ADVANCED ADAPTIVE ANTENNA TECHNIQUES

R. T. Compton, Jr.

The Ohio State University
ElectroScience Laboratory
Department of Electrical Engineering
Columbus, Ohio 43212

Quarterly Report 714505-2
Contract N00019-82-C-0190
December 1982

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Naval Air Systems Command
Washington, D.C. 20361
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
This report describes progress under Naval Air Systems Command Contract N00019-82-C-0190 during the first quarterly period. Research on the behavior of adaptive arrays with frequency-hopped signals is summarized.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. PROGRESS</td>
<td>1</td>
</tr>
<tr>
<td>III. REPORTS PUBLISHED</td>
<td>2</td>
</tr>
<tr>
<td>IV. PLANS FOR NEXT QUARTER</td>
<td>3</td>
</tr>
<tr>
<td>V. FINANCIAL</td>
<td>3</td>
</tr>
<tr>
<td>VI. REFERENCES</td>
<td>3</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This report describes progress under Naval Air Systems Command Contract N00019-82-C-0190 for the first quarterly period. This contract involves research in two areas: (1) the effectiveness of adaptive arrays with frequency hopped signals, and (2) the performance of adaptive arrays based on the Frost algorithm [1].

During the first quarter of this contract, we have concentrated on the use of adaptive arrays in frequency hopped systems. Our progress is described below.

II. PROGRESS

During the first quarter we have formulated the equations necessary to determine array performance when the array is used with a frequency hopped desired signal. In the initial model, we assume the desired signal is frequency hopped but not otherwise modulated. The array processing dehops the signals behind the elements but before the LMS weighting. The reference signal is assumed correlated with the desired signal after dehopping. Initially we are considering CW interference.

The weight behavior for this type of problem can be obtained analytically, because the covariance matrix is constant on each hop interval. The hopping pattern is assumed to be periodic. By taking advantage of the periodicity, we can calculate the array weights at the
beginning of each hop interval and then determine the complete weight
transients during each interval. From the weights, everything else can
be calculated: desired signal modulation, array patterns and output
signal-to-interference-plus-noise ratio (SINR). The technique used
here is similar to that used with pulsed jamming under an earlier
contract [2].

During this quarter, computer programs have been developed to
calculate array performance based on the above method. For a given set
of signal parameters, these programs calculate the weight behavior over
the hopping period, the desired signal modulation, the array patterns at
specific times and the output SINR versus time. At the end of the first
quarterly period, we are in the process of checking out and debugging
these programs.

III. REPORTS PUBLISHED

During the first quarter, a technical report was published on the
effects of modulated jamming on the LMS array. This report is based on
work done during the previous contract (NONR-1981-C-0093). The report
presents an analytical method for determining the effect of an envelope
modulated jammer on an LMS array. This method is a generalization of
the technique developed earlier for jamming with sinusoidal envelope
modulation[3]. The method allows one to handle jamming with an
arbitrary periodic envelope modulation. The only restriction is that
the jammer bandwidth must be small compared to its carrier frequency.
IV. PLANS FOR NEXT QUARTER

During the next quarter we plan to continue our work on the effects of frequency hopping on the LMS adaptive array. The computer programs mentioned above will be completed and performance curves run.

During the next quarter, we will also publish an additional technical report on modulated jamming (also based on last year's contract). This report will describe a method we have found for analyzing the effects of jamming with phase modulation.

V. FINANCIAL

As of August 31, 1982, a total of $15,716.93 has been expended and an additional $1,124.50 has been committed but not yet paid, leaving $23,158.57 available from the initial funding of $40,000. (This contract is incrementally funded in two $40,000 amounts.)

VI. REFERENCES

