ON THE FORM OF THE COLLECTIVE BREMSSTRAHLUNG RECOIL FORCE IN A NONEQUILIBRIUM RELATIVISTIC BEAM-PLASMA SYSTEM (U) HARRY DIAMOND LABS ADELPHI MD H E BRANDT UNCLASSIFIED JAN 84 HDL-TR-2826
On the Form of the Collective Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma System

by Howard E. Brandt
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

A preliminary version of this report was issued as HDL-PRL-83-17 in August 1983.
The general form is derived, from first principles, for the collective bremsstrahlung recoil force on a test particle participating in a bremsstrahlung process in a relativistic nonequilibrium beam-plasma system. The force is expressed in terms of the particle and photon distribution functions and the bremsstrahlung transition rate. This relationship is needed in calculations of collective radiation processes and the conditions for the occurrence of bremsstrahlung radiative instability in relativistic beam-plasma systems.
CONTENTS

1. INTRODUCTION ... 5
2. PARTICLE BALANCE EQUATIONS ... 6
3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION 11
4. INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG 16
5. CONCLUSION ... 28

SELECTED BIBLIOGRAPHY ... 30

DISTRIBUTION .. 33

FIGURES

1. Elementary bremsstrahlung process which removes particles of species a from point \hat{p}_a in momentum space ... 6
2. Inverse bremsstrahlung process which removes particles of species a from point \hat{p}_a in momentum space ... 7
3. This process adds particles at point \hat{p}_a in momentum space 8
4. This process also adds particles at point \hat{p}_a in momentum space 8

Accession For
NTIS GRAAI
DTIC TAB
U:Announced
Unification

Distribution/Availability Codes
Avail and/or Special

OTIC
COPY
INSPECTED
1. INTRODUCTION

The collective bremsstrahlung recoil force on a relativistic test particle participating in a bremsstrahlung process in a nonequilibrium relativistic beam-plasma system is given by\(^1,^2\)

\[
\mathcal{E}_\alpha = -\int (2\pi)^{-9} d^3\mathbf{p}_\beta \, d^3\mathbf{k} \, d^3\mathbf{\xi} (\mathbf{k} - \mathbf{\xi}) \cdot (\mathbf{p}_\beta \mathbf{f}_\beta) \\
\times \nu_{\alpha\beta}(\mathbf{k}, \mathbf{\xi}) \mathcal{N}^\mathcal{P}_\mathbf{k}(\omega^\mathcal{P}_\mathbf{k} - \mathbf{\xi} \cdot \mathbf{v}_\alpha + (\mathbf{\xi} - \mathbf{k}) \cdot \mathbf{v}_\beta).
\]

Here, \(\nu_{\alpha\beta}(\mathbf{k}, \mathbf{\xi}) \delta(\omega^\mathcal{P}_\mathbf{k} - \mathbf{\xi} \cdot \mathbf{v}_\alpha + (\mathbf{\xi} - \mathbf{k}) \cdot \mathbf{v}_\beta)\) is the bremsstrahlung transition rate (probability per unit time) for scattering of particles of species \(\alpha\) and \(\beta\), velocities \(\mathbf{v}_\alpha\) and \(\mathbf{v}_\beta\), and momenta \(\mathbf{p}_\alpha\) and \(\mathbf{p}_\beta\), where the scattering produces momentum transfer \(\mathbf{\xi}\) and the emission of a photon in mode \(\alpha\) with wave vector \(\mathbf{k}\) and frequency \(\omega^\mathcal{P}_\mathbf{k}\); \(\mathcal{N}^\mathcal{P}_\mathbf{k}\) is the photon (plasmon) distribution function; and \(\mathbf{p}_\beta\mathbf{f}_\beta\) is the charged particle distribution function. Here and throughout, the units are chosen such that \(\hbar = 1\). In this report equation (1) is derived from first principles. This expression is useful in obtaining an expression for the collective bremsstrahlung transition rate by direct comparison with another expression for the collective bremsstrahlung recoil force, which is determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung.\(^1,^2\) This transition rate is important in calculations of collective bremsstrahlung and the conditions for the occurrence of the bremsstrahlung radiative instability in relativistic beam-plasma systems (see the work of Akopyan and Tsytovich, Selected Bibliography).

In section 2 the particle balance equations, including bremsstrahlung and inverse bremsstrahlung processes, are derived in terms of the basic bremsstrahlung transition rate. In section 3, the soft photon or quasiclassical limit of these equations is obtained and separated into spontaneous and

induced contributions. Expressions are obtained for the diffusion coefficient and induced recoil force due to induced bremsstrahlung. In section 4, the general form of the induced recoil force is determined in terms of the bremsstrahlung radiation field, particle distributions, dielectric permittivity, and bremsstrahlung transition rate. Section 5 summarizes the main results of the derivation.

2. PARTICLE BALANCE EQUATIONS

We here derive the particle balance equations in terms of the basic bremsstrahlung transition rate, for beam-plasma configurations in which bremsstrahlung and inverse bremsstrahlung are the dominant processes. For this purpose, consider the elementary bremsstrahlung process depicted in figure 1. Here a particle of species α and momentum \hat{p}_α scatters off a particle of species β and momentum \hat{p}_β and emits a photon of momentum \vec{k}. Figure 1 is not a Feynman diagram since it represents the probability for the process and not its amplitude. If the momentum decrease of particle α is denoted by \vec{k}, then the momentum \hat{p}_α' of particle α after the collision is given by

$$\hat{p}_\alpha' = \hat{p}_\alpha - \vec{k} \quad (2)$$

Then, by conservation of momentum, the momentum of particle β after the collision is given by

$$\hat{p}_\beta' = \hat{p}_\beta + \vec{k} - \vec{k} \quad (3)$$

![Figure 1. Elementary bremsstrahlung process which removes particles of species α from point \hat{p}_α in momentum space.](image)
The quantity \(w_{\varepsilon_a, \varepsilon_B}^q(\varepsilon, \varepsilon') \) is the probability per unit time that in the scattering of a particle of the species \(\alpha \) and initial momentum \(\varepsilon_a \) off a particle of species \(\beta \) and initial momentum \(\varepsilon_B \), a photon of momentum \(\varepsilon \) in mode \(\sigma \) is emitted, and there occurs momentum transfer \(\varepsilon - \varepsilon' \) to particle \(\beta \). By time-reversal invariance, the transition rate for the inverse process (in which a particle of momentum \(\varepsilon_a \) absorbs a photon of momentum \(\varepsilon \) and scatters off a particle of momentum \(\varepsilon_B \) with momentum transfer \(\varepsilon' \) to particle \(\alpha \)) is then given by \(w_{\varepsilon_B + \varepsilon, \varepsilon_a - \varepsilon' + \varepsilon}(\varepsilon, \varepsilon') \). This process is depicted in figure 2 in the leftmost figure, which is the time-reversed process of the figure to its right; therefore, the transition probabilities of the two processes are equal. The inverse process is denoted by \(w_{\varepsilon_B + \varepsilon, \varepsilon_a - \varepsilon' + \varepsilon}(\varepsilon, \varepsilon') \) in the notation of figure 1. The equality of the probabilities of the direct and inverse processes due to time-reversal invariance is also known as the principle of microscopic reversibility or reciprocity, and leads to the principle of detailed balance. The processes of figures 1 and 2 both deplete the density of particles of type \(\alpha \) at point \(\varepsilon_a \) in momentum space by adding or subtracting momentum.

![Figure 2. Inverse bremsstrahlung process which removes particles of species \(\alpha \) from point \(\varepsilon_a \) in momentum space. First equality follows from time-reversal invariance.](image)

The particle density at point \(\varepsilon_a \) increases because of the following two processes. The inverse process to that in figure 1 produces gain at point \(\varepsilon_a \). By time-reversal invariance, this is again given by \(w_{\varepsilon_B + \varepsilon, \varepsilon_a - \varepsilon' + \varepsilon}(\varepsilon, \varepsilon') \), as depicted in figure 3. Similarly, the time reversal of the process in figure 2 also adds particles at point \(\varepsilon_a \) with transition rate \(w_{\varepsilon_B + \varepsilon, \varepsilon_a - \varepsilon' + \varepsilon}(\varepsilon, \varepsilon') \), as depicted in figure 4.
Taking these four processes into account including both spontaneous and induced emission, we find that the particle-balance equation giving the time rate of change of the particle distribution f_{α} for particles of type α at point \mathbf{p}_α in momentum space is
The first term in equation (4) represents the rate of decrease of particle density at point \(\mathbf{p}_a \) due to the bremsstrahlung process of figure 1. The function \(f^+_{p_B} \) is the distribution function for particles of species \(\beta \), and \(N^\gamma_k \) is the photon distribution function. The factor \(N^\gamma_k + 1 \) takes account of both induced and spontaneous emission. An integral over all possible photon wave vectors, scattered particle momenta \(\mathbf{p}_B \), and momentum transfers \(\mathbf{k} \) also necessarily appears in equation (4). The factors of \(2\pi \) arise from counting quantum states. Thus, for example, \(d^3k/(2\pi)^3 \) is the number of quantum states per unit volume with momentum \(\mathbf{k} \) in the interval \(d^3k \). The same phase-space normalization for the particle distribution function as in Tsytovich\(^1\) is used here, namely,

\[
n_a = \int \frac{d^3p_a}{(2\pi)^3} f^+_{p_a}, \tag{5}
\]

where \(n_a \) is the number of particles of species \(\alpha \) per unit volume. The second term in equation (4) represents the rate of decrease due to the inverse bremsstrahlung process of figure 2. The third term represents the rate of increase.

due to the inverse bremsstrahlung process of figure 3. The fourth term represents the rate of increase due to the bremsstrahlung process of figure 4.

Combining terms in equation (4) produces

\[
\frac{\partial f^+}{\partial t} = - \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{d^3 \mathbf{p}_\alpha d^3 \mathbf{p}_\beta d^3 \mathbf{k}}{(2\pi)^3} \mathcal{I}(\mathbf{k}, \mathbf{k}) \left[f^+ f^+ (N^\sigma_k + 1) - N^\sigma_k f^+ f^+ + f^+ f^+ + f^+ f^+ \right]
\]

Breaking equation (6) into its induced and spontaneous parts results in

\[
\frac{\partial f^+}{\partial t} = \left(\frac{\partial f^+}{\partial t} \right)_i + \left(\frac{\partial f^+}{\partial t} \right)_s
\]

where the induced part \(\frac{\partial f^+}{\partial t}_i\) is that proportional to the photon number density \(N^\sigma_k\) and the spontaneous part \(\frac{\partial f^+}{\partial t}_s\) is that independent of \(N^\sigma_k\).

Thus

\[
\left(\frac{\partial f^+}{\partial t} \right)_i = - \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{d^3 \mathbf{p}_\alpha d^3 \mathbf{p}_\beta d^3 \mathbf{k}}{(2\pi)^3} \mathcal{I}(\mathbf{k}, \mathbf{k}) \left[f^+ f^+ (N^\sigma_k + 1) - N^\sigma_k f^+ f^+ + f^+ f^+ + f^+ f^+ \right]
\]

\[
+ \mathcal{I}(\mathbf{k}, \mathbf{k}) \left[f^+ f^+ - f^+ f^+ + f^+ f^+ \right]
\]
\[
\left(\frac{\partial f^+}{\partial t} \right)_S = - \int \frac{d^3 \hat{k} \ d^3 \hat{p}_B \ d^3 \hat{p}}{(2\pi)^3} \left[W_{\hat{p}_A, \hat{p}_B}^S (\hat{k}, \hat{r}) f^+ \ f^+_{\hat{p}_A - \hat{k}} \right. \\
- \left. W_{\hat{p}_A + \hat{k}, \hat{p}_B - \hat{k} + \hat{r}}^S (\hat{k}, \hat{r}) f^+_{\hat{p}_A + \hat{k}} \ f^+_{\hat{p}_B - \hat{k} + \hat{r}} \right].
\]

3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION

We next assume that the momentum transfer \(\hat{k} \) and the momentum \(\hat{r} \) of the radiated quantum are small relative to the relativistic particle momenta \(\hat{p}_A \) and \(\hat{p}_B \), thereby enabling Taylor series expansions for \(W_{\hat{p}_A + \hat{k}, \hat{p}_B - \hat{k} + \hat{r}}^S \), \(f^+_{\hat{p}_A - \hat{k}} \), \(f^+_{\hat{p}_A + \hat{k}} \), and \(f^+_{\hat{p}_B - \hat{k} + \hat{r}} \) in equation (8). Thus we assume that

\[
|\hat{k}|, |\hat{r}| \ll |\hat{p}_A|, |\hat{p}_B|.
\]

This is evidently consistent with the Born approximation for plasma, namely that the relativistic particle momentum is much greater than the electromagnetic impulse received by a plasma particle in a time interval given by the inverse plasma frequency.\(^1-5\) First expanding \(W_{\hat{p}_A + \hat{k}, \hat{p}_B - \hat{k} + \hat{r}}^S \) about \(\hat{p}_A \) in the first variable, we obtain

Next expanding equation (11) to second order about \(\dot{P}_\beta \) in the second variable gives:

\[
\begin{align*}
W^g_{P_\alpha + \dot{\kappa}, P_\beta - \dot{\kappa} + \dot{\kappa} + \dot{\kappa}} &= W^g_{P_\alpha, P_\beta} + (k_i - k_i) \frac{\partial}{\partial P_\beta} W^g_{P_\alpha, P_\beta} \\
+ & \frac{1}{2} (k_i - k_i)(k_j - k_j) \frac{\partial^2 W^g_{P_\alpha, P_\beta}}{\partial P_i \partial P_j} + k_i \frac{\partial W^g_{P_\alpha, P_\beta}}{\partial P_\alpha} \\
+ & k_i (k_j - k_j) \frac{\partial^2 W^g_{P_\alpha, P_\beta}}{\partial P_j \partial P_\beta} + \frac{1}{2} k_i k_j \frac{\partial^2 W^g_{P_\alpha, P_\beta}}{\partial P_i \partial P_\beta}.
\end{align*}
\]

Also in equation (8) the following Taylor series expansion applies:

\[
\begin{align*}
\left[f^+_{P_\alpha \dot{P}_\beta} - f^+_{P_\alpha, \dot{P}_\beta - \dot{\kappa}} f^+_{P_\beta + \dot{\kappa} - \dot{\kappa}} \right] &= f^+_{P_\alpha \dot{P}_\beta} \\
- & \left[f^+_{P_\alpha} - k_i \frac{\partial f^+_{P_\alpha}}{\partial P_\alpha} + \frac{1}{2} k_i k_j \frac{\partial^2 f^+_{P_\alpha}}{\partial P_\alpha \partial P_\beta} \right] f^+_{P_\beta} \\
+ & (k_i - k_i) \frac{\partial f^+_{P_\beta}}{\partial P_\beta} + \frac{1}{2} (k_i - k_i) (k_m - k_m) \frac{\partial^2 f^+_{P_\beta}}{\partial P_m \partial P_\beta}.
\end{align*}
\]

or combining terms produces
\[
\left[f_+^+ f_+^+ - f_+^+ f_+^+ f_+^+ f_+^+ \right] = -(k_L - k_L) f_+^+ \frac{\partial f_+^+}{\partial P_B^+} \\
- \frac{1}{2} (k_L - k_L) (k_m - k_m) f_+^+ \frac{\partial^2 f_+^+}{\partial P_{\beta+} \partial P_{\beta^+}} + k_i \frac{\partial f_+^+}{\partial P_{\alpha} f_+^+} \frac{\partial f_+^+}{\partial P_{\beta}} \\
+ k_i (k_L - k_L) \frac{\partial f_+^+}{\partial P_{\alpha} f_+^+} \frac{\partial f_+^+}{\partial P_{\beta^+} P_{\beta}^+} - \frac{1}{2} k_i k_j \frac{\partial f_+^+}{\partial P_{\alpha}^+ \partial P_{\beta}^+} f_+^+ .
\] (14)

Also,

\[
\left[f_+^+ f_+^+ - f_+^+ f_+^+ f_+^+ f_+^+ \right] = -(k_1 - k_i) f_+^+ \frac{\partial f_+^+}{\partial P_B^+} \\
- \frac{1}{2} (k_L - k_L) (k_m - k_m) f_+^+ \frac{\partial^2 f_+^+}{\partial P_{\beta+} \partial P_{\beta^+}} - k_i f_+^+ \frac{\partial f_+^+}{\partial P_{\alpha} f_+^+} \frac{\partial f_+^+}{\partial P_{\beta}} \\
+ k_i (k_L - k_L) \frac{\partial f_+^+}{\partial P_{\alpha} f_+^+} \frac{\partial f_+^+}{\partial P_{\beta^+} P_{\beta}^+} - \frac{1}{2} k_i k_j \frac{\partial f_+^+}{\partial P_{\alpha}^+ \partial P_{\beta}^+} f_+^+ .
\] (15)
Substituting equations (12), (14), and (15) in equation (8) produces

\[
\left(\frac{\partial f_{\alpha}}{\partial t} \right) = - \int \frac{d^3 \kappa}{(2\pi)^3} \frac{d^3 \beta}{(2\pi)^3} \frac{d^3 \kappa}{(2\pi)^3} \sum_{\kappa} \left\{ w_{\alpha} \frac{\partial}{\partial \beta} \left[\delta^2 f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} + \kappa \frac{\partial f_{\alpha}}{\partial \beta_{\kappa}} f_{\beta} \right] \right. \\
- \frac{1}{2} \left(\kappa_l - \kappa_l \right) (\kappa_m - \kappa_m) f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} + \frac{\partial f_{\alpha}}{\partial \beta_{\kappa}} f_{\beta} \\
+ \kappa_i (\kappa_l - \kappa_l) \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - \frac{1}{2} \kappa_i \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} f_{\beta} \\
- (\kappa_l - \kappa_l) f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - \frac{1}{2} (\kappa_l - \kappa_l)(\kappa_m - \kappa_m) f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - \kappa_i f_{\beta} \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \\
- \kappa_i (\kappa_l - \kappa_l) \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - \frac{1}{2} \kappa_i \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} f_{\beta} \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \\
+ \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \left[-(k_1 - \kappa_1)(\kappa_m - \kappa_m) f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - (\kappa_1 - \kappa_1) \kappa_m f_{\beta} \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \right] \\
+ \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \left[-\kappa_1 (\kappa_m - \kappa_m) f_{\alpha} \frac{\partial f_{\beta}}{\partial \beta_{\kappa} \delta \beta_{\mu}} - \kappa_1 \kappa_1 f_{\beta} \frac{\partial f_{\alpha}}{\partial \beta_{\kappa} \delta \beta_{\mu}} \right] \\
\right\} .
\]

The first and sixth terms of equation (16) cancel. Also, the third and eighth terms cancel. Combining the fifth and tenth terms, the second and seventh terms, and the fourth and ninth terms, and integrating the eleventh and twelfth terms by parts, we find that equation (16) becomes
\[
\left(\frac{\partial f^+}{\partial P_\alpha} \right)_1 = -\int \frac{d^3k}{(2\pi)^3} \frac{d^3P_\beta}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \kappa_k \left\{ \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left(\frac{\partial}{\partial P_{\beta}} \right)^{+} \left[-\left(\kappa_L - \kappa_L \right) \left(\kappa_m - \kappa_m \right) f_{\alpha'}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_L} \partial P_{\beta_m}} \right] \\
+ 2\kappa_1 \left(\kappa_L - \kappa_L \right) \left(\frac{\partial}{\partial P_{\alpha} P_{\beta}} \right)^{+} f_{\alpha}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_L} \partial P_{\alpha_L}} f_{\beta}^{+} \right\} \\
+ \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left[\left(\kappa_1 - \kappa_1 \right) \left(\kappa_m - \kappa_m \right) f_{\alpha'}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_m} \partial P_{\beta_1}} \right] \\
+ \left(\kappa_1 - \kappa_1 \right) \kappa_m \left(\frac{\partial}{\partial P_{\beta_1} \partial P_{\alpha_m}} \right)^{+} f_{\beta_1}^{+} \frac{\partial^2 f^+}{\partial P_{\alpha_m} \partial P_{\beta_1}} \right\} \\
+ \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left[\left(\kappa_m - \kappa_m \right) f_{\alpha'}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_m} \partial P_{\alpha_m}} \kappa_1 \kappa_1 \frac{\partial^2 f^+}{\partial P_{\alpha_L} \partial P_{\beta}} \right]. \tag{17}
\]

The first and fourth terms cancel; the second and fifth terms combine; and after terms are rearranged, equation (17) becomes

\[
\left(\frac{\partial f^+}{\partial P_\alpha} \right)_1 = -\int \frac{d^3k}{(2\pi)^3} \frac{d^3P_\beta}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \kappa_k \left\{ \kappa_k \kappa_j \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left(\frac{\partial}{\partial P_{\beta}} \right)^{+} \left[\frac{\partial^2 f^+}{\partial P_{\beta_1} \partial P_{\alpha_L}} \right] \right\} \\
+ \kappa_1 \kappa_j \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left(\kappa_k \kappa_k \right) f_{\alpha'}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_1} \partial P_{\alpha_L}} \frac{\partial}{\partial P_{\alpha_L}} \right\} \\
- \kappa_1 \left(\kappa_L - \kappa_L \right) \left(\kappa_m - \kappa_m \right) f_{\alpha'}^{+} \frac{\partial^2 f^+}{\partial P_{\beta_m} \partial P_{\alpha_L}} \frac{\partial}{\partial P_{\alpha_L}} \right\} \\
- \kappa_1 \left(\kappa_j - \kappa_j \right) \frac{\partial^2 f^+}{\partial P_{\beta_j} \partial P_{\alpha_L}} \frac{w_{k}^{g}}{P_{\alpha'} P_{\beta}} \left(\kappa_k \kappa_k \right) f_{\beta}^{+} \frac{\partial^2 f^+}{\partial P_{\alpha_L} \partial P_{\beta}} \right\}. \tag{18}
\]
Equivalently,

\[
\left(\frac{\partial f_{\alpha}}{\partial t} \right) = \frac{\partial}{\partial \mathbf{p}_\alpha} \left\{ \int \frac{d^3 \mathbf{k} \, d^3 \mathbf{k}' \, d^3 \mathbf{p}_\beta}{(2\pi)^9} \, \kappa_{ij} \mathbf{k}' \mathbf{w}_\alpha^\sigma \mathbf{f}_\alpha^\sigma \mathbf{f}_\beta^\sigma \right\} \frac{\partial f_{\alpha}}{\partial \mathbf{p}_\alpha} + \frac{\partial}{\partial \mathbf{p}_\alpha} \left(\frac{\partial f_{\alpha}}{\partial \mathbf{p}_\alpha} \right)
\]

\[+ \frac{\partial}{\partial \mathbf{p}_\alpha} \left\{ \left[\int \frac{d^3 \mathbf{k} \, d^3 \mathbf{k}' \, d^3 \mathbf{p}_\beta}{(2\pi)^9} \, \kappa_{ij} (\mathbf{k}' - \mathbf{k}) \mathbf{w}_\alpha^\sigma \mathbf{f}_\alpha^\sigma \mathbf{f}_\beta^\sigma \right] \frac{\partial f_{\alpha}}{\partial \mathbf{p}_\alpha} \right\} \]

\[= \frac{\partial}{\partial \mathbf{p}_\alpha} \left(\mathbf{D}_{\alpha ij} f_{\alpha} \right)
\]

\[+ \frac{\partial}{\partial \mathbf{p}_\alpha} \left(\mathbf{f}_{\alpha} \right) \]

4. INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG

Equation (19) may be rewritten in the form of a diffusion equation as follows:

\[
\left(\frac{\partial f_{\alpha}}{\partial t} \right) = \frac{\partial}{\partial \mathbf{p}_\alpha} \left(\mathbf{D}_{\alpha ij} \frac{\partial f_{\alpha}}{\partial \mathbf{p}_\alpha} \right) + \frac{\partial}{\partial \mathbf{p}_\alpha} \left(\mathbf{f}_{\alpha} \right)
\]

\[\text{where the induced diffusion coefficient } \mathbf{D}_{\alpha ij} \text{ is given by}
\]

\[
\mathbf{D}_{\alpha ij} = \int \frac{d^3 \mathbf{k} \, d^3 \mathbf{k}' \, d^3 \mathbf{p}_\beta}{(2\pi)^6} \frac{d^3 \mathbf{p}_\beta}{(2\pi)^3} \, \kappa_{ij} \mathbf{k}' \mathbf{w}_\alpha^\sigma \mathbf{f}_\alpha^\sigma \mathbf{f}_\beta^\sigma
\]

\[\text{and the induced dynamic friction force or bremsstrahlung recoil force is given by}
\]

\[
\mathbf{f}_\alpha^\sigma = -\int \frac{d^3 \mathbf{k} \, d^3 \mathbf{k}' \, d^3 \mathbf{p}_\beta}{(2\pi)^9} \, \kappa(\mathbf{k}' - \mathbf{k}) \mathbf{w}_\alpha^\sigma \mathbf{f}_\alpha^\sigma \mathbf{f}_\beta^\sigma
\]

Equation (22) is the sought-after expression for the recoil force on particle \(\alpha \) due to the induced bremsstrahlung process. Energy conservation can be explicitly factored out of the transition rate appearing in equation (22) as follows. The bremsstrahlung transition probability \(\mathbf{w}_\alpha^\sigma \mathbf{f}_\alpha^\sigma \mathbf{f}_\beta^\sigma \) in equation (22) must conserve energy. Therefore
\(\varepsilon_{\alpha}^* + \varepsilon_{\beta}^* = \varepsilon_{\alpha}^* + \varepsilon_{\beta}^* + \omega_{\gamma}^* \), \hspace{1cm} (23)

where \(\varepsilon_{\alpha}^* \) denotes the total energy of the particle of species \(\alpha \) and momentum \(\hat{p}_{\alpha} \). Using the conditions in equation (10) produces, to lowest order,

\[\varepsilon_{\alpha}^* - \omega_{\gamma}^* = \varepsilon_{\alpha} - \hat{\gamma} \cdot \hat{p}_{\alpha} \varepsilon_{\alpha} \] \hspace{1cm} (24)

and

\[\varepsilon_{\beta}^* + \omega_{\gamma}^* = \varepsilon_{\beta} + (\hat{\zeta} - \hat{\gamma}) \cdot \hat{p}_{\beta} \varepsilon_{\beta} \] \hspace{1cm} (25)

Next, using relativistic kinematics, we obtain

\[\hat{\gamma}_{\alpha} \varepsilon_{\alpha}^* = \hat{\gamma}_{\alpha} [(m_{\alpha} c^2)^2 + p_{\alpha}^2 c^2]^{1/2} = \frac{\hat{p}_{\alpha} c^2}{\varepsilon_{\alpha}} = \hat{v}_{\alpha} \] \hspace{1cm} (26)

Using equation (26) in equations (23) to (25), then to lowest order in \(\hat{\zeta} \) and \(\hat{\gamma} \), we obtain

\[\omega_{\gamma}^* = \hat{\gamma} \cdot \hat{v}_{\alpha} + (\hat{\zeta} - \hat{\gamma}) \cdot \hat{v}_{\beta} \] \hspace{1cm} (27)

Factoring this expression of energy conservation explicitly into the bremsstrahlung probability \(w_{\alpha,\beta}^* (\hat{\zeta}, \hat{\gamma}) \), we define the quantity \(v_{\alpha,\beta}^* (\hat{\zeta}, \hat{\gamma}) \) by

\[w_{\alpha,\beta}^* (\hat{\zeta}, \hat{\gamma}) = v_{\alpha,\beta}^* (\hat{\zeta}, \hat{\gamma}) \delta (\omega_{\gamma}^* - \hat{\gamma} \cdot \hat{v}_{\alpha} + (\hat{\zeta} - \hat{\gamma}) \cdot \hat{v}_{\beta}) \] \hspace{1cm} (28)
Substituting equation (28) in equation (22) gives

\[\mathbf{p}^q_\alpha = -\int \frac{d^3p_\beta}{(2\pi)^9} \frac{d^3k}{d^3k} \delta_{\mathbf{k} - \mathbf{p}_\beta}(\mathbf{p}^+_{\alpha} \mathbf{k}^+ - \mathbf{p}^q_\beta) (\mathbf{v}_{\beta}^q - \mathbf{v}_{\alpha}) \cdot (\mathbf{k} - \mathbf{k}^+ + (\mathbf{k} - \mathbf{k})^+ \mathbf{v}_\beta) \]

Equation (29) expresses the recoil force on a particle of species \(\alpha \) due to induced bremsstrahlung as an integral over particle momentum \(\mathbf{p}_\beta \), photon wave vector \(\mathbf{k} \), and momentum transfer \(\mathbf{k}^+ \). The integrand involves the particle distribution \(f_{\beta \mathbf{k}}^q \) of the scattering particle, the bremsstrahlung transition rate \(v_{\beta \mathbf{k}}^q \mathbf{v}_\beta \), and the photon distribution \(N_{\mathbf{k}}^q \).

The delta function in equation (29) expresses energy conservation in the bremsstrahlung process in the soft photon and small momentum transfer approximation for relativistic particles. Equation (29) agrees with Tsytovich's (4.1)\(^1\) exactly. It differs in sign from equation (3) of Akopyan and Tsytovich,\(^2\) which apparently has a typographical error.

The photon density \(N_{\mathbf{k}}^q \) in equation (29) can be expressed in terms of the associated field as follows. The power density delivered to the electromagnetic field is given by

\[\frac{du}{dt} = -\mathbf{j} \cdot \mathbf{E} \]

Using Maxwell's equation

\[\mathbf{\nabla} \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} \]

(31)

in equation (30) produces

\[\frac{du}{dt} = - \left(\mathbf{\nabla} \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} \right) \cdot \mathbf{E} . \]

(32)

Equivalently,

\[\frac{du}{dt} = \mathbf{\nabla} \cdot \left(\mathbf{E} \times \mathbf{H} \right) - \mathbf{H} \cdot \mathbf{\nabla} \times \mathbf{E} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} . \]

(33)

Substituting Maxwell's equation

\[\mathbf{\nabla} \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} \]

(34)

in equation (33) produces

\[\frac{du}{dt} = \mathbf{\nabla} \cdot \left(\mathbf{E} \times \mathbf{H} \right) + \left(\mathbf{H} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} \right) . \]

(35)

Equation (35) is the energy conservation theorem

\[\frac{du}{dt} = \mathbf{\nabla} \cdot \mathbf{\varepsilon} + \frac{\partial u}{\partial t} , \]

(36)
where \(\hat{S} \) is the Poynting vector

\[
\hat{S} = \hat{E} \times \hat{H}
\]

(37),

\(u \) is the energy density in the electromagnetic field, and

\[
\frac{\partial u}{\partial t} = \hat{A} \cdot \frac{\partial \hat{B}}{\partial t} + \hat{E} \cdot \frac{\partial \hat{D}}{\partial t} .
\]

(38)

The Fourier representation of the electric field is

\[
\hat{E} = \int d^3 \chi \ ds \ \delta_{k} e^{i(\hat{k} \cdot \hat{r} - \omega t)}
\]

(39)

and

\[
\hat{B} = \int d^3 \chi \ ds \ \delta_{k} e^{i(\hat{k} \cdot \hat{r} - \omega t)} .
\]

(40)

Also, by the plasma constitutive relations

\[
D_{ki} = \varepsilon_{ij}(\hat{k}, \omega) E_{kj}
\]

(41)

Furthermore, taking the Fourier transform of equation (34) produces

\[
\hat{B}_{k} = \frac{\hat{k} \times \hat{E}_{k}}{\omega} .
\]

(42)

Also,

\[
\hat{H} = \frac{\hat{B}}{\mu_{0}} = \varepsilon_{0} c^{2} \hat{B} .
\]

(43)
Next, using equations (39) to (43) and the appropriate Fourier representations in equation (38) gives

\[
\frac{\partial u}{\partial t} = \int d^3\tilde{r} \int d^3\tilde{r}' \int d\omega \int d\omega' \ E_{k} e^{i(\tilde{r} \cdot \tilde{r}' - \omega t)} (-i\omega') \epsilon_{ij}(\tilde{r}', \omega') E_{k'} e^{i(\tilde{r}' \cdot \tilde{r} - \omega' t)} \tag{44}
\]

\[+ \epsilon_0 c^2 \int d^3\tilde{r} \int d^3\tilde{r}' \int d\omega \int d\omega' \frac{(\tilde{r} \times \tilde{E}_k)_i}{\omega} e^{i(\tilde{r} \cdot \tilde{r}' - \omega t)} (-i\omega') \frac{(\tilde{r}' \times \tilde{E}_{k'})_i}{\omega'} e^{i(\tilde{r}' \cdot \tilde{r} - \omega' t)} . \tag{45}\]

By an ordinary vector identity,

\[
(\tilde{r} \times \tilde{E}_k)_i (\tilde{r}' \times \tilde{E}_{k'})_i = (\tilde{r} \times \tilde{E}_k) \cdot (\tilde{r}' \times \tilde{E}_{k'})
\]

\[
= \tilde{r} \cdot \tilde{E}_k \tilde{E}' \cdot \tilde{E}_{k'} - \tilde{r}' \cdot \tilde{E}_k \tilde{E}' \cdot \tilde{E}_{k'} . \tag{45}\]

Substituting equation (45) in equation (44) gives

\[
\frac{\partial u}{\partial t} = -i \int d\tilde{k} \int d\tilde{k}' \left[\omega' E_{k} e^{i(\tilde{r} \cdot \tilde{r}' - \omega t)} E_{k'} \right]
\]

\[+ \frac{\epsilon_0 c^2}{\omega} (\tilde{r} \cdot \tilde{E}_k \tilde{E}' \cdot \tilde{E}_{k'} - \tilde{r}' \cdot \tilde{E}_k \tilde{E}' \cdot \tilde{E}_{k'})
\]

\[\times e^{i[(\tilde{r} + \tilde{r}') \cdot \tilde{r} - (\omega + \omega') t]} , \tag{46}\]

where \(d\tilde{k} \equiv d^3\tilde{k} \ d\omega\). Symmetrizing equation (46) in \(k\) and \(k'\) produces
\[
\frac{\partial \mathbf{u}}{\partial t} = -\frac{i}{2} \int \frac{dk}{k} \frac{dk'}{k'} \left\{ E_{k'_j} \epsilon_{1j} (k, \omega) \omega E_{k_j} + E_{k'_i} \omega' \epsilon_{1j} (k', \omega') E_{k'_j} \right. \\
+ \epsilon_0 c^2 (\omega + \omega') \left[\frac{k \cdot k'}{\omega \omega'} \frac{\hat{E}_{k'_i}}{\omega'} \cdot \frac{\hat{E}_{k'_j}}{\omega'} - \frac{(k \cdot \hat{E}_{k'_i}) (k' \cdot \hat{E}_{k'_j})}{\omega \omega'} \right] \\
\left. \times e^{i [(k + k') \cdot v - (\omega + \omega') t]} \right\}
\]

(47)

The total field involved in the bremsstrahlung process, \(\hat{E}_k \), is given elsewhere,\(^5\) namely,

\[
\hat{E}_k = \hat{E}_k^{(0)} + \hat{E}_k^R ,
\]

(48)

where \(\hat{E}_k^{(0)} \) is the lowest order stochastic bremsstrahlung radiation field and \(\hat{E}_k^R \) is the regular nonradiative component. The bremsstrahlung field written in terms of its polarization vector \(\hat{e}_k^0 \) is given by

\[
\hat{E}_k^{(0)} = \hat{e}_k^0 \hat{e}_k^{(0)} ,
\]

(49)

where

\[
\hat{e}_k^0 \cdot \hat{e}_k^0 = 1 .
\]

(50)

The stochastic properties of the bremsstrahlung field are approximated to the needed order by

\[\langle E_{k_1}^{\sigma(0)} \rangle = 0 \] (51)

and

\[\langle E_{k_1}^{\sigma(0)} E_{k_2}^{\sigma(0)} \rangle = \epsilon_{k_1}^{\sigma} \epsilon_{k_2}^{\sigma*} |E_k^{\sigma(0)}|^2 \delta(k + k_1) \] (52)

(these are eq (49) and (50) of a previous work\(^5\)). Therefore, substituting equation (48) in equation (47), keeping only the lowest order bremsstrahlung field, integrating equation (47) over time, and using equation (51), we find that the ensemble average energy density in the field is given by

\[\langle u \rangle = \langle u \rangle^\sigma + \langle u \rangle^R, \] (53)

where

\[\langle u \rangle^\sigma = \int \frac{d^3 k}{2 \pi^3} \left\{ \frac{1}{\omega + \omega'} \left[\epsilon_{ij}(k, \omega) \omega \langle E_{k_1}^{\sigma(0)} E_{k_2}^{\sigma(0)} \rangle \right. \right. \]
\[+ \omega' \epsilon_{ij}(k', \omega') \langle E_{k_1}^{\sigma(0)} E_{k_2}^{\sigma(0)} \rangle \right\} + \epsilon_o^2 \frac{k \cdot k'}{\omega \omega'} \langle E_k^{\sigma(0)} E_{k_1}^{\sigma(0)} \rangle \]
\[\left. \left. - \epsilon_o^2 \frac{k \cdot E_k^{\sigma(0)} + E_k^{\sigma(0)} \cdot k'}{\omega \omega'} \right\} e^{i[(k + k')(\omega + \omega')t]} \right\] (54)

is the bremsstrahlung part, and \(\langle u \rangle^R \) is the regular nonradiative part. Only \(\langle u \rangle^\sigma \) is needed for the present work.

Substituting equation (52) in equation (54) and using the definition of the four-dimensional delta function,

$$\delta(k) = \delta^4(\vec{k}) \delta(\omega) = (2\pi)^{-4} \int d^3 \vec{r} \ dt \ e^{-i(\vec{k} \cdot \vec{r} - \omega t)}$$ \quad (55)

produces

$$\langle u \rangle^\sigma = \frac{1}{2} \int \frac{dk}{k} \frac{dk'}{k'} \left\{ \frac{1}{\omega + \omega'} \left[\epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega) \omega \epsilon_{k}^\sigma + \epsilon_{k1}^\sigma \omega' \epsilon_{ij}(\vec{k'},\omega') \epsilon_{k}^\sigma \right] \delta(\omega + \omega') \right. \]

$$+ \epsilon_0 \alpha^2 \left[k \cdot k' \right] \frac{\epsilon_{k}^\sigma \epsilon_{k}^\sigma - \epsilon_{k}^\sigma \epsilon_{k}^\sigma}{\omega \omega'} \delta(\omega + \omega') \left. \right\} \left| \epsilon_{k}^0 (0) \right|^2 \delta^3(\vec{k} + \vec{k'}) . \quad (56)$$

In equation (56) we define

$$I(k) = \int \frac{dk}{\omega} \frac{\delta(\omega + \omega')}{\omega + \omega'} \delta^3(\vec{k} + \vec{k'}) \left[\epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega) \omega \epsilon_{k}^\sigma + \epsilon_{k1}^\sigma \omega' \epsilon_{ij}(\vec{k'},\omega') \epsilon_{k}^\sigma \right] . \quad (57)$$

Changing the variable ω' to $\omega'' = \omega + \omega'$ and integrating over \vec{k}', equation (57) becomes

$$I(k) = \int \frac{d\omega''}{\omega''} \delta(\omega'') \left[\epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega) \omega \epsilon_{k}^\sigma + (\omega'' - \omega) \epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega'') \omega \epsilon_{k}^\sigma \right] . \quad (58)$$

Expanding the second term in the integrand of equation (58) in a Taylor series about $\omega'' = 0$, then

$$I(k) = \int \frac{d\omega''}{\omega''} \delta(\omega'') \left\{ \epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega) \omega \epsilon_{k}^\sigma - \omega \epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega) \omega \epsilon_{k}^\sigma \right. \]

$$+ \omega'' \frac{\partial}{\partial \omega''} \left[(\omega'' - \omega) \epsilon_{k1}^\sigma \epsilon_{ij}(\vec{k},\omega'' - \omega) \omega \epsilon_{k}^\sigma \right] \left\} \right. \quad (59)$$

By the reality of the fields, it follows from equation (41) that

$$\epsilon_{ij}(\vec{k},-\omega) = \epsilon_{ij}^*(\vec{k},\omega) . \quad (60)$$
Substituting equation (60) in equation (59) and simplifying the second term causes equation (59) to become

\[I(k) = 2i \int \frac{d\omega}{\omega} \delta(\omega) \omega \text{Im} \sum_{ij} \varepsilon_{ij}(k,\omega) \varepsilon_{ij}^* \]

\[+ \frac{3}{\delta \omega} \left[\omega \varepsilon_{k1} \varepsilon_{ij}(-k, -\omega) \varepsilon_{kj}^* \right] . \]

The dielectric constant \(\varepsilon(\mathbf{k}, \omega) \) for mode \(\sigma \) is defined in terms of the dielectric permittivity tensor \(\varepsilon_{ij}(\mathbf{k}, \omega) \) and the unit electric polarization vectors \(\varepsilon_{ij}^* \) by

\[\varepsilon(\mathbf{k}, \omega) = \varepsilon_{k1}^* \varepsilon_{ij}(\mathbf{k}, \omega) \varepsilon_{kj}^* + \varepsilon_{o} \frac{c^2}{\omega^2} (\mathbf{k} \cdot \varepsilon_{k})^*(\mathbf{k} \cdot \varepsilon_{k}^*) \]

(see Other Works by Tsytovich, Selected Bibliography).

Noting that the second term of equation (62) is real, and substituting equation (62) in equation (61), we obtain

\[I(k) = 2i \omega \text{Im} \varepsilon(\mathbf{k}, \omega) \int \frac{d\omega'}{\omega'} \delta(\omega') \]

\[+ \frac{3}{\delta \omega} \left[\omega \varepsilon_{k1} \varepsilon_{ij}(-k, -\omega) \varepsilon_{kj}^* \right] . \]

If mode decay or growth are ignorable, then the mode dielectric constant \(\varepsilon(\mathbf{k}, \omega) \) is real and the first term of equation (63) may be dropped. In that case equation (63) becomes

\[I(k) = \frac{3}{\delta \omega} \left[\omega \varepsilon_{k1} \varepsilon_{ij}(-k, -\omega) \varepsilon_{kj}^* \right] . \]

(64)

If we next integrate the second term in equation (56) and substitute equations (50), (57), and (64), equation (56) becomes

\[\langle \omega \rangle = \frac{1}{2} \int dk \left[\frac{3}{\delta \omega} \left(\varepsilon_{k1} \omega \varepsilon_{ij}(-k, -\omega) \varepsilon_{kj}^* \right) \right. \]

\[+ \left. \frac{\varepsilon_o c^2}{\omega^2} (\kappa^2 - \kappa^* \varepsilon_{ij}^* k \varepsilon_{ij}^*) \right] \left| \varepsilon_{k1} \right|^2 . \]

(65)
Changing the variable of integration from \(k \) to \(-k\) in the first term only, using the reality property of the fields to replace \(e^{-k} E^{(0)}_k \) by \(e^{\ast k} E^{(0)}_k \), substituting equation (62), and simplifying, causes equation (65) to become

\[
\langle u \rangle^\sigma = \frac{1}{2} \int dk \left[\frac{3}{3\omega} \left(\omega e^\sigma(k, \omega) - \epsilon_o \frac{c^2}{\omega} k \cdot e^\sigma_k e^\ast_k \right) + \epsilon_o \frac{c^2}{\omega^2} \left(k^2 - k \cdot e^\sigma_k e^\ast_k \right) \right] |E^{(0)}_k|^2.
\]

(66)

Simplifying equation (66) results in

\[
\langle u \rangle^\sigma = \frac{1}{2} \int dk \left[e^\sigma(k, \omega) + \omega \frac{\partial e^\sigma(k, \omega)}{\partial \omega} + \epsilon_o \frac{k^2}{\omega^2} c^2 \right] |E^{(0)}_k|^2.
\]

(67)

The zeroth-order dispersion relation for the bremsstrahlung wave is given by the poles of the photonic Green's function \(G_{ij} \) in equation (22) of a previous paper or, equivalently, the zeros of the determinant of \(G_{ij}^{-1} \) in equation (18) of that paper. Thus the bremsstrahlung field \(E^{(0)}_{kj} \) must satisfy

\[
\left[\frac{1}{\mu_o (\omega + i\delta)^2} (k_i k_j - k^2 \delta_{ij}) + \epsilon_{ij} \right] E^{(0)}_{kj} = 0.
\]

(68)

Taking the inner product of equation (68) with \(e_{k_i}^\ast \) and using equations (49), (50), and (62) and \(\mu^{-1}_o = \epsilon_o \sigma^2 \) produces

\[
\frac{\epsilon_o c^2}{\omega^2} (e_{k_i}^\ast \cdot k e^\sigma_k e^\ast_k - k^2) + \epsilon^\sigma - \epsilon_o \frac{c^2}{\omega^2} (k \cdot e^\sigma_k)(k \cdot e^\ast_k) = 0
\]

(69)

or

\[
\frac{k^2 c^2}{\omega^2} = \frac{\epsilon^\sigma}{\epsilon_o}.
\]

(70)

Substituting equation (70) in equation (67) results in

\[
\langle u \rangle^2 = \frac{1}{2} \int d\mathbf{k} \left(2\varepsilon^0(\mathbf{k}, \omega) + \omega \frac{\partial \varepsilon^0}{\partial \omega} (\mathbf{k}, \omega) \right) \left| E^0_k \right|^2 .
\]

Equivalently, equation (71) becomes

\[
\langle u \rangle^2 = \frac{1}{2} \int d^3k \frac{d\omega}{\omega} \frac{\partial}{\partial \omega} \left(\varepsilon^0(\mathbf{k}, \omega) \omega^2 \right) \left| E^0_k \right|^2 .
\]

One can also express the energy density in the field in terms of the photon number density \(n_k^0 \) as follows:

\[
\langle u \rangle^2 = \int \frac{d^3k}{(2\pi)^3} \omega_k^0 n_k^0 ,
\]

where \(\omega_k^0 \) is the frequency of the mode \(\sigma \) as determined by the dispersion relation. Equivalently, equation (73) may be written

\[
\langle u \rangle^2 = \int \frac{d^3k}{(2\pi)^3} \omega_k^0 n_k^0 \delta(\omega - \omega_k^0) .
\]

Comparing equations (72) and (74), we find

\[
n_k^0 \delta(\omega - \omega_k^0) = \frac{4\pi^3}{\omega^2} \frac{\partial}{\partial \omega} \left(\varepsilon^0(\mathbf{k}, \omega) \omega^2 \right) \left| E^0_k \right|^2 .
\]

Equation (29) may be equivalently written
\[
\hat{F}_a = -\int \frac{d^3\tilde{K} \, d\omega \, d^3\tilde{K} \, d^3P}{(2\pi)^9} \delta(\tilde{K} - \tilde{K}) \cdot (\hat{\phi}_\beta \cdot \epsilon^+) \mathbf{v}_\beta + (\tilde{K}, \tilde{K}) \omega_k^0 \\
\times \delta(\omega - \tilde{K} \cdot \mathbf{v}_a + (\tilde{K} - \tilde{K}) \cdot \mathbf{v}_\beta) \delta(\mathbf{v} - \omega_k^0),
\]

(76)

where the integral of a delta function over \(\omega \) has been inserted. Therefore, after substituting equation (75) in equation (76), we finally obtain

\[
\hat{P}_a = -4\pi^3 \int \frac{d^3\tilde{K} \, d\omega \, d^3\tilde{K} \, d^3P}{(2\pi)^9} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left(\omega^2 \varepsilon(\tilde{K}, \omega) \right) \tilde{K}(\tilde{K} - \tilde{K}) \cdot (\hat{\phi}_\beta \cdot \epsilon^+) \\
\times \mathbf{v}_\beta(\tilde{K}, \tilde{K}) \mathbf{E}(0)(\tilde{K})^2 \delta(\omega - \tilde{K} \cdot \mathbf{v}_a + (\tilde{K} - \tilde{K}) \cdot \mathbf{v}_\beta) .
\]

(77)

Equation (77) expresses the general form for the force on a particle due to induced bremsstrahlung. The dispersive properties of the beam-plasma system enter explicitly in equation (77) through the dielectric constant \(\varepsilon(\tilde{K}, \omega) \) and implicitly through the transition probability.

5. CONCLUSION

The general form has been derived for the collective bremsstrahlung recoil force in a nonequilibrium relativistic beam-plasma system, namely,

\[
\hat{F}_a = -\int \frac{d^3\tilde{P} \, d^3\tilde{K} \, d^3\tilde{K}}{(2\pi)^9} \tilde{K}(\tilde{K} - \tilde{K}) \cdot (\hat{\phi}_\beta \cdot \epsilon^+) \mathbf{v}_\beta + (\tilde{K}, \tilde{K}) \\
\times \mathbf{v}_\beta(\tilde{K}, \tilde{K}) \mathbf{E}(0)(\tilde{K})^2 \delta(\omega_k^0 - \tilde{K} \cdot \mathbf{v}_a + (\tilde{K} - \tilde{K}) \cdot \mathbf{v}_\beta) .
\]

(78)
Here \mathbf{F}_a^σ is the force on a particle of species α and velocity \mathbf{v}_α due to its participation in a bremsstrahlung process in which it interacts with a particle of species β and velocity \mathbf{v}_β, resulting in a momentum transfer $\mathbf{k}' - \mathbf{k}$ to that particle. A bremsstrahlung photon of wave vector \mathbf{k} and frequency ω_k in mode σ is emitted. The functions f_{P_β} and N^q_k are the particle and photon distributions, respectively, and $V^q_{P\sigma, P_\beta}$ is the bremsstrahlung transition rate with energy conservation already factored out. The photon distribution function N^q_k can be expressed in terms of the bremsstrahlung field by equation (75) to obtain an equivalent form given by equation (77). Equation (78) was used by Akopyan and Tsytovich1,2 to obtain an expression for the collective bremsstrahlung transition rate by means of direct comparison with another expression for the collective bremsstrahlung recoil force, which was determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung.

The present calculation, together with previous work by the author (see Selected Bibliography), is important for ongoing work in calculating collective radiation processes and conditions for the occurrence of radiative instability in relativistic beam-plasma systems.

SELECTED BIBLIOGRAPHY

Work of Akopyan and Tsytovich

Other Work by Tsytovich

Work of Brandt

H. E. Brandt, Second-Order Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma, in Plasma Astrophysics, Course and Workshop Organized by the International School of Plasma Physics, 27 August to 7 September 1981, Varenna (Como), Italy (European Space Agency ESA SP-161, November 1981), 361 (also to be published by Pergamon Press).

DISTRIBUTION (Cont'd)

COMMANDER
US ARMY MATERIALS & MECHANICS RESEARCH CENTER
ATTN DRNR-H, BALLISTIC MISSILE DEF MATS PROG OFC
WATERTOWN, MA 02172

COMMANDER
US ARMY MISSILE COMMAND
ATTN DROM-TP, PHYSICAL SCIENCES DIR
REDSTONE ARSENAL, AL 35809

COMMANDER
US ARMY MISSILE & MUNITIONS CENTER & SCHOOL
ATTN ATS-CTD-F
REDSTONE ARSENAL, AL 35809

ARMY RESEARCH OFFICE (DURHAM)
PO BOX 12211
ATTN H. ROBL
ATTN R. LOMTZ
ATTN B. D. GUENTHER
ATTN TECH LIBRARY
RESEARCH TRIANGLE PARK, NC 27709

COMMANDER
US ARMY RSCH & STD GP (EUR)
ATTN CHIEF, PHYSICS & MATH BRANCH
FPO NEW YORK 09510

NAVAL AIR SYSTEMS COMMAND
ATTN LCDR G. BATES, PHS-405
WASHINGTON, DC 20361

NAVAL INTELLIGENCE SUPPORT CENTER
ATTN M. KOONTZ
4301 SUITLAND RD
SUITLAND, MD 20390

NAVAL MATERIAL COMMAND
ATTN T. HORWATH
2211 JEFFERSON DAVIS HWY
WASHINGTON, DC 20301

OFFICE OF NAVAL RESEARCH
ATTN C. ROBERSON
ATTN W. J. CONDELL
800 N. QUINCY ST
ARLINGTON, VA 22217

SUPERINTENDENT
NAVAL POSTGRADUATE SCHOOL
ATTN LIBRARY, CODE 2124
MONTEREY, CA 93940

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN 2600, TECHNICAL INFO DIV
ATTN 5540, LASER PHYSICS
ATTN 6000, MTL & RADIATION SCI & TE
ATTN B. RIPIN
ATTN L. A. COSBY
ATTN E. E. KEMPE

NAVAL RESEARCH LABORATORY (Cont'd)
ATTN J. T. SCHRIEMPF
ATTN R. F. WENZEL
ATTN R. HETTCHEN
ATTN J. GOLDEN
ATTN V. L. GRANATSTEIN
ATTN M. A. REED
ATTN R. K. PARKER
ATTN P. A. SPRANGE
ATTN S. GOLD
ATTN C. A. KAPETANAKOS
ATTN S. ABN
ATTN T. P. COFFEY
ATTN R. JACKSON
ATTN I. M. VITKOVITSKY
ATTN M. FRIEDMAN
ATTN J. PASOUR
ATTN G. COOPERSTEIN

ARMY RESEARCH OFFICE (DURHAM)
WASHINGTON, DC 20375

NAVAL SURFACE WEAPONS CENTER
ATTN V. PUGLIELLI
ATTN DX-21, LIBRARY DIV
DAHLGREN, VA 22448

NAVAL SURFACE WEAPONS CENTER
ATTN J. X. CHOE
ATTN F. SAGAMA
ATTN H. UBM
ATTN V. KENYON
ATTN E. NOLTING
ATTN WA-13, HIGH-ENERGY LASER BR
ATTN WA-50, NUCLEAR WEAPONS EFFECTS DIV
ATTN WR, RESEARCH & TECHNOLOGY DEPT
ATTN WR-40, RADIATION DIV
ATTN E-43, TECHNICAL LIB
WHITE OAK, MD 20910

NAVAL WEAPONS CENTER
ATTN 315, LASER/INFRARED SYS DIV
ATTN 381, PHYSICS DIV
CHINA LAKE, CA 93555

HQ USAF/SAMI
WASHINGTON, DC 20330

ASSISTANT SECRETARY OF THE AIR FORCE
(RESEARCH & DEVELOPMENT)
WASHINGTON, DC 20330

DIRECTOR
AF OFFICE OF SCIENTIFIC RESEARCH
BOLLING AFB
ATTN NP, DIR OF PHYSICS
ATTN M. A. STROSCIO
ATTN R. BARKER
WASHINGTON, DC 20332
DISTRIBUTION (Cont'd)

COMANDER
AF WEAPONS LAB, AFSC
ATTN J. GENEROSA
ATTN A. H. GUENTHER
ATTN W. E. PAGE
ATTN LR, LASER DEV DIV
KIRTLAND AFB, NM 87117

WRIGHT-PATTERSON AFB
FOREIGN TECHNOLOGY DIVISION/ETD
ATTN J. BUTLER
WRIGHT-PATTERSON AFB, OH 45433

CENTRAL INTELLIGENCE AGENCY
ATTN R. FETTIS
ATTN D. B. NEWMAN
PO BOX 1925
WASHINGTON, DC 20013

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
ATTN CENTER FOR RADIATION RESEARCH
ATTN C. TEAGUE
ATTN E. MARX
WASHINGTON, DC 20234

DEPARTMENT OF ENERGY
ATTN O. P. MANLEY
WASHINGTON, DC 20585

NATIONAL AERONAUTICS & SPACE ADMINISTRATION
ATTN R. RAMAY
GOODARDBE SPACE FLIGHT CENTER
GREENBELT, MD 20771

ADMINISTRATOR
NASA HEADQUARTERS
WASHINGTON, DC 20546

DIRECTOR
NASA
GOODARDBE SPACE FLIGHT CENTER
ATTN 250, TECH INFO DIV
GREENBELT, MD 20771

AMES LABORATORY (ERDA)
IOWA STATE UNIVERSITY
ATTN NUCLEAR SCIENCE CATEGORY
AMES, IA 50011

ASTRONOMICAL INSTITUTE--ZONNENBURG 2
ATTN M. KUPERUS
3512 NL UTRECHT, THE NETHERLANDS

THE AUSTRALIAN NATIONAL UNIVERSITY
DEPT OF THEORETICAL PHYSICS
ATTN D. B. MELROSE
PO BOX 4
CANBERRA A.C.T. 2600
AUSTRALIA

B. K. DYNAMICS
ATTN R. J. LINZ
15825 SHADY GROVE RD
ROCKVILLE, MD 20850

BOEING AEROSPACE
ATTN H. T. BUSHER
PO BOX 3999 MS SR-10
SEATTLE, WA 98124

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC
ATTN PHYSICS DEPT
UPMTO, LONG ISLAND, NY 11973

CALIFORNIA INSTITUTE OF TECHNOLOGY
THEORETICAL ASTROPHYSICS
ATTN K. THORNE
130-33
PASADENA, CA 91125

UNIVERSITY OF CALIFORNIA
DEPT OF APPLIED PHYSICS & INFORMATION
SCIENCE
ATTN H. ALFVEN
LA JOLLA, CA 92093

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
ATTN J. C. HUBBARD
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA
ELECTRICAL ENGINEERING DEPARTMENT
ATTN C. K. BIRDSALL
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA
PHYSICS DEPT
ATTN A. N. KAUFMAN
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA, DAVIS
APPLIED SCIENCES
ATTN J. DEGROOT
DAVIS, CA 95616

UNIVERSITY OF CALIFORNIA, IRVINE
DEPT OF PHYSICS
ATTN G. BENFORD
ATTN N. ROSTOKER
ATTN H. MAYER
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA, LOS ANGELES
DEPT OF PHYSICS
ATTN K. NOZAKI
LOS ANGELES, CA 90025

CAMBRIDGE UNIVERSITY
INSTITUTE OF ASTRONOMY
MADINGLY ROAD
ATTN M. REES
CAMBRIDGE CB 3 O HA, ENGLAND

35
DISTRIBUTION (Cont'd)

CHALMERS UNIV OF TECHNOLOGY
INST OF ELECTROMAGNETIC FIELD
THEORY
ATTN H. WILHELMSSON
S-41296 GOTHENBURG, SWEDEN

UNIVERSITY OF CHICAGO
LAB FOR ASTROPHYSICS & SPACE RESEARCH
ATTN E. PARKER
CHICAGO, IL 60637

UNIVERSITY OF COLORADO
DEPT OF ASTROPHYSICS
ATTN M. GOLDMAN
ATTN D. SMITH
BOULDER, CO 80309

COLUMBIA UNIVERSITY
ATTN S. JOHNSTON
216 MUDD BLDG
NEW YORK, NY 10027

CORNELL UNIVERSITY
ATTN R. LOVELACE
ATTN R. N. SUDAN
ATTN J. NATION
ATTN D. HAMMER
ATTN H. FLEISCHMANN
ITHACA, NY 14853

DARTMOUTH COLLEGE
PHYSICS DEPT
ATTN J. E. WALSH
HANOVER, NH 03755

UNIVERSITY OF THE DISTRICT
OF COLUMBIA
VAN NESS CAMPUS
DEPT OF PHYSICS
ATTN M. J. SMITH
4200 CONNECTICUT AVE, NW
WASHINGTON, DC 20008

ENGINEERING SOCIETIES LIBRARY
345 EAST 47TH STREET
ATTN ACQUISITIONS DEPARTMENT
NEW YORK, NY 10017

GENERAL DYNAMICS
ATTN K. H. BROWN
PO BOX 2507 NM 44-21
POMONA, CA 91769

UNIVERSITY OF ILLINOIS AT
URBANA--CHAMPAIGN
DEPT OF PHYSICS
ATTN N. IMAMOTO
URBANA, IL 61801

ISTITUTO DI FISICA DELL' UNIVERSITA
VIA CELORIA 16
ATTN P. CALDIROLA
ATTN C. PAISIS
ATTN E. SINDONI
20133 MILANO, ITALY

ISTITUTO DI FISICA DELL' UNIVERSITA
ATTN A. CAVALIERI
ATTN R. RUFFINI
ROME, ITALY

ISTITUTO DI FISICA GENERALE
DELL' UNIVERSITA
CORSO M. D'AZEGLIO
ATTN A. FERRARI
46 TORINO, ITALY

JAYCOR
ATTN L. CONRAD
205 S. WHITING ST
ALEXANDRIA, VA 22304

KAMAN SCIENCES CORP
ATTN T. A. TUMOLILLO
1500 GARDEN OF THE GODS
COLORADO SPRINGS, CO 80907

LAWRENCE BERKELEY LAB
ATTN A. FALTENS
ATTN A. M. SESSLER
ATTN D. KEENE
BERKELEY, CA 94720

LAWRENCE LIVERMORE LABORATORY
UNIVERSITY OF CALIFORNIA
ATTN L. MARTIN
ATTN P. WHEELER
ATTN H. S. CARAYAN
ATTN R. BRIGGS
ATTN E. K. MILLER
ATTN R. ZIOKOWSKI
ATTN R. SCARPETTI
ATTN R. MINICH
ATTN S. BURKHART
ATTN G. VOGLIN
ATTN V. W. SLIVINSKY
ATTN S. L. YU
ATTN G. CRAIG
ATTN R. ALVAREZ
ATTN G. LASCHE
ATTN J. H. YEE
ATTN H. W. WELDNER
ATTN J. S. PETTIBONE
ATTN A. J. POGGIO
ATTN M. LOYD
PO BOX 808
LIVERMORE, CA 94550

CHIEF
LIVERMORE DIVISION, FIELD COMMAND, DNA
LAWRENCE LIVERMORE LABORATORY
PO BOX 808
LIVERMORE, CA 94550

LOS ALAMOS SCI LAB
ATTN S. COLGATE
ATTN D. F. DUBOIS
ATTN D. FORSLAND
ATTN C. N. FOWLER
ATTN R. ZIOLKOWSKI
ATTN J. E. WALSH
ATTN R. STEELE
WASHINGTON, DC 20008

ENGINEERING SOCIETIES LIBRARY
345 EAST 47TH STREET
ATTN ACQUISITIONS DEPARTMENT
NEW YORK, NY 10017

GENERAL DYNAMICS
ATTN K. H. BROWN
PO BOX 2507 NW 44-21
POMONA, CA 91769

UNIVERSITY OF ILLINOIS AT
URBANA--CHAMPAIGN
DEPT OF PHYSICS
ATTN N. IMAMOTO
URBANA, IL 61801

ISTITUTO DI FISICA DELL' UNIVERSITA
VIA CELORIA 16
ATTN P. CALDIROLA
ATTN C. PAISIS
ATTN E. SINDONI
20133 MILANO, ITALY

36
DISTRIBUTION (Cont'd)

LOS ALAMOS SCI LAB (Cont'd)
ATTN J. LANDT
ATTN R. HOEBERLING
ATTN T. R. KING
ATTN A. KADISH
ATTN E. LEE
ATTN R. W. FREYMAN
ATTN A. W. CHURMATEZ
ATTN L. M. DUNCAN
ATTN D. B. HENDERSON
ATTN L. E. THOPE
ATTN H. A. DAVIS
ATTN T. KVAH
PO BOX 1663
LOS ALAMOS, NM 87545

UNIVERSITY OF MARYLAND
DEPT OF ELECTRICAL ENGINEERING
ATTN M. REISER
ATTN N. DESELTER
ATTN C. D. STRIFFLER
ATTN T. RHEE COLLEGE PARK, MD 20742

UNIVERSITY OF MARYLAND
DEPT OF PHYSICS & ASTRONOMY
ATTN H. R. GRIEM
ATTN E. OTT
ATTN C. GREBOSI
ATTN K. PAPADOPOULOS
ATTN J. WEBER COLLEGE PARK, MD 20742

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
PLASMA FUSION CENTER
ATTN G. BEKEFI
ATTN J. BELCHER
ATTN T. CHANG
ATTN B. COPPI
ATTN R. DAVIDSON
ATTN C. LIN
ATTN S. OLBERT
ATTN B. PROSSI CAMBRIDGE, MA 02139

MAX PLANCK INST, FUR AERONOMIE
3411 KATZENBERG
ATTN J. AXFORD
ATTN E. MARCH
LINDAU 3, WEST GERMANY

MAX PLANCK INSTITUTE OF PHYSICS
& ASTROPHYSICS
ATTN M. NORMAN
ATTN J. TRUMPER
GARCHING BEI MUNICH, WEST GERMANY

MAXWELL LABORATORIES
ATTN J. S. PEARLMAN
8835 BALBOA AVE
SAN DIEGO, CA 92123

MISSION RESEARCH CORP
ATTN B. GODFREY
ATTN D. J. SULLIVAN
ATTN M. BOLLEN
ATTN C. LONGMIRE
ATTN D. VOS
1720 RANDOLPH RD, SE
ALBUQUERQUE, NM 87106

UNIVERSITY OF NAGOYA
DEPT OF PHYSICS
ATTN S. HAYAKAWA
NAGOYA, JAPAN

NATIONAL RESEARCH COUNCIL
DIVISION OF PHYSICS
ATTN P. JAANIMAGI
OTTOWA, ONTARIO CANADA

NATIONAL SCIENCE FOUNDATION
DIVISION OF ASTRONOMICAL SCIENCES
ATTN M. AIZENMAN
1800 G STREET, NW
WASHINGTON, DC 20550

OAK RIDGE NATIONAL LABORATORY
PO BOX Y
ATTN A. C. ENGLAND
OAK RIDGE, TN 37830

OCCIDENTAL RESEARCH CORP
ATTN D. B. CHANG
2100 SE MAIN
IRVINE, CA 92713

OXFORD UNIVERSITY
DEPARTMENT THEORETICAL PHYSICS
1 KEBLE RD
ATTN D. T. HAAR
OXFORD OX1 3NP, ENGLAND

OXFORD UNIVERSITY
ASTROPHYSICS DEPARTMENT
SOUTH PARK ROAD
ATTN A. HALL
OXFORD--OX1 3RQ, ENGLAND

OXFORD UNIVERSITY
DEPT OF ENGINEERING SCIENCE
PARKS ROAD
ATTN L. M. WICKENS
ATTN J. E. ALLEN
OXFORD, UNITED KINGDOM

PHYSICS INTERNATIONAL
ATTN B. A. LIPPMAN
ATTN R. D. GENNARIO
2700 MERCER ST
SAN LEANDRO, CA 94577
DISTRIBUTION (Cont'd)

PRINCETON UNIVERSITY SERVICE DE CHEMIE PHYSIQUELL
ASTROPHYSICAL SCIENCES ATTN R. BALESCU
PETON HALL CAMPUS PLAINE U.L.B.
ATTN R. KULSRUD CODE POSTAL n° 231
PRINCETON, NJ 08540 BOULEVARD DU TRIOMPHE

PRINCETON UNIVERSITY 10 50 BRUXELLES, BELGIUM
PLASMAPHYSICS LABORATORY SPECOLA VATICANA
ATTN R. WHITE ATTN W. STOEGER, S. J.
PRINCETON, NJ 08540 I-00120 CITTA DEL VATICANO

QUEEN MARY COLLEGE ITALY
DEPT OF APPLIED MATH SRI INTERNATIONAL
MILE END ROAD ATTN G. AUGUST
ATTN D. BURGESS ATTN C. L. RINO
LONDON EI 4NS, ENGLAND 333 RAVENSWOOD AVE

RUHR UNIVERSITY MENLO PARK, CA 94025
ATTN W. SEBOLD STANFORD UNIVERSITY
ATTN W. ZWINGMANN INST PLASMA RES
4630 BOCHUM 1, WEST GERMANY ATTN P. A. STURROCK

INSTITUTE OF EXPERIMENTAL PHYSICS
RUHR-UNIVERSITY STANFORD, CA 94305
POSTFACH 2148 STERREKRAWACH-LEIDEN
ATTN H. KINZE ATTN C. A. NORMAN
436 BOCHUM, WEST GERMANY ATTN P. ALLAN

SACHS/FREEMAN ASSOC 2300 RA LEIDEN, THE NETHERLANDS
ATTN R. A. MAHAFFEY TEL-AVIV UNIVERSITY
19300 GALLANT FOX DEPT OF PHYSICS & ASTRONOMY
SUITE 214 ATTN G. TAUBER
Bowie, MD 20715 TEL AVIV, ISRAEL

SANDIA LABORATORIES TLEDYN BROWN ENGINEERING
ATTN R. B. MILLER CUMMINGS RESEARCH PARK
ATTN J. POWELL ATTN MELVIN L. PRICE, MS-44
ATTN W. BALLARD HUNTSVILLE, AL 35807
ATTN C. EKDAHL INSTITUTE FOR THEORETICAL MECHANICS-
ATTN W. D. BROWN RUG
ATTN S. HUMPHRIES, JR. KRIJGSLAAN 271-89
ATTN G. ROHNEIN ATTN F. VERHEEST
ATTN K. PRESTWICH B-9000 GENT, BELGIUM
4244 SANDIA LABS UNIVERSITY OF TENNESSEE
ALBUQUERQUE, NM 87115 DEPT OF ELECTRICAL ENGINEERING

SCIENCE APPLICATIONS, INC ATTN I. ALEXEFF
ATTN E. P. CORNET ATTN J. R. ROTH
ATTN A. DROBOT KNOXVILLE, TN 37916
ATTN E. KANE UMEA UNIVERSITY
1710 GOODRIDGE DR DEPT OF PLASMA PHYSICS
PO BOX 1303 ATTN J. LARSSON
 MCLEAN, VA 22012 ATTN L. STEFNFO
SCIENCE APPLICATIONS, INC S-90187 UMEA
ATTN F. CHILTON SWEDEN
1200 PROSPECT ST UNIVERSITY OF WASHINGTON
PO BOX 2351 DEPT OF PHYSICS
LA JOLLA, CA 92038 ATTN M. BAKER
 SEATTLE, WA 98195
DISTRIBUTION (Cont'd)

WEIZMANN INSTITUTE
DEPT OF NUCLEAR PHYSICS
ATTN AMI WANDEL, ISRAEL

WESTERN RESEARCH CORP
ATTN R. O. HUNTER
225 BROADWAY, SUITE 1600
SAN DIEGO, CA 92101

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND
ATTN COMMANDER, DRDEL-CG
ATTN TECHNICAL DIRECTOR, DRDEL-CT
ATTN PUBLIC AFFAIRS OFFICE, DRDEL-IN

HARRY DIAMOND LABORATORIES
ATTN CO/TD/TSO/DIVISION DIRECTORS
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, 81100 (3 COPIES)
ATTN HDL LIBRARY (WOODBRIDGE), 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN LEGAL OFFICE, 97000
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN MORRISON, R. E., 13500
ATTN CHIEF, 21000
ATTN CHIEF, 21100
ATTN CHIEF, 21200
ATTN CHIEF, 21300
ATTN CHIEF, 21400
ATTN CHIEF, 21500
ATTN CHIEF, 22000
ATTN CHIEF, 22100
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN CHIEF, 20240
ATTN CHIEF, 11000
ATTN CHIEF, 13000
ATTN CHIEF, 13200
ATTN CHIEF, 13300
ATTN CHIEF, 15200

HARRY DIAMOND LABORATORIES (Cont'd)
ATTN BROWN, E., 00211
ATTN SINDORIS, A., 00211
ATTN GERLACH, H., 11100
ATTN LIBELO, L., 11200
ATTN LOKERSON, D., 11400
ATTN CROWNE, P., 11200
ATTN DROPPIN, H., 11200
ATTN LEAVITT, R., 11200
ATTN MORRISON, C., 11200
ATTN SATTLER, J., 11200
ATTN KULPA, S., 11300
ATTN SILVERSTEIN, J., 11300
ATTN FAZI C., 11300
ATTN LOMONACO, S., 15200
ATTN CORRIGAN, J., 20240
ATTN FARRAR, F., 21100
ATTN GARVER, R., 21100
ATTN TATUM, J., 21100
ATTN MERKEL, G., 21300
ATTN MCLEAN, B., 22300
ATTN OLDMAN, T., 22300
ATTN BLACKBURN, J., 22800
ATTN GILBERT, R., 22800
ATTN KLEBERS, J., 22800
ATTN VANDERWALL, J., 22800
ATTN BROMBORSKY, A., 22900
ATTN DAVIS, D., 22900
ATTN GRAYBILL, S., 22900
ATTN HUTTIN, G. A., 22900
ATTN KEHS, A., 22900
ATTN KERRIS, K., 22900
ATTN LAMB, R., 22900
ATTN LINDSAY, D., 22900
ATTN LITZ, M., 22900
ATTN RUTH, B., 22900
ATTN STEWART, A., 22900
ATTN SOLN, J., 22900
ATTN WHITTAKER, D., 22900
ATTN ELBAUM, S., 97100
ATTN BRANDT, H. E., 22300

(60 COPIES)