Title: Study of United States Neutron Transmutation Processes

Author(s): David E. Pritchard

Performing Organization Name and Address: MIT
Research Laboratory of Electronics
Cambridge, MA 02139

Controlling Office Name and Address: AFSR/HP
Boiling AFB, DC 20332

Security Class. (of this report): Unclassified

Distribution Statement (of this report): Approved for public release; distribution unlimited

Subject Keywords: Neutron, transmutation, processes

Abstract: Several scaling and matching laws for neutron-transmutation (NTM) collisions have been developed and applied. These laws will provide a model description of collisional processes for use in astrophysical applications.
FINAL REPORT

Study of Excited State Energy Transfer Processes

Air Force Office of Scientific Research
Grant AFOSR 81-0067

covering the period
1 January 1982 - 31 December 1982

Submitted by
David E. Pritchard

11 May 1983

Approved for public release; distribution unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

83 07 26. 131
We have completed and published a comprehensive review\(^{(1)}\) of the theory and application of the several scaling and fitting laws for Rotationally Inelastic (RI) collisions which we developed under AFOSR support. The review will serve as a guide for allowing broader application of this approach by other members in the field.

We have shown\(^{(2)}\) that a classical limit impulsive calculation can allow analytic evaluation of the RI basis rate constant \(k_{\ell=0}\) which predicts the power-law dependence \(k_{\ell=0} = [\ell(\ell+1)]^{-\gamma}\). This provides simple theoretical support for this previously observed empirical observation which has been shown\(^{(1)}\) to give good agreement with experimental and theoretical results in a large variety of RI collision systems.

We have completed measurements and preliminary analysis\(^{(3)}\) of the relative velocity dependence of RI cross-sections in \(\text{Li}_2^*(A^1\Sigma)-\text{Xe}\). These cross-sections show an unusually strong dependence on velocity. Calculations using classical trajectory methods are presently underway to predict the experimental results, and thus gain information on the previously unknown \(\text{Li}_2^*-\text{Xe}\) interaction potential.

