A note on "Geometric Transforms" of digital sets

Azriel Rosenfeld

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742
A NOTE ON "GEOMETRIC TRANSFORMS" OF DIGITAL SETS

Azriel Rosenfeld

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

Abstract

A geometric transform on the digital plane is a function \(f \) that takes pairs \((P,S)\), where \(S \) is a set and \(P \) a point of \(S \), into nonnegative integers, and where \(f(S,P) \) depends only on the positions of the points of \(S \) relative to \(P \). Transforms of this type are useful for segmenting and describing \(S \). Two examples are distance transforms, for which \(f(S,P) \) is the distance from \(P \) to \(S \), and isovist transforms, where \(f(S,P) \) is (e.g.) the area of the part of \(S \) visible from \(P \). This note characterizes geometric transforms that have certain simple set-theoretic properties, e.g., such that \(f(S \cap T, P) = f(S, P) \land f(T, P) \) for all \(S, T, P \). It is shown that a geometric transform has this intersection property if and only if it is defined in a special way in terms of a "neighborhood base"; the class of such "neighborhood transforms" is a generalization of the class of distance transforms.

The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of Janet Salzman in preparing this paper.
1. Introduction

Given a subset S of a digital picture, there are various useful ways of defining functions on S that associate with each point P of S some geometric property of S "relative to $P". An early example [1] is the distance transform, which associates with each $P \in S$ the distance (with respect to some given metric) from P to \bar{S} (the complement of S). This transform is a useful tool for describing or segmenting S; for example, the well-known "medial axis transformation" of S is just the set of local maxima of its distance transform. A more recent example [2] is the class of "isovist transforms", which associate with each P some property of the part of S "visible" from P, e.g., its area; such transforms can be used, e.g., to find minimal sets of points from which all of S can be seen. (A point Q of S is said to be visible from P if the straight line segment PQ lies entirely in S.)

In this note we give a general definition of such "geometric transforms" (for brevity: G-transforms). We also characterize G-transforms that have certain simple properties with respect to set-theoretic operations. In particular, we consider G-transforms having the "intersection property": for any two sets S and T, the transform values for $S \cap T$ are (pointwise) the infs of the values for S and for T. We show that a G-transform has this property iff it can be defined in a special way in terms of a "neighborhood basis"; the class of such transforms includes the class of distance transforms. Interestingly, the analogously defined "union property" implies that the transform must be trivial.
2. **G-transforms**

Let \(\Sigma \) be a bounded set of lattice points in the plane (e.g., a digital picture), let \(2^\Sigma \) be the set of subsets of \(\Sigma \), and let \(f \) be a function defined on \(2^\Sigma \times \Sigma \). For simplicity, we shall assume that \(f \) is integer-valued; that \(f(S,P) = 0 \) whenever \(P \notin S \); and that \(f(S,P) > 0 \) whenever \(P \in S \). We call \(f \) a **G-transform** if \(f(S,P) \) depends only on the positions of the (other) points of \(S \) relative to \(P \). This is a rather general definition; the following are a few examples of G-transforms:

a) The characteristic function, i.e., \(f(S,P) = 1 \) iff \(P \in S \)
b) The distance transform, i.e., \(f(S,P) = \text{the distance from } P \text{ to } S \)
c) The "area transform": \(f(S,P) = \text{the area of the connected component of } S \text{ that contains } P \)
d) The isovist transform: \(f(S,P) = \text{the area of the part of } S \text{ visible from } P \)

Since a G-transform is defined in terms of positions relative to \(P \), it is evidently shift-invariant -- in other words, shifting \(S \) cannot change the G-transform values of its points.* In particular, we have

Proposition 1. \(f(\{P\},P) \) has the same value for any \(P \).

For simplicity, we assume that this value is 1.

*We assume that when \(S \) shifts, it remains inside \(\Sigma \). Alternatively, we could allow cyclic shifts, and define \(f(S,P) \) in terms of the positions of the points of \(S \) relative to \(P \) "modulo \(\Sigma \)."
We say that f has the **union property** if $f(S \cup T, P) = f(S, P) \lor f(T, P)$ for all S, T, P, and the **intersection property** if $f(S \cap T, P) = f(S, P) \land f(T, P)$ for all S, T, P. Evidently the characteristic function has both the union and the intersection property. In fact, it is the only G-transform that has the union property, as we see from

Proposition 2. A G-transform f has the union property iff it is the characteristic function.

Proof: By Proposition 1, $f(\{P\}, P) = 1$ for all P. It follows from the union property that $f(\{P, Q\}, P) = f(\{P\}, P) \lor f(\{Q\}, P) = 1$ for all $\{P, Q\}$, i.e., for any two-element subset of Σ. By induction, the same is true for any finite subset of Σ.

The G-transforms that have the intersection property are less trivial; we shall characterize them in the next section.
3. **N-transforms**

Let \(n: \{O\}=N_0 \subset N_1 \subset \cdots \) be a nested set of finite subsets of \(\Sigma \) that contain the origin \(0 \). For any point \(P \), let \(N_{pi} \) be the result of shifting \(N_i \) to bring \(0 \) into the position of \(P \); thus \(n_p: \{P\}=N_{p0} \subset N_{p1} \subset \cdots \) is a nested set of sets that contain \(P \). We call \(n_p \) a **neighborhood basis** for \(P \).

Let \(l=n_0 \leq n_1 \leq n_2 \leq \cdots \) be any monotonic nondecreasing sequence of positive integers. For any \(S \subset \Sigma \) and any \(P \in S \), there is a largest \(i \), call it \(i(S,P) \), such that \(N_{pi} \subseteq S \). (Note that \(N_{p0}=\{P\} \subseteq S \), and that \(S \) is finite.) Let the G-transform \(f \) be defined by \(f(S,P)=n_i(S,P) \). We call such a G-transform an **N-transform**.

It is easily verified that a distance transform is a N-transform. In fact, let \(N_i \) be the "disk" of radius \(i \) centered at \(O \), i.e., the set of points whose distances from \(0 \) are \(\leq i \), and let \(n_i=i+1 \); then the distance transform \(f(S,P) \) is just \(n_{pi} \) (\(i \) greater than the radius of the largest disk centered at \(P \) and contained in \(S \)). Note also that the characteristic function is an N-transform, if we simply take \(n_i=1 \) for all \(i \).

Theorem 3. A G-transform \(f \) has the intersection property iff it is an N-transform.

Proof: For any \(S \) and \(T \) we have \(i(S \cap T,P)=i(S,P) \land i(T,P) \), since the \(N_p \)'s are nested. Thus if \(f \) is an N-transform we have \(f(S \cap T,P)=n_i(S,P) \land n_i(T,P)=n_i(S,P) \land n_i(T,P) \) (since the n's are monotonic) = \(f(S,P) \land f(T,P) \), so that \(f \) has the intersection property.
Conversely, let f be a G-transform and have the intersection property. For any k, if $f(S,P)=f(T,P)=k$, we have $f(S \cap T, P)=k$; thus if there are any sets S such that $f(S,P)=k$, there is a smallest such set, call it S_{P^k}. By shift invariance, $f(S,P)>k$ implies $f(S',P')=k$, where S' is S shifted to make P coincide with P'; thus S_{P^k} exists iff S_{P^k} does, and they are translates of one another. Let $l=k_0<k_1<\ldots$ be those k's for which S_{P^k} exists; then $n_p: \{P\}=N_{P_0}^C N_{P_1}^C \ldots$, where $N_{P_i}=S_{P_{k_i}}$, is a neighborhood basis for P. Moreover, for any S, let $i(S,P)$ be the largest i such that $N_{P_i} \subseteq S$, and let $f(S,P)=m$. If we had $m=k_j>k_i$, S would have to contain $S_{P_{k_j}}=N_{P_j}$, contradicting the definition of i. On the other hand, if $m=k_h<k_i$, by the intersection property $k_j=f(N_{P_i}, P)=f(S \cap N_{P_i}, P)=f(S, P) \wedge f(N_{P_i}, P)=k_h$, contradiction. Hence $f(S, P)=k_i$, so that f is an N-transform.

Thus we see that the intersection property characterizes a class of G-transforms that constitute a natural generalization of the distance transforms.
4. **Concluding remarks**

The main result of this note has been a "set-theoretic" characterization of the "distance-like" G-transforms. It would be of interest to develop characterizations of other useful classes of G-transforms.

References

A Note on "Geometric Transforms" of Digital Sets

We define a "geometric transform" on the digital plane as a function f that takes pairs (P, S), where S is a set and P a point of S, into nonnegative integers, and where $f(S, P)$ depends only on the positions of the points of S relative to P. Transforms of this type are useful for segmenting and describing S. Two examples are "distance transforms," for which $f(S, P)$ is the distance from P to S, and "isovist transforms," where $f(S, P)$ is (e.g.) the area of the part of S visible from P. This note characterizes geometric transforms that...
have certain simple set-theoretic properties, e.g., such that $f(S \cap T, P) = f(S, P) \land f(T, P)$ for all S, T, P. It is shown that a geometric transform has this intersection property if and only if it is defined in a special way in terms of a "neighborhood base"; the class of such "neighborhood transforms" is a generalization of the class of distance transforms.