CALCULATED INFRARED EXTINCTION COEFFICIENTS FOR GRAPHITE

by

Robert Frickel

Research Division

November 1981
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
Calculated Infrared Extinction Coefficients for Graphite

Title:
CALCULATED INFRARED EXTINCTION COEFFICIENTS FOR GRAPHITE

Author(s):
Robert Frickel

Performing Organization Name and Address:
Commander/Director, Chemical Systems Laboratory
ATTN: DRDAR-CLB-PS
Aberdeen Proving Ground, MD 21010

Controlling Office Name and Address:
Commander/Director, Chemical Systems Laboratory
ATTN: DRDAR-CLB-PS
Aberdeen Proving Ground, MD 21010

Report Date:
November 1981

Number of Pages:
26

Distribution Statement:
Approved for public release; distribution unlimited.

Key Words (Continue on reverse side if necessary and identify by block number):
- Aerosols
- Infrared spectra
- Extinction
- Mie theory
- Graphite
- Optical properties

Abstract:
Calculations were made of the optical extinction for graphite using Mie theory, on assumption of spherical particles, and published complex index of refraction data for graphite and carbon. The results are presented in graph form showing extinction coefficient vs wavelength, displaying the scattering and absorption components of extinction. The results permit examination of the effect of particle size, particle distribution width, and complex index of refraction on calculated extinction.
PREFACE

The work described in this report was authorized under task 1T1611102A71A, Scientific Area 5, Aerosol/Obscurant Research. The work was conducted in October 1979.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander/Director, Chemical Systems Laboratory, ATTN: DRDA-CLJ-R, Aberdeen Proving Ground, MD 21010. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for United States Government purposes.
CALCULATED INFRARED EXTINCTION COEFFICIENTS FOR GRAPHITE

1. INTRODUCTION

1.1. Objective. The objective of this work was to estimate the mass extinction coefficients of graphite smokes against visible and infrared radiation as a function of particle size distribution.

1.2. Background. This effort is part of a continuing study by Obscuration Sciences Section on extinction of visible infrared radiation by carbon and graphite smokes. An extensive collection of experimental data on extinction and particle size distribution for such smokes has been developed by Obscuration Sciences Section. This study was initiated to provide a better understanding of the behavior exhibited by these smokes and thus obtain some insight on how to optimize their performance as screening agents.

1.3. Theory. The estimates presented here are calculated using the theoretical solution presented by Gustave Mie in 1908 for the interaction between a plane electromagnetic wave and a homogeneous isotropic sphere of a given complex refractive index for a specified ratio of the circumference of the sphere to the wavelength of the radiation (size parameter). This calculation is an exact solution of Maxwell's equations in terms of spherical Bessel functions and Legendre polynomials. The extinction coefficients calculated directly via Mie theory are for monodisperse aerosols; for polydisperse aerosols these values are weighted according to the particle size distributions of the aerosol and integrated over particle size, viz,

\[\bar{\alpha} = \int \alpha(D) dm \int dm \]

where \(\alpha(D) \) is the mass extinction coefficient calculated for diameter \(D \), \(dm \) is the mass concentration of particulate material in the aerosol whose diameter lies between \(D \) and \(D + dD \), the integration is over the size distribution and \(\bar{\alpha} \) is the mass extinction coefficient for this aerosol. In these calculations a log normal distribution was used so that

\[dm = \frac{M}{\sqrt{2\pi \ln \sigma}} \exp\left\{-1/2 \left[\frac{\ln(D/D_0)}{\ln \sigma} \right]^2 \right\} d\ln D \]

where \(D_0 \) is the mass median diameter of the aerosol, \(\sigma \) is the logarithmic standard deviation of the distribution, and \(M \) is the total mass.

1.4. Approach. The distribution parameters used in these calculations are typical results of Andersen Impactor measurements made during the extinction experiments. The calculations are based on index of refraction spectra presented by Foster and Haworth. It should be noted that graphite particles are not actually spherical, so that

(a) Mie theory is not strictly applicable;
(b) the aerodynamic diameters measured by the Impactor are not necessarily the same as the corresponding optical diameter; and
(c) the indices of refraction of graphite vary from sample to sample and the values here are, at best, typical.

Hence, the calculations presented here can be considered only as approximations. For comparison, extinction coefficient spectra were calculated using a typical infrared refractive index for carbon (1.55, 0.66).\(^5\)

2. RESULTS

The results of the calculations for graphite are shown in figures 1 and 2. The abscissae are radiation wavelengths in micrometers; the ordinates are optical extinction coefficients in square meters/gram. The solid lines represent total extinction, the long-dashed lines adsorption, and the short-dashed lines scattering. The distribution parameters are shown on the figure and are defined by

\[
\frac{dM}{d\ln D} = \frac{M}{\sqrt{2\pi} \ln \sigma_b} e^{-1/2} \left[\frac{\ln(D/D_0)}{\ln \sigma_b} \right]^2
\]

The MMD in the figures is the mass median diameter \(D_0\). The bulk density of the particle material is 2.25 g/cm\(^3\).

The results of the calculations for carbon are shown in figures 3 and 4.

Note that the values of \(\sigma_b\) used here are very large. Extinction coefficient spectra calculated for monodisperse graphite aerosols of the same MMD's are shown in figures 5 and 6.

The great difference between the spectra for the monodisperse and polydisperse aerosols is due to the presence of a large component of small (<1\(\mu\)) particles in the broad distribution. Figures 7 - 11 illustrate this difference by exhibiting the extinction spectra for monodisperse graphite aerosols of various sizes.

3. CONCLUSIONS

3.1. Extinction coefficient spectra for graphite are calculated and may be used for comparison with measured spectra.

3.2. The calculated curves are approximations because of the uncertainty in the refractive index and the nonspherical shape of the particles.

3.3. Spectral shape appears to be dominated by the small particle component present in the very broad particle size distribution.
Figure 1. Extinction Coefficient for Graphite with Log Normal Particle Size Distribution

\(\theta = 1.85 \), \(\sigma_g = 3.18 \)

\(\text{MMD} = 1.85 \), \(\sigma_g = 3.18 \)
Figure 2. Extinction Coefficient for Graphite with Log Normal Particle Size Distribution

MMD = 3.32
\sigma_g = 2.80
Figure 6. Extinction Coefficient for Graphite, Monodisperse
Diameter = 3.32
Figure 7. Extinction Coefficient for Graphite, Monodisperse
Diameter = .10
Figure 9. Extinction Coefficient for Graphite, Monodisperse
Diameter = 1.00
Figure 11. Extinction Coefficient for Graphite, Monodisperse
Diameter = 10.00

Extinction Coefficient (m²/g)
LITERATURE CITED

<table>
<thead>
<tr>
<th>Names</th>
<th>Copies</th>
<th>Names</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMICAL SYSTEMS LABORATORY</td>
<td></td>
<td>DEPARTMENT OF THE ARMY</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLF</td>
<td>1</td>
<td>HQDA (DAMO-NCC)</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-CLJ-R</td>
<td>2</td>
<td>WASH DC 20310</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLJ-L</td>
<td>3</td>
<td>WASH DC 20310</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLJ-M</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLJ-P</td>
<td>1</td>
<td>Deputy Chief of Staff for Research, Development & Acquisition</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLT-E</td>
<td>1</td>
<td>ATTN: DAMA-ESS-C</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-CLN</td>
<td>1</td>
<td>ATTN: DAMA-ARZ-D</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-CLN=</td>
<td></td>
<td>Washington, DC 20310</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLN-S</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLN-WST</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLW-C</td>
<td>1</td>
<td>US Army Research and Standardization Group (Europe)</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-C</td>
<td>1</td>
<td>ATTN: DRXSN-E-SC</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-P</td>
<td>1</td>
<td>Box 65, FPO New York 09510</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-R</td>
<td>1</td>
<td>HQDA (DAMU-FIT)</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-T</td>
<td>1</td>
<td>WASH, DC 20310</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-TE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLB-A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLR-R</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRDAR-CLR-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPIES FOR AUTHOR(S):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Division</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECORD SET: ATTN: DRDAR-CLB-A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DTIC-DDA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameron Station, Building 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DB-AG1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Agent in Charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIO, 902d Military Intelligence Group</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: AGPA-A-AN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21003</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED, HQ, INSCOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: IRFM-SED (Mr. Joubert)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Meade, MD 20755</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREVIOUS PAGE BLANK—NOT FILLED
OFFICE OF THE SURGEON GENERAL

Commander
US Army Medical Bioengineering Research and Development Laboratory
ATTN: SORD-USB-AL
Fort Detrick, Bldg 568
Frederick, MD 21701

Headquarters
US Army Medical Research and Development Command
ATTN: SORD-PL
Fort Detrick, MD 21701

Commander
US Army Medical Research Institute of Chemical Defense
ATTN: SORD-UV-L
Aberdeen Proving Ground, MD 21010

US ARMY HEALTH SERVICE COMMAND

Superintendent
Academy of Health Sciences
US Army
ATTN: HSA-GDH
ATTN: HSA-IPM
Fort Sam Houston, TX 78234

US ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND

Commander
US Army Materiel Development and Readiness Command
ATTN: DRCLDC
ATTN: DRCSF-P
5001 Eisenhower Ave
Alexandria, VA 22333

Project Manager Smoke/Obscurants
ATTN: DRCPM-SMK
Aberdeen Proving Ground, MD 21005

Commander
US Army Foreign Science & Technology Center
ATTN: DRXST-M73
220 Seventh St., NE
Charlottesville, VA 22901

Director
US Army Material Systems Analysis Activity
ATTN: DRXSY-MP
ATTN: DRXSY-TN (Mr. Metz)
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
Redstone Scientific Information Center
ATTN: DRSMI-RPR (Documents)
Redstone Arsenal, AL 35809

Director
DARCOM Field Safety Activity
ATTN: DRXOS-C
Charlestown, IN 47111

Commander
US Army Natick Research and Development Command
ATTN: DRDNA-VR
ATTN: DRDNA-VT
Natick, MA 01760

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

Commander
US Army Armament Research and Development Command
ATTN: DRDAR-C
ATTN: DRDAR-LCE
ATTN: DRDAR-SSA-W
ATTN: DRDAR-TSS

Project Manager Smoke/Obscurants
ATTN: DRCPM-SMK
Aberdeen Proving Ground, MD 21005

Director
Ballistic Research Laboratory
ARRADCOM
ATTN: DRDAR-TSS-S
Aberdeen Proving Ground, MD 21005

24
<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Agency/Command</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Armament Materiel Readiness Command</td>
<td>White Sands Missile Range, NM 88002</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Test & Evaluation Command</td>
<td>Aberdeen Proving Ground, MD 21005</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commandant</td>
<td>US Army Training & Doctrine Command</td>
<td>Ougway, UT 84022</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commandant</td>
<td>US Army Infantry School</td>
<td>200 NNR Head, MD 20640</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Dugway Proving Ground</td>
<td>China Lake, CA 93555</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commandant</td>
<td>US Army Infantry Center</td>
<td>1 Crab, IN 47522</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Infantry Center</td>
<td>Fort Benning, GA 31905</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>USA Training and Doctrine Command</td>
<td>22134 Quantico, VA 22134</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commandant</td>
<td>USA Combined Arms Center and Fort Leavenworth</td>
<td>Fort Monroe, VA 23651</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battelle, Columbus Laboratories</td>
<td>Battelle, Columbus Laboratories</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>