FINAL REPORT TO THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
ON
STUDIES RELATING TO THE SYNTHESIS OF MONOMETHYLHYDRAZINE
BY CHLORAMINATION
AND
PROBLEM RELATING TO THE PROTECTION OF THE ENVIRONMENT
FROM THE VAPORS OF 1,1-DIMETHYLHYDRAZINE,
MONOMETHYLHYDRAZINE AND HYDRAZINE

For Period of October 1, 1979 to June 30, 1981

Principal Investigator
Harry H. Sisler
Co-Investigator
Milap A. Mathur

Department of Chemistry
University of Florida
Gainesville, Florida 32611

September 30, 1981

Approved for public release; distribution unlimited.
The synthesis of monomethylhydrazine was successfully achieved by reacting solutions of hydroxylamine-0-sulfonic acid with methylamine in diglyme. The synthesis of 1,1-dimethylhydrazine was carried out in a similar manner with dimethylhydrazine. A mechanism for the formation of formaldehyde dimethylhydrazone by the reaction of dimethylamine and chloramine was proposed. A study was conducted on the oxidation of monomethylhydrazine and 1,1-dimethylhydrazine by oxygen.
INTRODUCTION

This progress report summarizes the results obtained on the project entitled "Studies Relating to the Synthesis of Monomethylhydrazine by Chloramination and Problems Relating to the Protection of the Environment from the Vapors of 1,1-Dimethylhydrazine, Monomethylhydrazine and Hydrazine", a proposal approved by the Air Force Office of Scientific Research in 1979. The starting date of the proposed research was October 1, 1979. This project was, in fact, the continuation of the on-going project entitled "Basic Studies Relating to the Synthesis of Unsymmetrical Dimethylhydrazine, and Monomethylhydrazine by Chloramination". A final report relating to the results obtained on the original project from the period September 1, 1975 to September 30, 1979 at the University of Florida was submitted to the Air Force Office of Scientific Research on December 7, 1979. Since these two projects were interrelated, some remaining work of the original project was also completed between the period of October 1, 1979 and June 30, 1981. These results are included in this report.

1. Syntheses of Monomethylhydrazine.

(a) By the Reaction of Methylamine and Hydroxylamine-O-Sulfonic Acid.

The synthesis of monomethylhydrazine was successfully achieved by reacting solutions of NH$_2$OSO$_3$H with CH$_3$NH$_2$ in diglyme. For example, 0.37 mol of NH$_2$OSO$_3$H was mixed with 1.7 mol of CH$_3$NH$_2$ in dry diglyme at -10°C. The total yield of N-N bonded material, based on NH$_2$OSO$_3$H taken, was 55%. On fractional distillation of the reaction mixture...
on a spinning bond column a mixture containing 84.3% monomethylhydrazine, 11.5% methanol and a small amount of methyamine, water and solvent was obtained. The products of this mixture were identified by gas chromatographic analysis as well as by 1H nuclear magnetic resonance spectroscopy. The complete results of this study were reported in Inorg. Chem., 1980, 19, 2846. A reprint is included in Appendix I.

(b) By the Chloramination of Methylamine by Chloramine.

The study relating to the synthesis of monomethylhydrazine by the chloramination of methylamine begun earlier was completed during this project period. The reaction between CH$_3$NH$_2$ and NH$_2$Cl was studied under the following conditions: (1) In presence of KOH and NH$_3$, (2) in presence of CH$_3$ONa and NH$_3$, and (3) in absence of NH$_3$ and fixed base. Monomethylhydrazine formation was observed in (1) and (2) and a yield of total hydrazine content up to 84% was observed. It is therefore evident that a permanent base like KOH or CH$_3$ONa is favorable for formation of monomethylhydrazine in the chloramination of methylamine. The details of this study are reported in the Inorg. Chem., 1980, 19, 2192. A reprint is included in Appendix I.

2. Syntheses of Unsymmetrical Dimethylhydrazine.

(a) By the Reaction of Dimethylamine with Hydroxylamine-O-Sulfonic Acid.

The synthesis of 1,1-dimethylhydrazine was successfully carried out by the treating solutions of NH$_2$OSO$_3$H with (CH$_3$)$_2$NH in diglyme.
For example, 0.15 mol of \(\text{NH}_2\text{OSO}_3\text{H} \) was mixed with 1.78 mol of \((\text{CH}_3)\text{NH}\) in diglyme at \(-78^\circ\text{C}\). After the reactants were mixed the reaction mixture was brought to \(25^\circ\text{C}\). The reaction mixture was filtered to remove \([(\text{CH}_3)\text{NH}_2]_2\text{SO}_4 \) and was then distilled over KOH. The fraction distilling between 60-64\(^\circ\text{C}\) was collected. The gas chromatographic analysis of this distillate showed 81.5% of 1,1-dimethylhydrazine. The other products were dimethylamine 9.1%, 1,1,4,4-tetramethyl-2-tetrazene 1.44%, and diglyme 1.63%. No formaldehyde dimethylhydrazone was detected. The complete results of this study are reported in Inorg. Chem., 1980, 19, 2846. (Appendix I).

(b) By the Reaction of a Chloramine-Ammonia Mixture with Dimethyamine in the Presence of KOH.

For example, a solution containing 0.5 mol of \((\text{CH}_3)_2\text{NH}\) and 0.2 mol of KOH in \(n\)-butanol was treated with the \(\text{NH}_2\text{Cl}-\text{NH}_3\text{effluent} (.1 \text{ mol} \text{NH}_2\text{Cl})\) of the chloramine generator at \(-78^\circ\text{C}\). The volatile gases were allowed to escape. The solid formed was removed by filtration and the solution was fractionally distilled. The 1,1-dimethylhydrazine obtained was estimated by \(^1\text{H}\) NMR analysis. The yield of the 1,1-dimethylhydrazine based on \(\text{NH}_2\text{Cl}\) used was 30%. The details of this study are reported in Ind. and Eng. Chem. Prod. Res. Dev., 1981, 20 181-5 (Appendix III).

The study of the formation of formaldehyde dimethylhydrazone was
completed and a mechanism for the formation of formaldehyde dimethyl-
hydrazone by the reaction of dimethylamine and chloramine was proposed.
The results of this study have been published in Ind. and Eng. Chem.
Prod. Res. Dev., 1981, 20, 181-5. It is worthwhile to note that the
reaction between (CH$_3$)$_2$NNH$_2$ and NH$_2$Cl is very fast and, therefore,
that NH$_2$Cl could be used to remove (CH$_3$)$_2$NNH$_2$ vapors from the atmos-
phere using a NH$_2$Cl solution in the scrubbers. A reprint is included
in Appendix III.

4. Studies Relating to the Oxidation of 1,1-Dimethylhydrazine by Oxygen.

The original paper on the "Oxidation of 1,1-Dimethylhydrazine
by Oxygen" was submitted in early 1979. A revised version of this
study was prepared in compliance with the referee's comments and
is included in Appendix IV. This study was conducted to examine
the problems relating to the protection of the environment from the
vapors of 1,1-dimethylhydrazine and its oxidation products.

5. Oxidation of Monomethylhydrazine.

The interaction of monomethylhydrazine with oxygen was investi-
gated. The results may be summarized as follows:
(a) Reaction of Monomethylhydrazine with Oxygen without Solvent.

This study was conducted before the current project period and
the results are summarized in the "Final Report to the Air Force Office
of the Scientific Research on the 'Basic Studies Relating to the
Synthesis of Unsymmetrical Dimethylhydrazine and Monomethylhydrazine by Chloramination submitted on December 7, 1979.

(b) Oxidation of Monomethylhydrazine by Oxygen in Ether Solution at 25°C.

For example, monomethylhydrazine (2.3 g, 0.050 mol) and 1 g benzene were dissolved in 100 mL of ether solution, and were transferred into a 2.45-liter reaction vessel containing pure oxygen at 25°C and 761 mm of Hg pressure. The zero time of the reaction was recorded. The zero reading of the methylhydrazine concentration was determined by comparing the chromatographic peak areas of methylhydrazine and benzene before mixing with oxygen. The progress of the reaction was followed by observing the ratio of the areas of the gas chromatographic peaks of CH$_3$NHNH$_2$ and C$_6$H$_6$ as a function of time. Typical results are summarized in the following table:

<table>
<thead>
<tr>
<th>Time in minutes</th>
<th>CH$_3$NHNH$_2$ peak area</th>
<th>C$_6$H$_6$ peak area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

The other products detected by gas chromatographic analysis were formaldehyde monomethylhydrazone or its dimer, methanol, and water.

In conclusion, monomethylhydrazine is quickly oxidized by the oxygen and, therefore, quickly removed from the atmosphere.
A spinoff from this research was the discovery that the oxidation of methylhydrazine by mercuric oxide yields appreciable amounts of the highly toxic mercury dimethyl. This was reported in the J. Org. Chem., 45, 1329 (1980). A reprint is included in Appendix V.

The chloramination of di-isopropylamine was carried out in ethylether and also in diglyme. No hydrazine was obtained in either instance. The chloramination reaction was also carried using the pure amine without dilution. In this case (i-C₃H₇)₂NNH₂ was obtained in 75% yields. No evidence of the formation of (CH₃)₂NN=C(CH₃)₂ was obtained. This supports our previously reported mechanism for the formation of (CH₃)₂NN=CH₂ in the chloramination of dimethylamine since [(CH₃)₂CH]₂N=N⁺ would be less likely to undergo the nucleophilic reaction analogous to that postulated for (CH₃)₂N=N⁻ (Appendix III). These results have been accepted for publication in the J. Inorg. Nucl. Chem. (Appendix VI).