EXISTENCE OF UNBIASED COVARIANCE COMPONENTS ESTIMATORS*

by

Jochen Müller

November 1982

Technical Report No. 82-37

Center for Multivariate Analysis
University of Pittsburgh
Ninth Floor, Schenley Hall
Pittsburgh, PA 15260

*This work is sponsored by the Air Force Office of Scientific Research under Contract F49620-82-K-0001. Reproduction in whole or in part is permitted for any purpose of the United States Government.
SUMMARY

The condition of Pincus (1974) for the estimability of covariance components in normal models is extended to the case of singular covariance matrices.

KEY WORDS

Covariance component estimation, invariance.
1. INTRODUCTION

In 1970 Seely derived a condition for the estimability of covariance components by a quadratic form in a general covariance component model. For normally distributed variables Pincus (1974) investigated the existence of arbitrary unbiased estimators and obtained the same characterization as Seely. In his paper Pincus assumed the parameter space has a nonempty interior consisting of regular covariance matrices. Later (cf. Kleffe (1978)) there was a controversy whether Pincus' result remains valid for singular covariance matrices. As a matter of fact, one can dispense with the regularity but not with the nonempty interior. The latter condition, however, can be fairly weakened. As for invariant estimation one can even replace the assumption of normality by a weaker one. This is analogous to Theorem 2 of H. Bunke and O. Bunke (1974), which concerns estimability of the mean value. We verify our result along the same lines as Pincus (1974) did in his original paper. But now a coordinate free presentation reduces the proof to its essential moments and in this way permits also singular covariance matrices. The crucial point turns out to be the completeness of the (locally) best linear unbiased estimator of the expectation.

2. RESULT

Let y be an n-dimensional random variable with $Ey=X\beta$, for some known $n \times k$ matrix X and unknown k-vector β of parameters. The variance-covariance matrix of y may have the linear structure

$$\text{var } y = \sum_{i=1}^{m} \theta_i v_i = \Sigma, \quad \theta \in \mathbb{R}^m,$$
where V_1 are given symmetric $n \times n$ matrices and Θ is a given subset of R^n. In this model the commonly used estimators for parametric functions $q'\theta$ are quadratic forms $y'Ax$ where A is a symmetric $n \times n$ matrix. This estimator is invariant with respect to the mean X if $AX = 0$. Denoting $\text{trace}(AV)$ as (A,V) for symmetric matrices the expected value of a quadratic form $y'Ax$ reads

$$E(y'Ax) = \beta'X'AXB + (A,V_0).$$

Thus $y'Ax$ is unbiased for $q'\theta$ if

$$X'AX = 0 \quad \text{and} \quad (A,V_0) = q'\theta \quad \text{for } \Theta \Theta.$$

An example of an estimable function that is not quadratically estimable is provided by $X=0$ and $V_0 = I + \sigma^2 I$. Here $y'y-1$ is unbiased for σ^2, but no purely quadratic unbiased estimator exists for this parameter. To avoid such counterexamples we consider estimators of the form $c+y'Ax$. (Note that the class of estimable functions is not enlarged when linear terms $a'y$ are permitted too.) The unbiasedness condition for $c+y'Ax$ becomes

$$X'AX = 0, \quad (A,V_n) = q'n \quad \text{for } n \subset \Theta \Theta,$$

$$c = q'\theta - (A,V_0) \quad \text{for any } \Theta \Theta.$$

Sealy's (1970) condition of estimability is readily extended to the present case. We introduce some more notations to formulate his result properly. Let $P=XX^+$ be the projection onto the column space of X, and let $M=I-P$. Further, let Q_0 and Q_1 be the $m \times m$ matrices with the entries
(Q_0)_{ij} = (V_i, M V_j, M) \\
(Q_1)_{ij} = (V_i, V_j - P V_j P) \\
i, j = 1, \ldots, m.

Finally \Theta^i stands for the subspace of all m-vectors orthogonal to \Theta.

Proposition (Seely): (a) There exists an unbiased estimator \(c + y' A y \) of \(q' \Theta \) if and only if

\[q \in \text{im} Q_i + (\Theta - \Theta)^\perp. \]

(b) There exists an invariant unbiased estimator \(c + y' A y \) of \(q' \Theta \) if and only if

\[q \in \text{im} Q_0 + (\Theta - \Theta)^\perp. \]

Our main result is now presented in the following proposition where \(\text{span} \Theta \) denotes the subspace of \(\mathbb{R}^m \) linearly generated by the elements of \(\Theta \).

Proposition: Let \(\Theta \) satisfy the assumption

(1) \(\text{span} (\Theta - \Theta) = \mathbb{R} \cdot (\Theta - \Theta). \)

(a) If \(y \) is normally distributed there exists an unbiased estimator of \(q' \Theta \) if and only if

(2) \(q \in \text{im} Q_1 + (\Theta - \Theta)^\perp. \)

(b) If the distribution of \(M y \) depends only on \(M \Theta \) (\(\Theta \in \Theta \)) then there exists an invariant unbiased estimator of \(q' \Theta \) if and only if

(3) \(q \in \text{im} Q_0 + (\Theta - \Theta)^\perp. \)

Remark: Condition (1) is satisfied when \(\Theta \) contains an inner point relative to the affine hull of \(\Theta \).
3. Proof: Let Q be the $m \times m$ matrix

$$
(V_i^j)_{i,j = 1, \ldots, m}
$$

with $\Pi V = VMV$ or $\Pi V = V - PVP$ as to whether we are dealing with or without invariance. Π is an orthogonal projection in both cases.

For δ-vectors we have

$$
\delta'Q\delta = \sum \sum \delta_i^j (V_i^j)\delta_j = (V_\delta^j) \geq 0.
$$

Hence Q is nonnegative semidefinite and $Q\delta = 0$ if and only if ΠV_δ vanishes.

Under the distributional assumptions of the proposition we are going to show that

$$
q \in [(\theta - \theta) \cap \ker Q]
$$

if $q'\theta$ is (invariantly) estimable. Here $\ker Q$ stands for the subspace of all δ with $Q\delta = 0$. If in addition $\delta = \theta - n$ for some $\theta, n \in \theta$ we have to verify that $q'\delta = 0$.

(a) In the non invariant case we consider the BLUE \hat{G}_Y of $X\delta$ in the normal model $y \sim N(X\delta, \Gamma_\delta)$. It is defined by

$$
G_X = X \quad \text{and} \quad GV_\delta M = 0
$$

(see Drygas (1970), Theorem 3.9). Also $GV_\delta = GV_\delta G'$ holds true and therefore $GV_\delta (I - M)' = 0$. This implies the independence of $x = GY$ and $z = y - GY$. Hence the distribution of (x, z) is

$$(x, z) \sim N(X\delta, GV_\delta) \times N(0, (I - M)V_\delta) = \mu_\delta \times \nu.$$
Let \(\phi(y) \) be any unbiased estimator of \(q'\theta \). Defining \(\psi(x, z) = \phi(x+z) \) we obtain

\[
q'\theta = E \phi(y) = E \psi(Gy, y-Gy) = \int \psi(x, z) \nu(dz) \mu(dx).
\]

As recently shown by Drygas (1983) \(G_y \) is a complete statistic. Therefore the above equation leads to

\[
f(x) = \int \psi(x, z) \nu(dz) = q'\theta \quad \mu_g \text{-a.s.}
\]

Let \(N \subseteq \text{im} \ X \) be the \(\mu_g \) - null set of all \(x \) in \(\text{im} \ X \) such that \(f(x) \not\equiv q'\theta \). Since \(\text{im} \ GV_\theta \) is contained in \(\text{im} \ X \) we can write

\[
\text{im} \ X = \text{im} \ G V_\theta \cup \text{im} \ X \cap (\text{im} \ G V_\theta)^\perp
\]

Let \(X\beta = v_0 + u \) according to the above decomposition. Then \(\mu_g \) is concentrated on \(u + \text{im} \ G V_\theta \) and is absolutely continuous with respect to the Lebesgue measure in this linear manifold. Thus

\[
N_u := \{ v \in \text{im} \ G V_\theta : u + v \in N \}
\]

is a null set with respect to the Lebesgue measure in \(\text{im} \ G V_\theta \). Since this holds true for arbitrary \(u \), Fubini's Theorem yields: \(N \) is a null set with respect to the Lebesgue measure \(\lambda_{\text{im} \ X} \) in \(\text{im} \ X \). So we finally arrive at

\[
f(x) = q'\theta \quad \lambda_{\text{im} \ X} \text{-a.s.}
\]

Now we consider the model \(N(X\beta, V_\eta) \). From \(Q_\delta = \theta \) we get

\[
0 = P V_\delta - P V_\delta P - V_\eta = V_\delta - P V_\delta P \text{ and therefore}
\]

\[
V_\delta \delta = V_\eta \eta. \text{ Thus the BLUE Gy of } X\beta \text{ in the model } y \sim N(X\beta, V_\theta) \text{ can as well
serve in the model $y \sim \mathcal{N}(X \beta, \Sigma)$. Also it follows from $V_{\theta} - V_{\eta} = P(V_{\theta} - V_{\eta})P$ that $G(V_{\theta} - V_{\eta}) = V_{\theta} - V_{\eta}$ and so $(I-G)V_{\eta} = (I-G)V_{\theta}$. Applying the same argument as above now leads to

$$f(x) = q'\eta$$

$$\lambda \lim X \quad a.s.$$ from which $q'd = q'\delta - q'\eta = 0$ follows.

(b) To conclude the same for an invariant estimator $\hat{\psi}(y)$ we write

$$\psi(y) = \psi(My).$$

In the invariant case $Q \delta = 0$ means $0 = M V_{\delta} = M V_{\delta} M$, i.e. $M V_{\theta} M = M V_{\eta} M$, and so

$$q'\delta = E_{\theta} \psi(My) = E_{\eta} \psi(My) = q'\eta.$$

because the distribution of My was assumed to depend on $MV_{\delta} M$ only.

It remains to be shown that (4) and (1) together imply $q \in \text{im } Q + (\theta - \theta)^{-1}$.

From (1) it follows that

$$\text{span } (\theta - \theta) \cap \ker Q = R \cdot [(\theta - \theta) \cap \ker Q]$$

$$= \text{span } [(\theta - \theta) \cap \ker Q]$$

Along with (4) this yields:

$$q \in [(\theta - \theta) \cap \ker Q]^{\perp} = [\text{span } (\theta - \theta) \cap \ker Q]^{\perp}$$

$$= (\theta - \theta)^{-1} + \text{im } Q$$

as was to be proved.
References

Title
Existence of Unbiased Covariance Components Estimators

Author
Jochen Muller

Performing Organization Name and Address
Center for Multivariate Analysis
University of Pittsburgh
Pittsburgh, PA 15260

Report Date
November 1982

Keywords
- Covariance component estimation
- Invariance

Abstract
The condition of Pincus (1974) for the estimability of covariance components in normal models is extended to the case of singular covariance matrices.