystal surfaces, however, may lead to misleading results. Atomically flat, well-ordered surfaces are needed in order to obtain meaningful data. Ultrahigh vacuum techniques such as low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) can facilitate the characterization of such surfaces and verification of freedom from adsorbed impurities, but these techniques are ex situ. Elaborate systems (8-11) have been developed for preparing and characterizing single-crystal electrode surfaces in ultra-high vacuum and then transferring them into the electrochemical environment and vise versa under conditions designed to minimize structural changes and contamination. Experiments with these transfer techniques, however, are very timeconsuming and impose substantial restraints on the types of electrochemical systems that can be studied because of factors such as the use of completely volatilizable electrolytic solutions and thin-layer cell configurations.

Some electrochemists, including one of the authors (RA), have prepared single-crystal surfaces of metals by chemical methods and then proceeded to examine the electrochemical properties of these
surfaces. This work, however, has left unanswered the question of the quality of the single-crystal surfaces. This communication presents results which demonstrate that chemical polishing in the instance of silver single-crystal electrodes can yield ordered (100) and (111) surfaces, as judged by LEED.

Single-crystals of Ag, 99.99% pure, were obtained from Metal Crystals Ltd., Cambridge, England. They were oriented to better than 1°, mechanically polished by standard metallographic techniques with diamond paste, gradually decreasing the size of the grit to 1 micron. The crystals were further polished chemically, using procedures similar to those already reported (12). An aqueous solution of 30 volume percent of H₂O₂ and a solution of 21.5 g/l of NaCN were mixed in a 1:1 ratio for polishing the Ag(111) single-crystal surface. For the Ag(100) face, a lower concentration of 20 volume percent of H₂O₂ was used. The crystals were held for 5 s in these solutions, during which time vigorous gas evolution occurred. They were taken out, held in air for 3 s and transferred into a solution of 37.5 g/l NaCN, where gas evolution ceased. After washing, the procedure was repeated several times, in most instances in a fresh solution of H₂O₂ and NaCN until a highly reflecting surface was obtained. The electrode surface was then thoroughly washed in pure water. The surface obtained in this way was protected by a drop of pure water and transferred into the UHV preparation chamber of the LEED-AES-XPS system, which has been described in prior publications (8,9). The water drop was then volatilized during the pump down.

-2-
Figure 1a shows the LEED pattern from the Ag(111) surface immediately after introduction into the UHV chamber at 10^{-10} Torr. This LEED pattern was obtained without cleaning the surface in the vacuum chamber in any way. Neither argon-ion sputtering nor thermal annealing was used. Figure 1b shows the LEED pattern of chemically polished Ag(111) after a single sputtering with an argon-ion gun (Varian model 981-2043) for three min at 1.5 kV and subsequent radiative thermal annealing at approx. 600°C. The crystal reached this temperature in approximately 5 minutes and was allowed to cool to room temperature, which required about 20 minutes in vacuum. Analogously, Figures 2a and 2b show LEED patterns of chemically polished Ag(100) before and after, respectively, UHV sputtering and annealing.

For both the (111) and (100) crystal faces before UHV sputter cleaning, highly diffuse background and weak fractional-order spots are present in the LEED pattern, probably due to random and ordered impurity adsorption during transfer to the vacuum chamber. Auger electron spectra before sputtering indicate the main impurity to be carbonaceous. No nitrogen was detected in the AES, indicating no substantial amount of CN⁻ remained on the surface. The LEED spots are surprisingly well-defined, indicating a high two-dimensional periodicity, although not as ordered as the UHV cleaned and annealed surfaces. Voltammetry curves were also obtained in 0.1M HF in a thin-layer cell using a special transfer technique (8,9). Over the potential range -0.1 to 0.45V vs RHE voltammetry curves were generally featureless.
These data demonstrate that chemical polishing can yield silver single-crystal surfaces of high enough quality to produce LEED patterns. This is of great importance for studies of these surfaces outside UHV systems.

ACKNOWLEDGEMENTS

This research has been supported by the Office of Naval Research and the Department of Energy. Grants have also been received for equipment from General Motors and Union Carbide Corporation.

REFERENCES

Figure 1a. LEED pattern of chemically polished Ag(111) immediately after introduction to the vacuum chamber (no sputtering or thermal annealing). Primary beam energy = 47 eV. Exposure time = 3 min. F-stop = 1.4. Pattern is due to the sample protruding inside the radius of the screen because of its unusually large size for the system. Kodak Panatomic X film for all exposures.

Figure 1b. Same as Figure 1a after sputtering at 1.5 kV for 3 min. and thermally annealing at 600°C. Primary beam energy = 45 eV. Exposure time = 30 s.

Figure 2a. LEED pattern of chemically polished Ag(100) immediately after introduction to the vacuum chamber (no sputtering or thermal annealing). Curvature of the pattern is due to the sample protruding inside the radius of the screen because of its unusually large size for the system. Primary beam energy = 48 eV. Exposure time = 3 min.

Figure 2b. Same as Figure 2a after sputtering at 1.5 kV for 3 min. and thermally annealing at 600°C. Primary beam energy = 60 eV. Exposure time = 30 s.