A COLLECTION OF A-OPTIMAL DESIGNS FOR CONTROL-TEST TREATMENT COMPARISONS, I

By

A. S. Hedayat and D. Majumdar

Department of Mathematics, Statistics and Computer Science
University of Illinois, Chicago

March 1983

Research is sponsored by Grant AFOSR 80-0170.
A COLLECTION OF A-OPTIMAL DESIGNS FOR CONTROL-TEST TREATMENT COMPARISONS, I

A.S. Hedayat and D. Majumdar

Department of Mathematics, Statistics, and Computer Science, University of Illinois, P.O. Box 4431, Chicago IL 60680

A-optimal designs for comparing \(v \) test treatments with a control in \(b \) blocks of size \(k \) each are considered. 111 such designs are given when the parameters are in the range: \(24 \leq b, k \leq 30, v \leq 50 \).

A-optimal designs for comparing \(v \) test treatments with a control in \(b \) blocks of size \(k \) each are considered. 111 such designs are given when the parameters are in the range: \(24 \leq b, k \leq 30, v \leq 50 \).
A COLLECTION OF A-OPTIMAL DESIGNS FOR CONTROL-TEST TREATMENT COMPARISONS, I

By
A. S. Hedayat and D. Majumdar

Department of Mathematics, Statistics and Computer Science
University of Illinois, Chicago

ABSTRACT

A-optimal designs for comparing \(v \) test treatments with a control in \(b \) blocks of size \(k \) each are considered. 111 such designs are given when the parameters are in the range: \(2 \leq k \leq 8, k \leq 30, v \leq b \leq 50 \).

KEY WORDS: Control-test treatment comparisons; A-optimal designs; BTIB designs; Augmented BIB designs.
1. INTRODUCTION

The problem of comparing several treatments with a control has wide applications. Whenever one examines the possibility of replacing an existing system by one of several recently developed systems, the central question is whether the gain is commensurate with the enormous expenditures that are generally associated with such a change. For example, we may want to consider replacing some equipment, a computer or some drugs. In all such cases the principal concern is whether the existing system (control) results in significantly inferior performance vis-à-vis some of the new ones. A change involving large financial expenditures may be justified only when the answer is truly in the affirmative. There are plenty of such examples in industrial, agricultural and biological investigations.

The theory of optimal designs, as developed by Kiefer and other researchers, has traditionally concentrated on developing good designs for drawing inferences on a set of mutually orthogonal treatment contrasts. Nothing much is known, however, for the case when the contrasts are not mutually orthogonal as in the case of comparing the control with other treatments. Till recently, there was little literature for this important problem of comparing treatments with a control. Some of the recent developments relevant to our study are Bechhofer and Tamhane (1981), Constantine (1983), Majumdar and Notz (1983) and Ture (1982). Other notable references include Bechhofer (1969), Bechhofer and Nocturne (1972), Bechhofer and Tamhane (1983),

There is a practical need for a catalog of efficient designs for comparing two or more test treatments with a control under various models and settings. When there is no nuisance parameter in the model there is one general easy solution. This is indicated in Section 2. Cases in which there are one or more nuisance parameters in the model are very difficult to deal with. To avoid complications in design and its analysis later we should run, if possible, the experiment under a designed condition in which the number of nuisance parameters have been reduced to a minimum. Thus as a first step in this direction we need efficient designs when there is precisely one nuisance parameter in the model for each response. This falls in the category of block designs. In response to this later need this paper provides 111 efficient (formally defined as A-optimal designs in Section 2) block designs for cases in which the block size \(k \), the number of test treatments \(v \) and the number of blocks \(b \) are in the following ranges:

\[
2 \leq k \leq 8 \\
2 \leq v \leq 10 \quad \text{and} \quad v = 12, 13, 14, 15, 16, 21, 25 \\
v \leq b \leq 50
\]

After formally introducing the concept of A-optimal design for comparing a control with \(v \) test treatments in Section 2, we shall then explain the detailed description of our methods of construction. In Section 3, we shall give a table of our 111 A-optimal designs.
Sufficient description is provided for the construction of each design. In Section 4, we shall summarize our findings and point out some interesting observations.

2. A-OPTIMAL DESIGNS FOR COMPARING TEST TREATMENTS WITH A CONTROL

The objective of an experiment is to compare \(v \) treatments called test treatments with a special treatment called the control. Consider first the situation where all the experimental units are homogenous as far as the response to the treatments is concerned.

If \(y_{ij} \) denotes the \(j \)th observation related to treatment \(i \), then we assume the model

\[
y_{ij} = \mu + \tau_i + e_{ij} \quad (2.1)
\]

\(j = 1, \ldots, n_i; \ i = 0, 1, \ldots, v \), \(0 \) denoting the control. In (2.1) \(\mu \) denotes the general mean, \(\tau_i \) the effect of treatment \(i \) and \(e_{ij} \) the random error which is assumed to have

\[
E(e_{ij}) = 0, \ V(e_{ij}) = \sigma^2, \ \text{Cov}(e_{ij}, e_{i',j'}) = 0. \quad (2.2)
\]

If we are given \(n \) experimental units, then the problem is to determine an optimal allocation of the \(v+1 \) treatments to these units. Since we are primarily interested in comparing treatments with a control, we should look at the contrasts

\[
\tau_0 - \tau_1, \ldots, \tau_0 - \tau_v.
\]

If the best linear unbiased estimator of \(\tau_0 - \tau_i \) is denoted by \(\hat{\tau}_0 - \hat{\tau}_i \), then

\[
V(\hat{\tau}_0 - \hat{\tau}_i) = \sigma^2 \left(\frac{1}{n_0} + \frac{1}{n_i} \right)
\]
To determine the optimal allocation, one sensible criterion is to minimize $\Sigma_{i=1}^{v} \mathbf{v}(\hat{\tau}_{0} - \hat{\tau}_{i})$. Thus we determine n_0, n_1, \ldots, n_v which minimizes

$$\Sigma_{i=1}^{v} \mathbf{v}(1/n_0 + 1/n_i)$$

subject to the restriction

$$n_0 + \Sigma_{i=1}^{v} n_i = n.$$

In other words, we minimize

$$v(n - \Sigma_{i=1}^{v} n_i)^{-1} + \Sigma_{i=1}^{v} n_i^{-1}$$

over positive integers n_1, \ldots, n_v satisfying

$$v \leq n_1 + \ldots + n_v < n. \quad (2.4)$$

If the optimal solution to (2.3) and (2.4) is denoted by n_i^*, then the optimal n_0 is

$$n_0^* = n - \Sigma_{i=1}^{v} n_i^*.$$

In case $n = r \sqrt{v} (\sqrt{v} + 1)$, where r is an integer, one can show, using some calculus that the optimal allocation is given by

$$n_1^* = n_2^* = \ldots = n_v^* = r, \quad n_0^* = r \sqrt{v}. \quad (2.5)$$

The allocation (2.5) can also be shown to minimize $\max_{1 \leq i \leq v} v(\hat{\tau}_{0} - \hat{\tau}_{i})$, the maximum variance of the estimators of the contrasts $\tau_{0-\tau_{1}}, \ldots, \tau_{0-\tau_{v}}$.

Now suppose that all the experimental units are not homogenous to start with, but can be grouped into b sets (called blocks) of k units each. We suppose

$$k < v + 1 \quad (2.6)$$

which means that we are in the incomplete block design situation since including the control, there are $v+1$ treatments. Here the model is
\[Y_{ijf} = \mu + \tau_i + \beta_j + e_{ijf} \] (2.7)

\[i = 0,1,\ldots,v; \quad j = 1,\ldots,b; \quad f = 1,\ldots,n_{ij}; \quad n_{ij} = 0,1,2,\ldots. \]

There is no observation \(Y_{ijf} \) if \(n_{ij}=0 \). \(\beta_j \) is the block effect of the \(j \)th block, and all the other symbols have meanings similar to those in equation (2.1). Let us denote

\[\psi = \left(\tau_0-\tau_1, \ldots, \tau_0-\tau_v \right)' \]

the vector of control - test treatments contrasts. Our main objective is to allocate the treatments 0,1,\ldots,v to the blocks in a way that allows the best possible inference on \(\psi \). In other words, if \(\hat{\psi} \) is the best linear unbiased estimator, then we want to 'minimize' the variance-covariance matrix \(V(\hat{\psi}) \), in some sense. Among the three most standard methods of minimizing \(V(\hat{\psi}) \), viz., E-optimality which minimizes the maximum eigenvalue of \(V(\hat{\psi}) \); D-optimality, which minimizes the determinant of \(V(\hat{\psi}) \); and A-optimality which minimizes the trace of \(V(\hat{\psi}) \), A-optimality is the only statistically meaningful method in this situation. In this paper we shall concentrate on designs which are A-optimal, i.e., which minimize trace \(V(\hat{\psi}) \).

Though some design specialists have talked of block designs for control - test treatment comparisons, a systematic study have probably only begun since the paper by Bechhofer and Tamhane (1981). The reader is also referred to their paper for a survey of the literature. Bechhofer and Tamhane (1981) defined a class of designs, known as Balanced Test treatment Incomplete Block (BTIB) designs, and discussed some optimal properties of these designs for setting simultaneous confidence bounds for the elements of \(\psi \). A BTIB design is an incomplete
block design in which each test treatment appears in the same block which the control the same number of times ($=\lambda_0$) and any pair of test treatments appear together in the same block the same number of times ($=\lambda_1$). Using the notation n_{ij} introduced along with (2.7) we may also define a BTIB design by the following relations.

$$\sum_{j=1}^{b} n_{0j}n_{ij} = \sum_{j=1}^{b} n_{0j}n_{1j} = \lambda_0 \text{(say), for } i = 1, \ldots, v$$

$$\sum_{j=1}^{b} n_{ij}n_{i'j} = \sum_{j=1}^{b} n_{ij}n_{2j} = \lambda_1 \text{(say), for } i \neq i' = 1, \ldots, v$$

Note that the usual BIB design is a BTIB design with $n_{ij}=0,1$ and $\lambda_0=\lambda_1$.

The problem of determining optimal designs was considered by Majumdar and Notz (1983). It was shown that if a BTIB design with the following properties exist, then is is A-optimal.

(i) $n_{ij}=0$ or 1, $i=1, \ldots, v$, $j=1, \ldots, b$

$$\sum_{j=1}^{b} n_{ij} = \sum_{j=1}^{b} n_{ij} = \lambda_0 \text{ (say), for } i = 1, \ldots, v$$

(ii) $n_{01} = \ldots = n_{0M} = L + 1$, $n_{OM+1} = \ldots = n_{0b} = L$

where $a=L$ and $e=\lambda_1$ minimizes

$$g(a, e) = (v-1)^2 \left[bvk(k-1)-(ba+e)(kv-v+k)+(ba^2+2ae+e) \right]^{-1}$$

$$+ [k(ba+e)-(ba^2+2ae+e)]^{-1}$$

among integers $a = 0, \ldots, [k/2]$, $e = 0, \ldots, b-1$, $[k/2]$ being the largest integer not greater than $k/2$. Note that for each v, b and k, there is obviously an A-optimal design, but this result covers only those cases for which a BTIB design with properties (i) and (ii) exist. In addition, it was also show that A-optimal design minimizes
A BTIB design with properties (i) and (ii) can essentially be of only two types:

1) **Rectangular type.**

```
1..............................b

<table>
<thead>
<tr>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>L+1</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>k</td>
</tr>
</tbody>
</table>
```

This arises when \(M = 0 \). Here each block has \(L \) controls. If we consider columns as blocks, then the designs looks as above, where \(d_0 \) is a binary design in \(b \) blocks of size \((k-L) \) each, in test treatments \(1, \ldots, v \). From (i) and (ii) it follows that \(d_0 \) is a BIB design. Here 'rectangular' refers to \(d_0 \). A design of this type will be referred to as a R type, for brevity.

2) **Step type.**

```
1.........................M M+1 .......................b

<table>
<thead>
<tr>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>L+1</td>
</tr>
<tr>
<td>L+2</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>k</td>
</tr>
</tbody>
</table>
```

This arises when \(M > 0 \). \(d_1 \) is a design in \(b \) blocks in the test
treatments 1, 2, ..., v. M blocks in d1 have \((k-L-1)\) units each while b-
M blocks have \(k-L\) units each. 'Step' refers obviously to \(d_1\). One may
further decompose \(d_1 = d_{11} \cup d_{12}\) or pictorially,

\[
d_1 = d_{11} \cup d_{12}
\]

d11 and d12 each being binary and proper. Using (i) and (ii), it is
easily seen that the test treatments in d11 are equireplicated and so
are in d12. Moreover, if \(B_i\) denotes the set of blocks in d11
\((i=1,2)\), then \(\lambda_1\) of (2.7) can be expressed as

\[
\lambda_1 = \sum_{j \in B_1} n_{i1}n_{i2} + \sum_{j \in B_2} n_{i1}n_{i2}.
\]

(2.9)

the same for each \(i\) and \(i'\) with \(i', i = 1, ..., v\). Also, \(\lambda_0\) of (2.7) is
a given by

\[
\lambda_0 = (L+1) \sum_{j \in B_1} n_{i1}j + L \sum_{j \in B_2} n_{i1}j
\]

(2.10)
an expression independent of \(i = 1, ..., v\). A design of the type will be
referred to us as S type for brevity.

Let us define \(r = \sum_{j \in d_1} n_{1j}\) and \(\delta = \sum_{j \in d_{11}} n_{1j}\) in a S type
design. It is easy to see that for the existence of a BTIB design
satisfying (i) and (ii), a necessary condition is that there exists
nonnegative integers \(r, \delta\) and \(\lambda_2\) for which the following conditions
hold:
When we are looking at an R type design, M = 0 and hence \(\delta \) is always 0.

In search of an A-optimal design with parameters \(v, b \) and \(k \), we first obtain \(L \) and \(M \) by minimizing \(g(a,e) \) in equation (2.8). The next step is to verify the necessary conditions (2.11). If they are not satisfied then there is no BTIB design according to our specifications and the method fails to produce an A-optimal design. On the other hand, if the necessary conditions are satisfied then there is hope that a BTIB design exists, and this will be A-optimal for the set \(\{v,b,k\} \) we started with. There is no known method which settles the question of the existence and eventual construction (if it exists) of a BTIB design for a general set of parameters. So usually one studies each case individually. However, sometimes the parameters \(\{v,b,k,L,M\} \) allow a quick solution. For example, if \(M=0 \), then we are looking for an R type design for which \(d_x \) is a BIB design. In this case, an appeal to some known result often settles the question. Usually, the BIB design may be obtained from tables listed in Fisher and Yates (1963), Rao (1961), Hall (1967) and others. It is interesting to note that the \(d_x \) part of a S design is a design of index \(\lambda_2 \) as defined by Bose and Shrikhande (1959), with two different block sizes \(k-L \) and \(k-L-1 \). In general, one can think of several ways of constructing an S design, but since they depend heavily on the parameters \(v, b, k, L, M \), we shall discuss the step designs we come across individually in the next section.
Let us now give two examples of A-optimal designs, one each of R and S types:

Example 1 When \(b=14, v=7, k=4; L=1, M=0 \). Denoting test treatments by \(a, b, c, d, e, f, g \) and the control by \(-\), the following R type design is A-optimal:

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & a \\
 b & c & d & e & f & g & a & b \\
 c & d & e & f & g & a & b & c \\
 d & e & f & g & a & b & c & d \\
 e & f & g & a & b & c & d & e \\
 f & g & a & b & c & d & e & f \\
 g & a & b & c & d & e & f & g \\
\end{array}
\]

Example 2 When \(b=18, v=6, k=5; L=1, M=6 \). Denoting test treatments by \(a, b, c, d, e, f \) and the control by \(-\), the following S type design is optimal:

\[
\begin{array}{cccccccccccccccc}
 a & a & a & a & a & a & a & b & b & b & b & b & b & b & b & b \\
 a & a & a & b & c & c & c & b & b & c & c & c & c & c & c & c \\
 b & b & b & b & b & b & b & c & c & c & c & c & c & c & c & c \\
 c & c & c & c & c & c & c & c & c & c & c & c & c & c & c & c \\
 d & d & d & d & d & d & d & d & d & d & d & d & d & d & d & d \\
 e & e & e & e & e & e & e & e & e & e & e & e & e & e & e & e \\
 f & f & f & f & f & f & f & f & f & f & f & f & f & f & f & f \\
\end{array}
\]

It may be noticed in the tables in the next section that a majority of the A-optimal designs is R type with exactly one control in each block. Constantine (1983) showed that in the class of block design in \(b \) blocks of size \(k \) each and \(v \) test treatments, containing exactly one control in each block, the R type designs, which are BIB designs augmented by a control in each block, is A-optimal. Even though many of these designs are A-optimal in the wider class of all block designs with
parameters \(v, b, k \), there are instances where such designs fail to be A-optimal. Consider for example, \(v=9, b=48, \) and \(k=7 \). The design number 104 given in the next section is an A-optimal design. However, a BIB design with \(v=9, b=48, \) and \(k=6 \) augmented by a control in each block is not A-optimal since it was not given by our method which produces all A-optimal binary BTIB designs whenever it produces one. Another counterexample can be found in Constantine (1983).

Notz and Tamhane (1983) and Ture (1982) have considered the problem of constructing BTIB designs which are binary in test treatments. Ture (1982) also looks at designs which are 'approximately' A-optimal.

Before concluding this section we would like to remark that the Fisher's inequality, viz.,

\[
b \geq v+1,
\]

which is valid for a BIB design based on \(b \) blocks and \(v+1 \) treatments is not necessarily true for an A-optimal design in this setting. One can, however, show quite easily, using the standard technique of computing the rank of the incidence matrix, that

\[
b \geq v.
\]

This inequality cannot be improved, in general, since a symmetric BIB design augmented by a control in each block can be A-optimal, as when \(v=b=k=3 \), in design number 32 in the next section. However, for a \(S \) type design one can show that \(b \geq v+1 \).
3. A CATALOG OF A-OPTIMAL DESIGNS
FOR COMPARING TEST TREATMENTS WITH A CONTROL

Using the technique pointed out in Section 2, we searched for the parameters of BTIB designs which made them optimal within the following practical constraints,

\[2 \leq k \leq 8 \]
\[k \leq v \leq 30 \]
\[v \leq b \leq 50. \]

There are precisely 111 sets of parameters satisfying the sufficiency condition for A-optimality and the necessity conditions for BTIB designs. We were fortunate to be able to construct all the corresponding BTIB designs.

For each triplet \((v,b,k)\) the values of \(L\) and \(M\) (see the pictorial representation of the design given in Section 2) were obtained by minimizing the function \(g(a,e)\), given in (2.8), using a computer. The computer then verified the necessary conditions in (2.11).

Table 3.1 summarizes 111 cases for which these necessary conditions were met, whenever \(M=0\) the corresponding design will be \(R\) type and it will be \(S\) type otherwise. This is indicated in the table. In the last column of this table we have indicated how to obtain the \(d_0\) or \(d_s\) portion of the design, as the case may be. For those cases in which \(d_s\) could not be described completely in the limited space we give the entire layout in the Section 3.3. For completeness, we also give the layouts of \(d_0\) which happen to be BIB designs in Section 3.2.
Throughout this section the symbol v^2k denote all $\binom{v}{k}$ blocks of size k in v test treatments. This is clearly a BIB design - which will be referred to as a complete design.

3.1 A Table of A-optimal Designs.
A Catalogue of A-optimal Designs

<table>
<thead>
<tr>
<th>Design number</th>
<th>b</th>
<th>k</th>
<th>L</th>
<th>M</th>
<th>Type</th>
<th>ds or d1 part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(The layout of the test treatments in this design)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>R 1 copy of 2Σ1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>S d11 is 1 copy of 2Σ1, d12 is 1 copy of 2Σ2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>S d11 is 2 copies of 2Σ1, d12 is 1 copy of 2Σ2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>S d11 is 3 copies of 2Σ1, d12 is 1 copy of 2Σ2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>S d11 is 4 copies of 2Σ1, d12 is 1 copy of 2Σ2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>S d11 is 4 copies of 2Σ1, d12 is 2 copies of 2Σ2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>S d11 is 5 copies of 2Σ1, d12 is 2 copies of 2Σ2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>S d11 is 6 copies of 2Σ1, d12 is 2 copies of 2Σ2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>S d11 is 7 copies of 2Σ1, d12 is 2 copies of 2Σ2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>S d11 is 7 copies of 2Σ1, d12 is 3 copies of 2Σ2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>S d11 is 8 copies of 2Σ1, d12 is 3 copies of 2Σ2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>21</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>S d11 is 9 copies of 2Σ1, d12 is 3 copies of 2Σ2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td>S d11 is 10 copies of 2Σ1, d12 is 4 copies of 2Σ2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>26</td>
<td>2</td>
<td>0</td>
<td>22</td>
<td>S d11 is 11 copies of 2Σ1, d12 is 4 copies of 2Σ2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td>0</td>
<td>24</td>
<td>S d11 is 12 copies of 2Σ1, d12 is 4 copies of 2Σ2</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>31</td>
<td>2</td>
<td>0</td>
<td>26</td>
<td>S d11 is 13 copies of 2Σ1, d12 is 4 copies of 2Σ2</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>0</td>
<td>28</td>
<td>S d11 is 14 copies of 2Σ1, d12 is 5 copies of 2Σ2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>30</td>
<td>S d11 is 15 copies of 2Σ1, d12 is 5 copies of 2Σ2</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>0</td>
<td>30</td>
<td>S d11 is 15 copies of 2Σ1, d12 is 6 copies of 2Σ2</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>32</td>
<td>S d11 is 16 copies of 2Σ1, d12 is 6 copies of 2Σ2</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>40</td>
<td>2</td>
<td>0</td>
<td>34</td>
<td>S d11 is 17 copies of 2Σ1, d12 is 6 copies of 2Σ2</td>
</tr>
<tr>
<td>Number</td>
<td>Digit 1</td>
<td>Digit 2</td>
<td>Digit 3</td>
<td>String</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>0</td>
<td>36, S</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>43</td>
<td>2</td>
<td>0</td>
<td>36, S</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>45</td>
<td>2</td>
<td>0</td>
<td>38, S</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>47</td>
<td>2</td>
<td>0</td>
<td>40, S</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>50</td>
<td>2</td>
<td>0</td>
<td>42, S</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>9, S</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>18, S</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>36</td>
<td>2</td>
<td>0</td>
<td>27, S</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>48</td>
<td>2</td>
<td>0</td>
<td>36, S</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>12, S</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>21</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>24</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>27</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>33</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>36</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>39</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>42</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3</td>
<td>45</td>
<td>3</td>
<td>1</td>
<td>0, R</td>
<td></td>
</tr>
</tbody>
</table>

- \(d_{11} \) is 18 copies of \(2 \Sigma 1 \), \(d_{11} \) is 6 copies of \(2 \Sigma 2 \)
- \(d_{11} \) is 18 copies of \(2 \Sigma 1 \), \(d_{11} \) is 7 copies of \(2 \Sigma 2 \)
- \(d_{11} \) is 19 copies of \(2 \Sigma 1 \), \(d_{11} \) is 7 copies of \(2 \Sigma 2 \)
- \(d_{11} \) is 20 copies of \(2 \Sigma 1 \), \(d_{11} \) is 7 copies of \(2 \Sigma 2 \)
- \(d_{11} \) is 21 copies of \(2 \Sigma 1 \), \(d_{11} \) is 8 copies of \(2 \Sigma 2 \)
- \(d_{11} \) is 3 copies of \(3 \Sigma 1 \), \(d_{11} \) is 1 copy of \(3 \Sigma 2 \)
- \(d_{11} \) is 6 copies of \(3 \Sigma 1 \), \(d_{11} \) is 2 copies of \(3 \Sigma 2 \)
- \(d_{11} \) is 9 copies of \(3 \Sigma 1 \), \(d_{11} \) is 3 copies of \(3 \Sigma 2 \)
- \(d_{11} \) is 12 copies of \(3 \Sigma 1 \), \(d_{11} \) is 4 copies of \(3 \Sigma 2 \)
- \(d_{11} \) is 3 copies of \(4 \Sigma 1 \), \(d_{11} \) is 1 copy of \(4 \Sigma 2 \)

R indicates the number of copies of \(3 \Sigma 2 \).
<table>
<thead>
<tr>
<th>Page</th>
<th>Molecule</th>
<th>Copies</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3Σ2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4Σ2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4Σ2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4Σ2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4Σ2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4Σ2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4Σ2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4Σ2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4Σ2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5Σ2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5Σ2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5Σ2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5Σ2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5Σ2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5Σ2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5Σ2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5Σ2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6Σ2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6Σ2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7Σ3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7Σ3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7Σ3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8Σ3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8Σ3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8Σ3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8Σ3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9Σ3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>9Σ3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9Σ3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9Σ3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>10Σ3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>10Σ3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>10Σ3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>10Σ3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>10Σ3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10Σ3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S1 in Sec. 3.3
S2 in Sec. 3.3
S3 in Sec. 3.3

R1 in Sec. 3.2
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>6</td>
<td>30</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>6</td>
<td>40</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>74</td>
<td>6</td>
<td>50</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>77</td>
<td>7</td>
<td>21</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>78</td>
<td>7</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>79</td>
<td>7</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>7</td>
<td>42</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>7</td>
<td>49</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>83</td>
<td>9</td>
<td>24</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>9</td>
<td>36</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>9</td>
<td>48</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>87</td>
<td>6</td>
<td>36</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>88</td>
<td>7</td>
<td>35</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>89</td>
<td>9</td>
<td>18</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
<td>36</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>91</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>10</td>
<td>30</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>10</td>
<td>45</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>12</td>
<td>33</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>13</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>13</td>
<td>26</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>3 copies of the de part of Design 95 in this table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>di1</td>
<td>is 2 copies of R4, di2 is complement of R3 in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>in Sec. 3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>complement of 1 copy of 8Σ2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>complement of R3 in Sec. 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>2 copies of the de part of Design 108 in this table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>3 copies of the de part of Design 108 in this table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4 copies of the de part of Design 108 in this table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 R Type Design

An R type design is a BIB design in the \(v \) test treatments in \(b \) blocks of size \(k-L \) each (called \(ds \)) augmented by \(L \) controls in each block.

In this section we give an exact layout of all the BIB designs \(ds \) used in Table 3.1. The test treatments are denoted by alphabets. A BIB in \(v \) test treatments in \(b \) blocks of size of \(k \), each test treatment replicated \(r \) times and with each pair of treatments appearing in \(\lambda \) blocks will be denoted by BIB\((v,b,r,k,\lambda) \). In Table 3.1, These layouts are referred as R1-R11. The layouts of \(ds \)’s are as follows:

R1: BIB\((6, 10, 5, 3, 2) \)

\[
\begin{array}{cccccc}
\text{a} & \text{a} & \text{a} & \text{a} & \text{b} & \text{b} \\
\text{b} & \text{b} & \text{c} & \text{d} & \text{d} & \text{c} \\
\text{e} & \text{f} & \text{e} & \text{f} & \text{d} & \text{e} \\
\text{f} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\end{array}
\]

\[ds: \text{b b c d d c d e e e f d e f f f}\]

R2: BIB\((7, 7, 3, 3, 1) \)

\[
\begin{array}{cccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} \\
\text{b} & \text{c} & \text{d} & \text{e} & \text{f} & \text{g} \\
\text{d} & \text{e} & \text{f} & \text{g} & \text{a} & \text{b} \\
\text{e} & \text{f} & \text{g} & \text{a} & \text{b} & \text{c} \\
\end{array}
\]

\[ds: \text{b c d e f g a}
\text{d e f g a b c}\]
R3: BIB(9, 12, 4, 3, 1)

<table>
<thead>
<tr>
<th></th>
<th>abc</th>
<th>acd</th>
<th>abc</th>
<th>abc</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds:</td>
<td>def</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td></td>
<td>ghi</td>
<td>ghi</td>
<td>ghi</td>
<td>ghi</td>
</tr>
</tbody>
</table>

R4: BIB(9, 18, 8, 4, 3)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

R5: BIB(10, 15, 6, 4, 2)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>e</th>
<th>e</th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>e</td>
<td>f</td>
<td>d</td>
<td>f</td>
<td>d</td>
<td>f</td>
<td>d</td>
<td>f</td>
<td>d</td>
<td>h</td>
<td>g</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
<td>g</td>
<td>d</td>
<td>f</td>
<td>h</td>
<td>e</td>
<td>g</td>
<td>i</td>
<td>d</td>
<td>g</td>
<td>i</td>
<td>h</td>
<td>g</td>
<td>f</td>
<td>e</td>
<td>i</td>
</tr>
</tbody>
</table>
R6 : BIB(12, 33, 11, 4, 3)

\[
\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i & j \\
 b & c & d & e & f & g & h & i & j & k
\end{array}
\]

de:
\[
\begin{array}{cccccccccc}
 d & e & f & g & h & i & j & k & a & b
\end{array}
\]

R7 : BIB(13, 13, 4, 4, 1)

\[
\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i & j
\end{array}
\]

de:
\[
\begin{array}{cccccccccc}
 d & e & f & g & h & i & j & k & l & m
\end{array}
\]

R8 : BIB(16, 20, 5, 4, 1)

\[
\begin{array}{cccccccccccccc}
 d & h & f & j & h & i & j & k & l & m & n & o & p & e & g & b & c & a & b & c
\end{array}
\]

de:
\[
\begin{array}{cccccccccccccc}
 h & i & k & l & m & n & o & p & e & e & g & a & a & c & c & d & d & f & f
\end{array}
\]
R9 : BIB(16, 48, 15, 5, 4)

\[
\begin{align*}
&\text{a b c d e f g h i j k l m n o p} \\
&\text{b c d e f g h i j k l m n o p a} \\
&\text{d e: c d e f g h i j k l m n o p a b} \\
&\text{e f g h i j k l m n o p a b c d} \\
&\text{h i j k l m n o p a b c d e f g} \\
&\text{a b c d e f g h i j k l m n o p} \\
&\text{b c d e f g h i j k l m n o p a} \\
&\text{f g h i j k l m n o p a b c d e} \\
&\text{i j k l m n o p a b c d e f g h} \\
&\text{k l m n o p a b c d e f g h i j} \\
&\text{a b c d e f g h i j k l m n o p} \\
&\text{b c d e f g h i j k l m n o p a} \\
&\text{d e f g h i j k l m n o p a b c} \\
&\text{h i j k l m n o p a b c d e f g} \\
&\text{l m n o p a b c d e f g h i j k}
\end{align*}
\]

R10 : BIB(21, 21, 5, 5, 1)

\[
\begin{align*}
&\text{d e f g h i j k l m n o p q r s t u a b c} \\
&\text{g h i j k l m n o p q r s t u a b c d e f} \\
&\text{d e: h i j k l m n o p q r s t u a b c d e f g} \\
&\text{m n o p q r s t u a b c d e f g h i j k l} \\
&\text{o p q r s t u a b c d e f g h i j k l m n}
\end{align*}
\]
R11 : BIB(25, 30, 6, 5, 1)

```
abcdefglijklmnorp
efgijklmnopqrst
```

d: klmopqhsbuvwfy

```
xyndhdaceeggi
```

```
yndhabcbefgfi
```

```
jqrsutvwxynhadch
```

```
uvwxyadbcdedefgbij
```

```
ijklhaoqrsutvw
```

```
jkmnopqrstuvw
```

```
lmnopqrstuvwxy
```

3.3 S Type Designs

An S type design consists of a part d_1 which is made up entirely of the v test treatments augmented by L or $L+1$ controls in each block. d_1 is the union of d_{11}, an arrangement of test treatments in blocks of size $k-L-1$ and d_{12} in blocks of size $k-L$. When $k=2$, d_{11} and d_{12} can only be multiples of the complete design. But when $k > 2$, construction of d_{11} and d_{12} becomes more involved. The various d_1's in this section were constructed by different techniques. Design no. 59 in Table 3.1 (see $S3$ later in this section) was obtained from Majumdar and Notz (1983). In design no. 88 in Table 3.1, d_{11} is BIB(7,7,3,3,1) and d_{12} is BIB(7,28,12,3,4). In design no. 104 in Table 3.1, d_{11} is BIB(9,36,20,5,10) and d_{12} is BIB(9,12,8,6,5). In
design no. 106 (see S7 later in this section) d_{12} is the dual of a BIB(10,15,6,4,2). In design no. 105 (see S6 in this section) d_1 was constructed by removing the entire 14 replications of one arbitrarily chosen treatment from BIB(15,35,14,6,5). This gives the required layout in 35 blocks, 14 with size 5 and the rest with size 6, in 14 test treatments.

The layouts for d_1 for the remaining S type designs ($S1, S2, S4, S5$ and d_{12} of S7) was constructed without relying on any design available in the literature. Let us use the symbol $\lambda_{ij}(d)$ to denote the number of blocks containing the pair of test treatments i and j in a design d. In d_1, $\lambda_{ij}(d_1)$ is a constant, independent of i and j. Thus, if we decide to construct d_{12} first (since this is usually the larger part), then this can be done quite quickly using several distinct $\lambda_{ij}(d_{12})$'s. However, this means that there should be many distinct $\lambda_{ij}(d_{12})$'s too; and these are now fixed since $\lambda_{ij}(d_{12}) + \lambda_{ij}(d_1) = \lambda_{ij}(d_1)$, a constant. Constructing a d_{12} gets more and more difficult as the number of distinct $\lambda_{ij}(d_{12})$'s gets large. Thus it is usually helpful to start with a minimum number of distinct $\lambda_{ij}(d_{12})$'s - usually 2 - so that there are also a minimum number of distinct $\lambda_{ij}(d_{12})$'s. The same principle is helpful if we decide to construct d_{12} first.

Denoting the test treatments by alphabets, we give the layouts for d_1's for $k > 2$ as follows. They are referred as $S1-S7$ in Table 3.1.
S1:

\[a \ a \ b \ c\]

\[d_{11}: \ b \ d \ d \ e\]

\[c \ e \ f \ f\]

\[d_{11}\] is 2 copies of $6\Sigma 2$ design with the following three additional blocks

\[a \ b \ c\]

\[f \ e \ d\]

S2:

\[a \ a \ a \ b \ b \ c \ c \ d\]

\[d_{11}: \ b \ d \ f \ d \ e \ e \ g \ f\]

\[c \ e \ g \ g \ h \ f \ h \ h\]

\[d_{11}\] is a $8\Sigma 2$ design with the following additional blocks

\[a \ b \ c \ e\]

\[h \ f \ d \ g\]
S3:

a b c d e
d1: a a a a b b b b b b c c c d d e f f f g g b f c d e h
c d e h d e g h e g i f i f h i h i i g f h g i

S4:

a a a a a a a a a a a a b b b b b a a a a a a b c c b b b b b b c d c d c c c c c c d
d1: b b b d d e c c d d e e d d d d e e c e f e f f f d f e f e f f f f f f f f f

S5:

a a a a a a a a b b b b b b b b c d
d1: b b c c c c c c d e d e d e d e d d d f f e f f f e f e f f f f f f f f f f f f f f f
S6:

a b c d e f g a
b c d e f g h i j k l m n c d e f g a b
h i j k l m n a b c d e f g e f g a b c d
d1: i j k l m n h g a b c d e f h i j k l m n
j k l m n h i f g a b c d e i j k l m n h
l m n h i j k d e f g a b c k l m n h i j
c d e f g a b a b c d e f g
def g a b c e f g a b c d
g a b c d e f g a b c d e
h i j k l m n h i j k l m n
i j k l m n h i j k l m n h
k l m n h i j k l m n h i j

S7:

a b c a b c a a b c
a a b d d e e f g e f g b d d d
c c c h i f h h h i j k c f e e
g f e m j g j i i l l l d g g f
k j i n k h k k j n m m h i j k
o n m o l l m n o o o o n l m n o
4. CONCLUDING REMARKS

In this paper we have provided 111 A-optimal designs for comparing a control with 2 to 25 test treatments in blocks of sizes from 2 to 8. These designs were obtained by using a single method. Not surprisingly, a single method is incapable of producing optimal designs for all parameter combinations. Clearly there is a great need to develop methods to cover the yawning gaps in the catalog.

The structure of A-optimal designs present a few unexpected outcomes, rather contrary to conventional intuition. For example, if $v=k=2$ and $b=10$, one might imagine that it is impossible to improve on the design consisting of 5 copies of

\[\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & a & b & & & & & \\
 & & & & & & & \\
 & a & a & a & b & b & b & b \\
 & a & a & a & b & b & b & b \\
\end{array}\]

since our interest is only in control-test treatment comparisons. However Table 3.1 (design no. 6) shows that the A-optimal design is

\[\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & a & a & & & & & \\
 & & & & & & & \\
 & a & a & a & b & b & b & b \\
\end{array}\]

Thus it is an interesting problem to completely understand the rationale for the complex structure of these designs. One more notable feature is that the augmented BIB designs are often A-optimal, but not always so, as pointed out in Section 2.

For some values of the parameter v, Table 3.1 contains no design at all. For these we have to look at larger values of k and/or b to obtain an optimal design by our method. For example, when $v=11$, $k=2$, the first
design was obtained when \(b=209 \). For the optimal design \(L=0 \) and \(M=99 \).

5. ACKNOWLEDGMENTS

This research was supported by Grant AFOSR 80-0170 and by a Faculty Summer Fellowship from the University of Illinois at Chicago.
REFERENCES

appear.

FISHER, R. A. and YATES, F. (1963), Statistical Tables for Biological, Agricultural and Medical Research, Oliver and Boyd, London.

