EFFECT OF ENDOTOXIN ON OXYGEN CONSUMPTION BY A FLOW-CONTROLLED CANINE HIND-LIMB PREPARATION

T.A. BROADIE, L. HOMER, AND C.M. HERMAN

J. Vorosmarty, CAPT, MC, USN
Commanding Officer
Naval Medical Research Institute
Best Available Copy
Title: Effect of Endotoxin on Oxygen Consumption by a Flow Controlled Canine Hind-Limb Preparation

Authors: Broadie, T.A., Homer, L., and Herman, C. M.

Performing Organization: Naval Medical Research Institute
Bethesda, Maryland 20814

Controlling Office: Naval Medical Research & Development Command
Bethesda, Maryland 20814

Monitoring Agency: Bureau of Medicine & Surgery
Department of the Navy
Washington, D.C. 20372

Report Date: October 1980

Number of Pages: 9

Security Classification: Unclassified

Distribution Statement: Approved for public release and sale. Distribution unlimited

Key Words: oxygen consumption, shock, endotoxin, metabolism, fever

Abstract:

The effect of endotoxin upon oxygen consumption in a peripheral vascular bed was assessed in a canine hind-limb preparation. The left iliac vessels in 12 adult male mongrel dogs were isolated, the artery cannulated proximally and distally such that arterial inflow could be routed through a roller pump, and monocclusive sampling catheter placed in the vein. Oxygen consumption was then calculated as the product of flow rate and arteriovenous oxygen content difference at a series of flow rates before and after the systemic administration of endotoxin (3 mg/kg) or saline solution. (cont'd)
Item 20 continued:

At each flow rate, oxygen consumption by the extremities of endotoxic animals was significantly greater ($P<0.01$) than that measured in control animals. This finding mitigates the hypothesis that endotoxin has a direct effect on cells reducing tissue oxygen consumption.
EFFECT OF ENDOTOXIN ON
OXYGEN CONSUMPTION BY A
FLOW-CONTROLLED CANINE
HIND-LIMB PREPARATION

THOMAS A. BROADIE, M.D., Ph.D.,
LOUIS HOMER, M.D., Ph.D.
and
CLIFFORD M. HERMAN, M.D.
Indianapolis, Ind.
From the Division of Experimental Surgery and
Physiology, Naval Medical Research
Institute, Bethesda, Md.

Reprinted from
SURGERY
St. Louis

Vol. 88, No. 4, pp. 566-574, October, 1980
(Copyright © 1980 by The C. V. Mosby Company)
(Printed in the U. S. A.)
Effect of endotoxin on oxygen consumption by a flow-controlled canine hind-limb preparation

Thomas A. Broadie, M.D., Ph.D., Louis Homer, M.D., Ph.D., and Clifford M. Herman, M.D., Indianapolis, Ind.

The effect of endotoxin upon oxygen consumption in a peripheral vascular bed was assessed in a canine hind-limb preparation. The left iliac vessels in 12 adult male mongrel dogs were isolated, the artery cannulated proximally and distally such that arterial inflow could be routed through a roller pump, and a nonocclusive sampling catheter placed in the vein. Oxygen consumption was then calculated as the product of flow rate and arteriovenous oxygen content difference at a series of flow rates before and after the systemic administration of endotoxin (3 mg/kg) or saline solution. At each flow rate, oxygen consumption by the extremities of endotoxic animals was significantly greater ($P < 0.01$) than that measured in control animals. This finding mitigates the hypothesis that endotoxin has a direct effect on cells reducing tissue oxygen consumption.

From the Division of Experimental Surgery and Physiology, Naval Medical Research Institute, Bethesda, Md.

SEPTIC SHOCK in man is characterized by depression of the peripheral vascular resistance, narrowing of the central arteriovenous oxygen difference, and in some instances, elevation of the cardiac output. Conversely, cardiogenic and hypovolemic shock are characterized by a reduction in the cardiac output and a widening of the central arteriovenous oxygen difference. This has caused MacLean to formulate a unified definition of shock as "inadequate blood flow to vital organs or the inability of the body cell mass to metabolize nutrients normally." Four explanations for the narrowed arteriovenous oxygen difference encountered in clinical septic shock might be proposed: (1) arterial oxygen saturation is insufficient to deliver oxygen to the tissues, (2) the blood flow somehow bypasses the metabolic units of the periphery, (3) the red blood cell or microvascular channels are altered such that oxygen is not released to the tissues, or (4) the cells of the peripheral tissues are altered such that they are unable to utilize the oxygen available to them.

The first statement, that arterial oxygen content is insufficient to supply peripheral needs, is belied by the usual finding of a normal or elevated arterial P_{O_2} in the early phases of septic shock. Indeed, the use of the hyperbaric chamber to increase arterial P_{O_2} to abnormally high levels has been shown to have no effect on the narrowed arteriovenous difference.

Proponents of the second statement postulate the opening of precapillary arteriovenous shunts as explanation of both the failure of peripheral oxygen utilization and the reduction in peripheral resistance. Cronenwett and Lindenauer have recently claimed to demonstrate the presence of such shunts in a septic canine hind limb. According to the technique of Hedenreck and Thal, fecal-soaked strips of umbilical tape were implanted in the calf, thigh, and paw of the hind limb of each of six dogs. Seventy-two hours later, blood flow, arteriovenous...
oxygen difference, and arteriovenous shunting were measured and compared with similar measurements in a control group of animals. With this technique, Cronenwett and Lindenauser demonstrated a 5-fold increase in arteriovenous shunting in the septic limb which they felt correlated significantly with the decreased arteriovenous oxygen difference across the extremity. It must be recognized, however, that these data were obtained across a focus of acute inflammation and are therefore not precisely interpretable as a basis for the systemic changes in septic shock. Other investigators, using preparations challenged by a systemic septic insult, have been unable to demonstrate such shunts. Wright et al. measured cardiac output, hind-limb muscle blood flow, and arteriovenous oxygen difference in a canine peritonitis model devised by Clowes et al. With the demonstration of a strong correlation between the increase in cardiac output and a commensurate increase in muscle capillary blood flow, Wright et al. concluded that arteriovenous shunting was not present and could not, therefore, provide an explanation for the narrowed arteriovenous oxygen difference. Utilizing a radioactive microsphere technique, Archie was similarly unable to demonstrate anatomic arteriovenous shunting in either endotoxic or septic canine shock preparations.

In the third statement a defect in oxygen transport or diffusion is proposed. Archie, in explaining his negative results, suggested that impaired oxygen diffusion or "physiologic shunting" might be the cause of the reduced arteriovenous oxygen difference in septic shock. The regulation of hemoglobin affinity for oxygen provides one such avenue for impairment. It is well known that the intraerythrocytic concentration of 2,3-diphosphoglycerate (2,3-DPG) can alter hemoglobin oxygen affinity and the position of the oxyhemoglobin dissociation curve. Depression in 2,3-DPG causes an increase in the oxygen affinity of hemoglobin, or a leftward shift of the oxyhemoglobin dissociation curve, thereby decreasing peripheral oxygen extraction and narrowing the central arteriovenous oxygen difference. A leftward shift is favored by a low pH, and acidosis is a hallmark of both clinical and experimental septic and endotoxic shock. Miller et al., in 1970, were able to measure depressed 2,3-DPG levels in patients with septic shock and found that these values correlated with the position of the oxyhemoglobin dissociation curves. The authors also indicated that the depressed 2,3-DPG levels correlated with the narrowing of the arteriovenous oxygen difference. More recent experimental studies have not confirmed a consistent relationship among endotoxin, 2,3-DPG, and oxygen extraction. Naylor et al. measured pO2, 2,3-DPG, and oxygen consumption in Rhesus monkeys exposed to endotoxin. They were unable to detect systematic changes in any one of the three measurements from control levels and concluded that it was unlikely that 2,3-DPG-related changes in pO2 play a major role in augmenting oxygen delivery in experimental shock. In a somewhat different study, Garg et al. examined splanchic blood flow and oxygen consumption from 2,3-DPG-rich fresh blood vs. 2,3-DPG-poor 21-day-old blood in dogs subjected to a 2 mg/kg dose of Difco endotoxin. Although the two perfusates differed significantly in 2,3-DPG content, oxygen consumption from the two products did not. These authors concluded that 2,3-DPG depletion did not impair oxygen extraction by tissues exposed to endotoxin. Broadie and Herman, in a canine hind-limb preparation, were similarly unable to show improved oxygen consumption from 2,3-DPG-rich fresh vs. 2,3-DPG-depleted 21-day-old blood. The bulk of evidence now suggests that 2,3-DPG levels and hemoglobin affinity for oxygen are insufficient to explain the defects in oxygen extraction purported to be present in clinical sepsis.

The fourth proposal states that the tissues themselves are altered such that they are no longer able to consume oxygen. This concept is enunciated as a corollary to MacLean's definition of shock in which septic shock is described as "a primary cellular defect characterized by low oxygen utilization." The finding by Wright et al. of depressed muscle oxygen consumption in the absence of arteriovenous shunting in a septic canine preparation was interpreted as evidence for a cellular utilization defect. Mela et al. examined rat liver mitochondria harvested at graded time intervals after the induction of endotoxin shock. They were able to demonstrate impaired respiratory activity and ascribed this to progressive failure of membrane structure. Harken, Lillo, and Hufnagel more recently have studied the oxygen consumption of rabbit liver slices and cell-free rabbit liver homogenates exposed to Escherichia coli endotoxin. They found that the oxygen consumption of each preparation was depressed on exposure to endotoxin and inferred that endotoxin has the capacity to depress, directly, cellular respiration. On the basis of data derived from the cell-free homogenates, they concluded that the effect was mediated on subcellular systems and that the intact cell membrane conferred...
Fig. 1. Diagram of the surgical preparation showing placement of arterial catheters and arterial and venous monitoring devices.

Fig. 2. Mean oxygen consumption (ml O₂/min) of the left hind limb plotted against left femoral arterial blood flow (ml/min) for the second cycles of the endotoxin group (E II, n = 6) and the control group (C II, n = 6). The separation between the two curves is significant at the P < 0.01 level of confidence.

no protection to these structures. These data suggest that endotoxin does have the capacity to affect directly the respiratory mechanisms of individual cells over and above any effects related to altered flow and reduction in substrate availability. Some caution in the interpretation of Harken's work is warranted by considerations of the equivalency of the dose employed in these in vitro studies to the dose employed in whole-animal preparations.

The data supporting each explanation for the concept of septic shock as a state of inadequate oxygen uptake are then not entirely consistent. As suggested by Gump, the concept of a narrowed arteriovenous oxygen difference and reduced oxygen consumption in sepsis may even be artifactual. He correctly notes the large variance in many studies and suggests that some of the findings may simply be based upon anemia. From the relationship,

\[\Delta A V_{o₂} = 0.0134 \times H \times (S_a - S_v) + 0.0031 \times (P_a - P_v) \]

where

- \(\Delta A V_{o₂} \) = Arteriovenous oxygen difference
- H = Hemoglobin concentration
- Sₐ, Sᵥ = Arterial and venous oxygen saturations
- Pₐ, Pᵥ = Arterial and venous oxygen tensions

it is apparent that a reduction in hemoglobin will reduce the \(\Delta A V_{o₂} \). Gump presents a series of patients in whom an elevated cardiac output and apparent reduced arteriovenous oxygen difference were maintained, but in whom the mixed venous oxygen saturation remained unchanged; the difference was explained readily by the reduction in hemoglobin concentration. Given this confusion, the present study utilizing a canine hind-limb preparation was undertaken to determine whether, in fact, endotoxin could cause a diminution in oxygen consumption in a peripheral vascular bed in which rate of inflow would not be a limiting factor.

MATERIAL AND METHODS

Twelve conditioned, adult male mongrel dogs weighing between 20 and 25 kg were anesthetized with intravenous pentobarbital (3 mg/kg), intubated, and placed in a supine position on a small-animal operating table. Through a small cervical incision, the right carotid artery was cannulated, and by means of a strain-gauge manometer and recorder, systemic arterial blood pressure was continuously measured.

A sigmoid incision was then made in the left groin and the inguinal ligament divided to expose the iliac vessels in the retroperitoneal space. The iliac and common femoral arteries were dissected free for their entire length from the aortic bifurcation to the takeoff of the profunda femoris artery; the internal
Fig. 3. Regression of oxygen consumption on flow for the control group cycles I and II (cont I and cont II) and the endotoxin group cycles I and II (endo I and endo II), with graphical representation of \(\Delta_{\text{endo}} \) and \(\Delta_{\text{cont}} \).

The external iliac artery was ligated. The internal iliac vein was similarly isolated, and the internal iliac vein doubly ligated and divided. A nonoccluding sampling catheter was directed into the femoral vein such that its tip lay at the level of the inguinal ligament. An Edwards Laboratories Oximeter Catheter (Model 01-020) was then passed via the saphenous vein into the femoral vein such that its tip lay 1 to 2 cm cephalad to the tip of the sampling catheter (Fig. 1).

After completion of the surgical preparation, the animal was heparinized (heparin, 2 mg/kg), and two No. 16 to No. 18 French cannulas were placed in the external iliac artery. The first was directed proximally so as to lie within the abdominal aorta. The second was placed such that its tip lay immediately proximal to the division of the common femoral artery into the deep and superficial femoral arteries. The two cannulas were then connected by a saline-filled length of ¼ inch Tygon tubing containing the inline transducer of an electromagnetic flow probe (Fig. 1).

The tubing was directed through the pump head of a roller pump proximal to the flow transducer (Fig. 1). The preparation thus afforded a means of controlling the rate of arterial inflow and sampling access to the venous effluent.

The animal was allowed to breathe spontaneously from a gas-mixing apparatus, a mixture of \(\text{N}_2 \) and sufficient \(\text{O}_2 \) to maintain arterial oxygen saturation at or near 100% throughout the course of the experiment as assured by intermittent sampling of arterial oxygen content, blood gases, and hemoglobin. An adequate level of anesthesia was maintained by periodic supplemental doses of pentobarbital. Heparin (1 mg/kg) was given at hourly intervals to maintain anticoagulation. Body temperature was kept near 38°C by means of a heating pad and heat lamp. Hydration was maintained throughout the lengthy course of the experiment by the continuous intravenous infusion of sterile normal saline solution.

In each experiment, oxygen consumption by the extremity was measured at several rates of flow, varying in 40 ml/min increments from 40 to 240 ml/min. A 5-minute equilibration period was allowed at a given rate of flow before data were...
The three arterial saturations in each cycle were pooled and a mean determined. A linear regression of venous oxygen saturations was then drawn against the simultaneously recorded oximeter readings of venous oxygen saturation, and from the regression equation, a corrected value for venous oxygen saturation for each flow rate was calculated. Using this corrected value for venous oxygen saturation and the mean arterial oxygen saturation in each cycle, oxygen consumption at each flow rate was then calculated from the following equation:

\[
V_{\text{tot}} = F \left[0.0134 \left(\overline{S}_{\text{aO}_2} - \overline{S}_{\text{vO}_2} \right) + 0.0031 \left(\overline{P}_{\text{aO}_2} - \overline{P}_{\text{vO}_2} \right) \right]
\]

where

\[
\overline{S}_{\text{vO}_2} = \% \text{ Oxygen saturation} \\
\text{C}_{\text{aO}_2} = \text{ Oxygen content (mLO}_{2}/\text{100 ml blood}) \\
H = \text{ Hemoglobin concentration (gm/100 ml blood)} \\
0.0031 = \text{ Conversion factor in units (ml O}_{2}/\text{100 ml blood} \cdot \text{mm Hg)}
\]

Data were collated by group, cycle, and flow rate and compared; the significance of differences between groups in each cycle was then ascertained by two-way analysis of variance. An alternative mode of analysis was applied to the oxygen consumption data. In each experiment a linear regression of oxygen consumption vs. flow was drawn for each cycle, and the average distance, \(\Delta \), between the two lines within the limits of 40 and 240 ml/min were determined. Values for \(\Delta \) were then pooled within the control and experimental groups and a mean, \(\overline{\Delta} \), and standard error of the mean for each group were determined. The means were then compared and the validity of the comparison was ascertained by Student's \(t \) test.

RESULTS

The oxygen consumption data are listed in Table I. The mean consumption rates for each flow in the second cycles of the endotoxin (E II) and control groups (C II) are displayed graphically in Fig. 2. At each flow rate, mean oxygen consumption by the hind limb is seen to be greater in the group exposed to endotoxin than in the comparable control group. This increase is significant at the \(P < 0.01 \) level of confidence. The increase in oxygen consumption with flow rate in each group is also significant at the \(P < 0.01 \) level of confidence.
Table I. Oxygen consumption in the experimental periods (E II and C II) and baseline periods (E I and C I) of preparations given endotoxin (E) and saline (S)

<table>
<thead>
<tr>
<th>Period</th>
<th>Ex. No.</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>200</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E II</td>
<td>1</td>
<td>5.7</td>
<td>8.3</td>
<td>11.5</td>
<td>9.1</td>
<td>11.0</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.0</td>
<td>11.7</td>
<td>11.6</td>
<td>13.5</td>
<td>13.7</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.3</td>
<td>6.8</td>
<td>8.6</td>
<td>10.7</td>
<td>4.5</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.6</td>
<td>7.5</td>
<td>8.5</td>
<td>11.3</td>
<td>11.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.3</td>
<td>7.7</td>
<td>10.4</td>
<td>12.6</td>
<td>16.0</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.9</td>
<td>8.3</td>
<td>12.2</td>
<td>14.0</td>
<td>15.8</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.3</td>
<td>8.4</td>
<td>10.5</td>
<td>11.9</td>
<td>12.1</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.1</td>
<td>8.7</td>
<td>9.5</td>
<td>10.0</td>
<td>10.0</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.1</td>
<td>6.2</td>
<td>8.1</td>
<td>9.0</td>
<td>8.5</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.2</td>
<td>7.0</td>
<td>7.4</td>
<td>8.3</td>
<td>9.6</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.0</td>
<td>8.5</td>
<td>9.8</td>
<td>9.7</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.6</td>
<td>8.4</td>
<td>10.2</td>
<td>11.0</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.1</td>
<td>7.5</td>
<td>10.4</td>
<td>13.1</td>
<td>15.0</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.7</td>
<td>6.7</td>
<td>8.7</td>
<td>9.9</td>
<td>10.4</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.1</td>
<td>5.2</td>
<td>6.0</td>
<td>7.1</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.7</td>
<td>5.7</td>
<td>7.2</td>
<td>13.0</td>
<td>7.7</td>
<td>13.0</td>
</tr>
<tr>
<td>E I</td>
<td>3</td>
<td>3.0</td>
<td>3.8</td>
<td>3.4</td>
<td>5.6</td>
<td>4.5</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.3</td>
<td>5.0</td>
<td>4.7</td>
<td>4.6</td>
<td>4.4</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.4</td>
<td>5.1</td>
<td>3.0</td>
<td>3.0</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.3</td>
<td>4.9</td>
<td>5.0</td>
<td>6.2</td>
<td>5.1</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.6</td>
<td>6.4</td>
<td>8.4</td>
<td>9.4</td>
<td>12.2</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.0</td>
<td>3.7</td>
<td>3.8</td>
<td>4.8</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>C I</td>
<td>3</td>
<td>4.7</td>
<td>7.1</td>
<td>7.9</td>
<td>7.5</td>
<td>9.9</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.7</td>
<td>7.1</td>
<td>7.9</td>
<td>7.5</td>
<td>9.9</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.1</td>
<td>4.1</td>
<td>5.0</td>
<td>6.0</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.6</td>
<td>4.6</td>
<td>4.7</td>
<td>4.6</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.8</td>
<td>6.5</td>
<td>8.0</td>
<td>9.4</td>
<td>11.2</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.7</td>
<td>5.2</td>
<td>6.3</td>
<td>7.0</td>
<td>8.3</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Note: The increase in mean oxygen consumption at each flow rate in E II relative to C II is significant at the P < 0.01 level of confidence. The increase in oxygen consumption with flow rate in each group in both periods is also significant at the P < 0.01 level of confidence.

Calculation of the average separation, Δ, between the regressions of oxygen consumption on flow for cycles I and II of each experiment provides an alternate mode of analysis. This approach allows the use of each animal as its own baseline, and on this basis tends to minimize individual variation when values are pooled within the two groups. This information is summarized graphically in Fig. 3. It is apparent that the average separation in the endotoxin group, Δ(endotoxin) = 4.7241 ± 0.7724, is approximately 2.5 times the separation in the control group, Δ(control) = 1.8645 ± 0.7605. This difference is significant at the P < 0.05 level of confidence.

The separation between the curves representing the first and second cycles in the control group indicates some adaptation to the experimental situation which affords or obligates an increase in oxygen consumption even in the control situation. The finding that the magnitude of this separation is significantly greater in the group exposed to endotoxin supports the conclusion that there is present a significant increase in oxygen consumption by the tissues of the hind limb of the animals exposed to endotoxin as compared to those not so exposed.

Table II presents mean systemic arterial limb pressure, mean arterial blood pressure, limb resistance, temperature, femoral venous pH, and femoral venous Po2 data collated by group and flow rate. Mean systemic arterial blood pressure (MABP) fell, venous pH decreased, and temperature rose in those animals exposed to endotoxin (Figs. 4 and 5). The arterial pressure in the perfused extremity is also depressed in the endotoxin group at each flow rate relative to the comparable control value, as is vascular resistance. These changes (E II vs. C II) are significant at the P < 0.005 level of confidence and document the degree of the endotoxic challenge.

Femoral venous Po2 in the endotoxin group was
Table II. Mean systemic blood pressure, limb blood pressure, limb vascular resistance, limb temperature, and femoral venous pH and Po, tabulated by flow rate and group

<table>
<thead>
<tr>
<th>Flow (ml/min)</th>
<th>Period</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>200</th>
<th>240</th>
<th>E II vs C II</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean systemic arterial blood pressure (mm Hg)</td>
<td>E II</td>
<td>75</td>
<td>69</td>
<td>66</td>
<td>66</td>
<td>64</td>
<td>66</td>
<td>P < 0.005</td>
<td>NS</td>
</tr>
<tr>
<td>C II</td>
<td>123</td>
<td>123</td>
<td>122</td>
<td>119</td>
<td>118</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean arterial pressure in limb (mm Hg)</td>
<td>E II</td>
<td>63</td>
<td>85</td>
<td>108</td>
<td>140</td>
<td>169</td>
<td>208</td>
<td>P < 0.005</td>
<td>P < 0.005</td>
</tr>
<tr>
<td>C II</td>
<td>98</td>
<td>129</td>
<td>165</td>
<td>195</td>
<td>223</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance in limb (mm Hg, min/ml ')</td>
<td>E II</td>
<td>1.35</td>
<td>1.05</td>
<td>0.91</td>
<td>0.87</td>
<td>0.84</td>
<td>0.84</td>
<td>P < 0.005</td>
<td>P < 0.005</td>
</tr>
<tr>
<td>C II</td>
<td>2.02</td>
<td>1.57</td>
<td>1.38</td>
<td>1.22</td>
<td>1.11</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature of limb (°C)</td>
<td>E II</td>
<td>37.9</td>
<td>37.7</td>
<td>37.7</td>
<td>37.7</td>
<td>37.7</td>
<td>37.9</td>
<td>P < 0.005</td>
<td>NS</td>
</tr>
<tr>
<td>C II</td>
<td>33.3</td>
<td>37.2</td>
<td>37.4</td>
<td>37.4</td>
<td>37.0</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral venous Po. (mm Hg)</td>
<td>E II</td>
<td>34.2</td>
<td>34.0</td>
<td>37.8</td>
<td>43.3</td>
<td>44.5</td>
<td>48.5</td>
<td>NS</td>
<td>P < 0.005</td>
</tr>
<tr>
<td>C II</td>
<td>30.3</td>
<td>36.0</td>
<td>39.2</td>
<td>43.8</td>
<td>48.7</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral venous pH</td>
<td>E II</td>
<td>7.21</td>
<td>7.19</td>
<td>7.20</td>
<td>7.20</td>
<td>7.22</td>
<td>7.23</td>
<td>P < 0.005</td>
<td>NS</td>
</tr>
<tr>
<td>C II</td>
<td>7.27</td>
<td>7.29</td>
<td>7.32</td>
<td>7.35</td>
<td>7.33</td>
<td>7.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

not significantly less than that in the control group, but venous Po. in both groups increased significantly with increasing rate of arterial inflow, implying both increased extraction at lower flow rates in both groups and continued variable extraction rates in the presence of endotoxemia.

DISCUSSION

The results of this experiment indicate that oxygen consumption by an intact canine hind limb preparation is increased upon challenge of the organism with endotoxin in a LD₅₀ dose. This information runs counter to the prevailing prejudice that septic shock is a state in which there is present a defect in peripheral oxygen utilization. As indicated, however, this latter concept is predicated largely upon central arteriovenous oxygen differences determined in septic patients and upon in vitro analyses of the function of subcellular organelles; both approaches are subject to interpretive license. An increase in oxygen extraction in the face of increased energy demands by the peripheral tissues is certainly more appropriate to homeostasis. Such a response might be postulated as compensation for the reduction in oxygen availability occasioned by the reduction in flow.

The other data collected in the experiment fail to provide insight into the mechanism(s) by which the increase in oxygen consumption might occur. The temperature and pH changes are too small to cause an alteration in hemoglobin oxygen affinity sufficient to produce a change of the magnitude seen, although the changes seen are in the appropriate direction. Although 2,3-DPG was not measured, the duration of the experiment in this case seems too short to implicate changes in 2,3-DPG concentration. The drop in resistance might be construed as evidence for precapillary shunts, but this would not explain increased consumption. Overall, the explanation does not seem to lie in mechanisms involved in the transport of oxygen to the extremity. It is emphasized that in this preparation, the hind limb was isolated only in that the rate of arterial inflow could be controlled and the venous effluent sampled; the extremity was otherwise intact and subject to systemic neurologic and humoral control mechanisms. Any of the humoral mediators of cellular metabolism mobilized by an endotoxin challenge might be responsible for the increase in oxygen consumption. Alternatively, a more direct effect of endotoxin upon the cells themselves might be responsible. While we would favor the former suggestion, the design of the experiment does not allow resolution of such speculation.

CONCLUSIONS

Oxygen consumption by a flow-controlled canine hind-limb preparation is increased significantly upon challenge of the organisms by endotoxin. The explanation for this effect does not appear to lie among the determinants in oxygen delivery.

REFERENCES

DISCUSSION

Dr. Clowes (Boston, Mass.). I think it is very nice to see a study of one part of the problem of septic shock, but it does bring up a number of really difficult things to consider.

First, what is septic shock? I think we have to keep separate in our minds what sepsis does. The typical septic patient who is doing well has a high cardiac output and a low peripheral resistance. On the other hand, when the cardiovascular system is incapable of satisfying this big circulatory demand, septic shock is present.

There are three major causes for this circulatory insufficiency. One is the loss of fluid from the circulation, or hypovolemia. The second is the increase of pulmonary vascular resistance that may lead to right heart failure. The third is myocardial depression.

We have had the opportunity to do a number of studies comparing high-output and low-output sepsis. We found that in the septic high-output patient, oxygen consumption in the periphery is up and glucose consumption is up. Lactate production is huge. In the low-output state in which vasoconstriction takes place as the circulation fails, we see reduced peripheral consumption, the lactate production is further increased as glucose uptake goes further up. The breakdown of muscle protein proceeds at an even greater pace.

I want to ask a question: Is endotoxin really a good model for studying septic shock as it occurs clinically? Two things must be brought out. The first is that when endotoxin is given experimentally there is an initial phase of hypotension. After 1, 2, or 3 hours normotension returns, and 24 hours later there is a gradual progression of falling blood pressure. The secondary hypotension is accompanied by a marked reduction in blood glucose. In other words, the endotoxin has seriously damaged the liver, and gluconeogenesis in this organ fails. Dr. Tom O'Donnell, working with us, studied this phenomenon and came to the conclusion that endotoxin shock is a poor model for studying human sepsis.

On the matter of what endotoxin does in relation to blood, we find that Lena Mela's work and ours show that endotoxin by itself affects tissues very differently from when it is exposed with the presence of blood. This is an old observation.

In any case, we are not surprised to see that the oxygen consumption rises in these particular studies simply because the circulation was artificially maintained at a high rate, in contrast to what happens clinically.

I think these are important observations on the effects of endotoxin on muscle tissue in an intact organism, even though they are difficult to interpret.

Dr. Charles Wright (Saskatoon, Saskatchewan, Canada). My comments echo those of Dr. Clowes in many ways. This is an elegant study and it addresses itself to an interesting question, but I am not certain this study has answered the question.

The authors addressed the question of septic shock but the model deals with endotoxin shock, and there are some very major differences between these two. There are major differences in the effects of endotoxin in different species; there are major differences in the effects of sepsis as opposed to that of endotoxin in the same species; gram-positive organisms contain no endotoxin whatever but are responsible for an identical clinical syndrome in approximately 50% of cases nowadays. The key issue of course is that it is completely impossible in a model using endotoxin-
emia to duplicate the hyperdynamic phase which is seen in
clinical septic shock. This model cannot duplicate the
septic shock model by simply giving endotoxin and then
producing an increased circulation to the local part of the
limb.

I have two brief questions: First, was the flow pulsatile?
This might be another issue in this argument. Second, why
did the authors not incorporate one of the several septic
models which are available into their model, together with
the flow studies, rather than using that of endotoxemia,
which is of very doubtful relevance?

Dr. John R. Border (Buffalo, N.Y.). I think we must
stop speaking of septic shock. There is no septic shock.
There is a shock associated with sepsis which has multiple
mechanisms that change with time. There are grave
doubts as to how much endotoxin has to do with the septic
physiologic metabolic changes in man. There have been
millions of dollars spent on endotoxin in animals. It kills
dogs very nicely, and that says absolutely nothing about
sepsis in man.

We recently published a report on a series of patients
showing different organisms—gram positive, gram nega-
tive, Bacteroides, fungi—and as far as we could tell all had
the same circulatory changes and the same metabolic
changes, independent of whether or not the organism
contained endotoxin.

I have grave doubts about endotoxin and its involve-
ment in the septic changes that occur in man. I think this
study helps me to have more of those doubts. Clearly the
things that have been said in the past about its reducing
oxygen consumption, per se, are not seen in this study. I
suspect that is true in most of the things we see in clinical
sepsis.

Dr. Thomas A. Broadie (closing). I would like to thank
Dr. Clowes, Dr. Wright, and Dr. Border for their com-
ments. I am sure I will be unable to answer their basic
problem, which is whether or not endotoxin is a fitting
measure analogue to clinical septic shock. This question
probably is unresolvable at the present time.

In response to Dr. Wright’s specific question as to
whether flow was pulsatile... it was not. We did use a
roller pump. We used this model because this was an acute
experiment. Most of the other models are really unsuited
to the way we had designed this experiment.

Our approach was to measure a specific event which has
been recorded in clinical sepsis, that is, the supposed
reduction in oxygen consumption by cells and the reasons
for this. We had anticipated that there would be a
reduction and were surprised at our findings.

We have done other experiments of a not dissimilar
nature in a totally isolated hind-limb preparation which
were reported in Surgical Forum last year; in that situation
there was no change in oxygen consumption. This is an
area that does deserve some further look.