An extension of the Kolmogorov theory of fluid turbulence is used to develop a unified treatment of the power spectrum of long wavelength electron density structures and irregularities in the equatorial and high latitude ionosphere. Favorable comparison is made among theory, experimental observations, and numerical simulations.
CONTENTS

INTRODUCTION .. 1
THEORY .. 2
DISCUSSION .. 7
ACKNOWLEDGMENTS 8
REFERENCES ... 11
UNIFIED THEORY OF THE POWER SPECTRUM OF LONG WAVELENGTH IONOSPHERIC ELECTRON DENSITY IRREGULARITIES

INTRODUCTION

The study of electron density irregularities and structures in the ionosphere has divided itself naturally into three regimes: the low, middle and high geomagnetic latitudes. These regimes have fundamentally different sources for the irregularities, associated with the degree of coupling to higher altitude magnetospheric phenomena. The coupling is related to the orientation of the geomagnetic fields as a function of magnetic latitude. At low latitudes, where the geomagnetic field tends to be horizontal, coupling to higher altitude magnetospheric disturbances is inhibited. At high latitudes the more vertical magnetic field promotes strong magnetospheric-ionospheric coupling. (For recent reviews of ionospheric structures and irregularities see Fejer and Kelley, 1980, Ossakow, 1981, and Keskinen and Ossakow, 1983.) A fundamental quantity, which can be measured experimentally and computed theoretically, characterizing ionospheric structures and turbulence is the power spectrum of the density fluctuations. A theory which extends the Kolmogorov picture of fluid turbulence to unstable plasma systems [Sudan and Pfirsch, 1982] has recently been applied to Type II electron density irregularities in the equatorial electrojet [Sudan, 1983]. The concepts underlying this treatment are a development of previous studies [Kulsrud and Sudan, 1981; Sudan and Keskinen, 1977, 1979 Keskinen, 1981]. This theory [Sudan, 1983] predicts the absolute magnitude of the power spectrum as a function of wavelength in terms of a strength parameter

\[\nu_1 \gamma_0 / \kappa_0^2 C_s^2 = S \]

which can also be interpreted as a Reynolds number that defines the level of the turbulence; \(\nu_1 \) is the ion-neutral collision frequency, \(C_s \) is the sound speed, \(\kappa_0 = 2\pi/\lambda_0 \), \(\lambda_0 \) is the largest scale size involved in the turbulence and \(\gamma_0(k_\theta) \) is the linear growth rate of the fluctuation whose wavelength is \(\lambda_0 \). The purpose of this letter is to show that this theory applies equally well and almost without significant modification to equatorial spread F, natural auroral electron density irregularities in the E and F regions, and artificial irregularities in barium clouds for wavelengths above the ion gyro-radius and below say ~10km. The predictions of this theory are in good agreement with the accumulated radar observations [Farley, 1979; Hanuise and Crochet, 1981a, 1981b] and the more recent rocket observations [Fejer and Kelley, 1980; Kelley, et. al., 1982; Prakash et. al., 1972 Keskinen et al., 1981; Singh and Szuszczewicz, 1983; Rodriguez and Szuszczewicz, 1983].

Manuscript approved October 4, 1983.
THEORY

For low-frequency modes the ionospheric plasma in the E and F region can be modelled by two-fluid equations in which quasi-neutrality is assumed \(n_e = n_i = n \), the pressure variations are taken to be isothermal, and the electron and ion inertia are both neglected. Because \(B_n(T_e + T_i) \ll B_0^2 \) where \(B_0 \) is the Earth's magnetic field, the perturbed magnetic fluctuations vanish and the electric field fluctuation are electrostatic \(E = -\nabla \phi \) and we can write

\[
\frac{3n}{ct} + \nabla \cdot \mathbf{V} n + n \nabla \cdot \mathbf{V} = -n \mathbf{V} \quad (1)
\]

\[
-e(\mathbf{V} \cdot \mathbf{B}) - T_e \nabla \cdot \mathbf{V} - \frac{n}{m} \mathbf{V} = 0 \quad (2)
\]

\[
e(\mathbf{V} \cdot \mathbf{B}) - T_i \nabla \cdot \mathbf{V} - \frac{m_i}{m} \mathbf{V} = 0 \quad (3)
\]

\[
7 \cdot \mathbf{J} = e n \mathbf{V} (\mathbf{V} - \mathbf{V}) = 0 \quad (4)
\]

In this set, the \(e \) and \(i \) subscripts refer to electrons and ions, respectively, \(\nu_{i,e} \) is the charged particle neutral collision frequency, \(\mathbf{g} \) is the acceleration due to gravity and the other symbols have and their conventional meaning. In the continuity equation (1) \(V_d \) is the particle drift across the magnetic field. In the E-region where ions are unmagnetized, \(\nu_i / \Omega_i \approx 10 \), and electrons are magnetized, \(\nu_e / \Omega_e \approx 3 \times 10^{-2} \) (\(\Omega_i \) is the cyclotron frequency), the electrons drift at a velocity given by

\[
V_d = c E_0 \times B_0 / B_0^2 \] where \(E_0 \) is the ambient vertical static field. The ions are stationary and the electrons drift, \(V_d \) results in the electrojet current. In the F-region, on the other hand, \(\nu_i / \Omega_i \approx 10^{-3} \), \(\nu_e / \Omega_e \approx 10^{-4} \) i.e., both electrons and ions are magnetized and the ambient field \(E_0 \) causes the electrons and ions to drift at the same rate, so that no electric current is generated by \(E_0 \). However the much weaker gravitational field causes the ions to drift with respect to the electrons. Thus in the electron drift frame we set \(V_{d} = -\frac{\mathbf{V}}{e} \times \mathbf{B}_0 / B_0^2 \) the ion drift velocity and \(\mathbf{V} = V_{d} \) in Eq. (1).
Consider an electrostatic wave $\psi = \psi(x, t) \exp \left(\frac{i}{\epsilon} (k \cdot x - \omega t) \right)$ propagating in this medium such that $k L \gg 1$ where L is the scale length of the ambient electron density. Such a wave will be Landau damped by electrons free-streaming along B_0 unless $\omega > k \cdot v_e$, $k_\perp = (k \cdot B_0) / B_0$ and $v_e = (2T_e / m_e)^{1/2}$ is the electron thermal velocity. Now the low-frequency modes under discussion have $\text{Re} \omega_k = k_\perp v_d = k_\perp v_e$. Thus

$$k_\perp / k_\parallel = v_d / v_e = 10^{-3}, \text{E region}$$
$$10^{-6}, \text{F region}$$

It is clear that these irregularities have an almost two-dimensional structure in both the E and F regions and we may consider the turbulent interactions between the different modes essentially as a two-dimensional system and isotropic in the plane perpendicular to B_0.

At the equator the magnetic field has no dip and the ambient electron density gradient ∇n_0, B_0 and the mean electrojet drift V_d are orthogonal to each other. This special geometry has been utilized in the study of electrojet driven irregularities. However in the auroral regions, while V_\parallel and B_0 are orthogonal, ∇n_0 and B_0 are not because of the large dip of the earth's magnetic field. In this situation because the modes of interest still have $k_\parallel \ll k_\perp$, the component of the density gradient along the magnetic field $B_0 \cdot \nabla n_0 / B_0$, plays no role in the dynamical evolution of these modes so long as $(k_\perp B_0)(B_0 \cdot \nabla n_0 / n B_0) > 1$ (we do not consider $J \cdot B = 0$ driven modes here). The auroral case is equivalent to the equatorial situation if ∇n_0 is replaced by $\nabla n_0 \perp$ which is the component of the gradient perpendicular to B_0. Thus the analysis for the equatorial E and F regions could be extrapolated to any latitude provided the appropriate density gradient is taken into consideration.

In the set (1) - (4) the principal nonlinear interaction takes place through the term $\nabla \cdot n_\perp$ in Eq. (1). Denoting

$$\phi_k = \int \frac{dt}{2\pi} \int \frac{d^2x}{(2\pi)^2} \phi(x, t) \exp i(\omega t - k \cdot x)$$

$$n_k = \int \frac{dt}{2\pi} \int \frac{d^2x}{(2\pi)^2} n(x, t) \exp i(\omega t - k \cdot x)$$
it can be shown that this system of equations can be written in the form

\[(\omega - \omega') v_{d'} \equiv \frac{\partial}{\partial z} \left(\frac{\partial v_{d'}}{\partial z} \right) \quad (5)\]

with \(\omega'' = \omega - \omega\) and \(\omega' = \omega - \omega'\). In the equatorial E-region we have shown previously [Sudan and Keskinen, 1977; Sudan, 1983] that the Hall current driven \(E \times B\) instability has frequency and growth rate

that

\[\text{Re} \omega' = k'v_{d}/(1 + \psi) \quad (6a)\]

\[\text{Im} \omega' \equiv \omega' = \frac{\psi}{1 + \psi} \left(\frac{\alpha \epsilon (k'v_{d})^2}{\nu_e (1 + \psi) k'v_{d}} \frac{1}{n_0} \frac{dn_0}{dz} - \frac{k^2 C_s}{\nu_e} \right) \quad (6b)\]

and

\[\nu_{e}, k', k'' = \frac{3(k'v_{d})}{n_0} k'z/k'^2 \times k'' \quad (6c)\]

\[s = (\nu_e/\bar{n}_i)(1 + \psi)^{-1}\]

\[\psi = \nu_e \psi_e/\bar{n}_e \bar{n}_i\]

To extend these results to the E-region at arbitrary latitude one need only replace \(3\eta_0/\partial z\) with \(\eta_0 \bar{n}_0\). The nonlinear terms remain unchanged.

The Rayleigh-Taylor and \(E \times B\) gradient drift instabilities have been invoked to explain low and high latitude F-region density irregularities, respectively (see recent reviews of Ossakow, 1981 for the low latitude ionosphere and Keskinen and Ossakow, 1983 for the high latitude case). We now show that the structure of eq. (5) is unchanged for Rayleigh-Taylor and \(E \times B\) gradient drift modes. In the drift frame of the electrons the ion drift is given by \([x, y, z\) are the vertical east/west, and north/south coordinates; \(B_0 = B_0 \hat{z}\) at the magnetic equator]

\[v_d \equiv v_{d'} \quad (7)\]

\[v_{d0} = \left(\frac{\epsilon E_o}{B_0} \right) \bar{n}_i \quad \text{low latitude}\]

\[v_{d0} = (\nu_e/\bar{n}_i)(\epsilon E_o/B_0) \quad \text{high latitude}\]

and for low latitudes the perturbed electron and ion drifts are
\[\psi_e = -\frac{e}{3} (7z \times \hat{z}) + 0 \frac{\psi_1}{n_0} \]

\[\psi_i = -\frac{e}{3} (7z \times \hat{z}) - \frac{e}{3} \frac{7z}{n_1} \]

Note that \(\psi_e, \psi_i \ll \psi_i, \psi_1 \) in F-region. From (4), (8) and (9) \(\delta \xi \) and \(\delta n \) are related by

\[\delta \xi = \frac{-i \omega_1 c_0 k \cdot V_{i0}}{n_0} \frac{\delta n}{\nu_1 c k^2} \]

to linear order in \(\delta n \). Furthermore from (9) and (3)

\[V_\xi \psi_i = \frac{-i \omega_1 (m_1 \psi_i)^{-1} \xi (e \xi_\psi + T_1 \xi \delta n)}{n_0} \]

and (9) (10) and (11) when substituted into (1) yield (5) with

\[\text{Re} \omega_k = k \cdot V_{i0} \]

\[\text{Im} \omega_k = \frac{\Omega_1}{\nu_1} \frac{(k \times \hat{z} \cdot \pi n_0)}{n_0} \frac{k \cdot V_{i0} - \nu_1 k^2 c^2}{\nu_1 n_0} \]

\[V_{\xi}, \xi, \xi' = \frac{\Omega_1}{\nu_1} \frac{k \cdot V_{i0} \chi_\xi k' \cdot \hat{z} \times k''}{n_0} \]

Note that the expressions for the nonlinear matrix element \(V_{\xi}, \xi, \xi' \) of (6c) and (12c) are identical in structure. Similar relations can be obtained for the high latitude case. Thus the nature of the nonlinear interaction of the Rayleigh-Taylor and \(E \times B \) modes in the equatorial and high latitude F-region is identical to the \(E \times B \) instabilities of the E-region.

Equation (5) defines the interaction of modes \(\xi, \xi', \xi'' \). If \(\text{Re} \omega_k \) is non-dispersive i.e. \(\frac{\partial \omega_k}{\partial k} \) is independent of \(k \), all possible \(\xi' \) and \(\xi'' \) will interact with \(\xi \) provided only that they satisfy the triangular equality \(\xi'' = k - k' \). If \(\omega_k \) is dispersive than only those modes which also simultaneously satisfy \(\omega_{k''} = \omega_k - \omega_k \) contribute to the interaction. Depending upon the shape of \(\omega(k) \) this reduces the number of interacting modes from a continuous to a small discrete set. The physical repercussion of this
difference in the number of interacting modes is to cause a strong interaction in the non-dispersive case which results in the nonlinear self-damping τ_k of the mode [Kadomtsev, 1963; Kraichnan, 1959]. This self-damping may also be interpreted as a spread $\omega_{\kappa} = \tau_k$ in the eigenfrequency ω_k. For the dispersive case the interaction is weak and the linear eigenfrequencies ω_k are retained even in the nonlinear development (so called weak-turbulence, see Sagdeev and Galeev, 1969). For the non-dispersive modes under consideration here the turbulence is considered "strong".

Because we are dealing with fully developed turbulence, fluctuations with all possible wavelengths in a certain range are present. Define the power spectrum $I_{\kappa, \omega} = <|\eta_{\kappa, \omega}|^2/n_0^2>$ where $<>$ denote an ensemble average. Also $I_k = -d\omega I_{\kappa, \omega}$ and the energy in the fluctuations $\zeta_k^2 \equiv n_k^2$ where n is a constant. The total energy density

$$U(x) = n_0^2 I_k$$

$$= 2\pi n_0^2 d(\ln k) k^2 I_k$$

for isotropic power spectrum

Thus $\varepsilon(k) = k^2 I_k$ is the energy in the logarithmic interval $d(\ln k) = dk/k$. An estimate for the self-damping Γ_k from a dimensional analysis of (5) proceeds as follows. Assuming that the interaction is dominated by modes with $k - k' ~ k''$,

$$\Gamma_k = |\Delta \omega_k| = |\omega_k| \omega_{k', k''} |n_k| k \Delta k = 3k \nu_d (k_{1/2}^2)$$

where we have employed (6c) set $\Delta k = k$ and $<|n_k|^2/n_0^2> \sim k_{1/2}^2$. Furthermore from (2) and (4) we find in the linear approximation that

$$v_k = \delta(k \cdot \nu_d) \frac{k \cdot \zeta n_k}{k^2} \frac{n_k}{n_0}$$

so that

$$\Gamma_k = \Delta \omega_k = k^3 v_k = k \Delta \nu \sim 2 \nu_d \Delta \nu \sim \tau_k^{-1}$$

where $\Delta \nu$ is the velocity of an eddy of scale size λ. The self-damping is therefore related to the inverse of the "eddy-turnover" time τ_k.
Kolmogorov's theory of fluid turbulence states that the fluid energy contained in the interval \(\Delta k \) is transferred into the interval \(\Delta k' \) in an eddy turnover time \(\tau_k \). This is to say that \((d \ln k) \Delta k \tau_k \) is conserved in the inertial regime. In plasma turbulence however the energy may be augmented or diminished by the linear growth or damping of the waves. Thus we have [Kulsrud and Sudan, 1982; Sudan and Pfirsch, 1982]

\[
\frac{d}{d \ln k} (k^2 I_k \tau_k) = \gamma_k k^2 I_k
\]

where \(\gamma_k \) is the linear growth/damping rate. Substituting for \(\gamma_k \) from (13) we obtain a first order equation which is easily solved. Now \(\gamma_k = \gamma_0 k^2 \) is valid for both E and F regions with appropriate choice of \(\gamma_0 \) and \(G \) [see (6b) and (1b)]. Define a strength parameter \(S = \gamma_0 / k^2 \) where \(k_0 \) is the longest wavelength in the system. The solution of (5) for \(\gamma_k = 0 \) is then given by

\[
I(x) = x^{-3/2} (1 - x^{-2/3} - \frac{1}{2S} (x^{4/3} - 1)^2
\]

and

\[
I(x) = S^2 k_0^2 (k_0 V_d / \gamma_0)^2 I(k)
\]

where \(x = k/k_0 \). Thus the spectrum of (17) originally established for the equatorial E-region [Sudan, 1983] should be universally valid for the E and F regions at all latitudes for almost two-dimensional modes governed by the set of Equations (1) to (4). Notice that the difference in the nature of instabilities does not reveal itself in the spectrum because the nonlinear term \(\nabla \cdot \nu \) which established the interaction between the modes is the same. For \(x > S^{1/2} \) the modes are linearly damped but the spectrum will extend to \(x \sim S^{3/4} \) before it vanishes. Then the range of damped modes excited by energy transfer from unstable modes is given by \(\Delta x \sim S^{1/2} - S^{1/2} \).

DISCUSSION

For parameters typical of the equatorial and high latitude E and F regions \(S_0 > 10^4 - 10^6 \) and \(\lambda = 2\pi/k_0 \) may range from 1-10 km. In the inertial range therefore \(I(k) \sim k^{-8/3} \). This power law dependence and associated spectral index is consistent with previous theoretical and experimental studies. Fig. 1 shows a sample power spectrum of the density fluctuations resulting from the numerically obtained evolution of the Rayleigh-Taylor...
instability in the equatorial F-region ionosphere (Keskinen et al., 1981). Good agreement is seen between the theoretical prescription for the power spectrum, eq. (17), and the numerical results. Similar power laws and spectral indices are also observed in theoretical and numerical studies of the Earth's in the auroral ionosphere (Keskinen and Osakow, 1982, 1983) and in plasma (barium) clouds (Keskinen et al., 1980). In addition, the theoretically derived power spectrum, eq. (17), is consistent with rocket observations of intermediate scale size density fluctuations in equatorial spread F (Keskinen et al., 1981, Szuszczywicz et al., 1980; Kelley et al., 1982; Kelley et al., 1982). Fig. 2 shows a sample experimentally obtained power spectrum taken from Keskinen et al. [1981]. Similar power laws are also observed with satellite measurements in the high latitude F region ionosphere (E. Szuszczywicz, private communication).

ACKNOWLEDGMENTS

We are indebted to M.C. Kelley for many useful discussions. This work was supported by DNA and ONR (MJK) and NSF (RNS).
Fig. 1 Numerically obtained vertical wave number spectra [Keskinen et al., 1981] of Rayleigh-Taylor instability. The symbol $k_o = 2\pi/960m$ and the cutoff value $k_d = 30$. The continuous line is obtained from eq. (17).
Fig. 2 Experimentally obtained power spectra of density fluctuations [Keskinen et al., 1981] in equatorial spread F ionosphere. Power spectra are plotted in dimensionless units. Straight lines are drawn with indicated slope.
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
01CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JSTM-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGR
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Office/Address</th>
<th>Code</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>NAVAL RESEARCH LABORATORY</td>
<td>WASHINGTON, D.C. 20375</td>
<td>01CY</td>
<td>20375</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>NAVAL SEA SYSTEMS COMMAND</td>
<td>WASHINGTON, D.C. 20362</td>
<td>01CY ATTN</td>
<td>CAPT R. PITKIN</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>NAVAL SPACE SURVEILLANCE SYSTEM</td>
<td>DAHLGREN, VA 22448</td>
<td>01CY ATTN</td>
<td>Capt J.R. BURTON</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>NAVAL SURFACE WEAPONS CENTER</td>
<td>WHITE OAK, SILVER SPRING, MD 20910</td>
<td>01CY ATTN</td>
<td>F31</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>STRATEGIC SYSTEMS PROJECT OFFICE</td>
<td>WASHINGTON, D.C. 20336</td>
<td>01CY ATTN</td>
<td>NSP-2141</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>NAVAL SURFACE WEAPONS CENTER</td>
<td>DAHLGREN LABORATORY</td>
<td>01CY ATTN</td>
<td>DF-14</td>
<td></td>
</tr>
<tr>
<td>Officer of Naval Research</td>
<td>ARLINGTON, VA 22217</td>
<td>01CY ATTN CODE 465</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN CODE 461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN CODE 402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN CODE 420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN CODE 421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>AEROSPACE DEFENSE COMMAND/DC</td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td>01CY ATTN</td>
<td>DC MR. LONG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENT AFB, CO 80912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>AEROSPACE DEFENSE COMMAND/XPD</td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td>01CY ATTN</td>
<td>XP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENT AFB, CO 80912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN XPDQQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01CY ATTN XP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Force Geophysics Laboratory</td>
<td>HANSCOM AFB, MA 01731</td>
<td>01CY ATTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAROLD GARDNER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KENNETH S.W. CHAMPION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALVA T. STAIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JURGEN BUCHAU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JOHN P. MULLEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF Weapons Laboratory</td>
<td>KIRTLAND AFT, NM 87117</td>
<td>01CY ATTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTHUR R. GUENTHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILT. G. KRAJEI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF Tac</td>
<td>PATRICK AFB, FL 32925</td>
<td>01CY ATTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TF/MAJ WILEY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN TN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Force Avionics Laboratory</td>
<td>WRIGHT-PATTERSON AFB, OH 45433</td>
<td>01CY ATTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAD WADE HUNT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAD ALLEN JOHNSON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deputy Chief of Staff</td>
<td>RESEARCH, DEVELOPMENT, & ACQ</td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td>01CY ATTN</td>
<td>AFRDQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASHINGTON, D.C. 20330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>ELECTRONIC SYSTEMS DIVISION</td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td>01CY ATTN</td>
<td>J. DEAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HANSCOM AFB, MA 01731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>ELECTRONIC SYSTEMS DIVISION/YSEA</td>
<td>DEPARTMENT OF THE AIR FORCE</td>
<td>01CY ATTN</td>
<td>YSEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HANSCOM AFB, MA 01732</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
01CY (ALL CORRESP. ATTN SEC OFFICER FOR)

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92937
LOS ANGELES, CA 90009
01CY ATTN L. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D. B. COX
01CY ATTN J. P. GILMORE

CONSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D. T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LUGGON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 WILSHIRE BLVD.
Santa Monica, Calif 90401
01CY ATTN C. B. GABBAUR

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M. H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
Dr. F. MANGE - CODE 4101
Dr. P. GOODMAN - CODE 4180

A.F. GEOPHYSICS LABORATORY
L.C. HANSCOM FIELD
BEDFORD, MA 01730
Dr. T. ELKINS
Dr. W. SWIDER
MRS. R. SAGALYN
Dr. J.M. FORBES
Dr. T.J. KENESHEA
Dr. W. BURKE
Dr. R. CARLSON
Dr. J. JASPERSE

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
Dr. J. AARONS

CORNELL UNIVERSITY
ITHACA, NY 14850
Dr. W.E. SWARTZ
Dr. D. FARLEY
Dr. N. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
Dr. M.B. McELROY
Dr. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARM/NAVY DRIVE
ARLINGTON, VA 22202
Dr. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
Dr. K. MAEDA
Dr. S. CURTIS
Dr. M. DUBIN
Dr. N. MAYNARD - CODE 696

COMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
Dr. T. CZUBA

COMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
Mr. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
Dr. A. GLENN JEAN
Dr. G.W. ADAMS
Dr. D.W. ANDERSON
Dr. K. DAVIES
Dr. R.F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
Dr. G. JOINER

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
Dr. J.S. NISBET
Dr. P.R. ROHBAUGH
Dr. L.A. CARPENTER
Dr. M. LEE
Dr. R. DIVANY
Dr. P. BENNET
Dr. F. KLEVANS

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
Dr. D.A. HAMLIN
Dr. E. FRIEMAN