STUDY IN EXECUTABLE ALGEBRAIC FORMAL SPECIFICATION (U)

JUL 81 J A GOGUEN, J MESEGUER

N00014-80-C-0296

END DATE FILED 10-81

NTIC
OBJ-1, A STUDY IN EXECUTABLE ALGEBRAIC FORMAL SPECIFICATION

Final Report, Fiscal Year 1980

July 1981

By: Joseph A. Goguen, Senior Computer Scientist
José Meseguer, Computer Scientist

Computer Science Laboratory,
Computer Science and Technology Division

Prepared for:
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Attention: Dr. Robert Grafton

SRI Project 1350-100
Contract No. N00014-80-C-0296

SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
(415) 326-6200
Cable: SRI INTL MPK
TWX: 910-373-2046
OBJ-1, A STUDY IN EXECUTABLE
ALGEBRAIC FORMAL
SPECIFICATION.

Final Report, Fiscal Year 1980

July 1981

By: Joseph A. Goguen/Senior Computer Scientist
José Meseguer, Computer Scientist
Computer Science Laboratory
Computer Science and Technology Division

Prepared for:
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217
Attention: Dr. Robert Grafton

SRI Project 1350-100
Contract No. N00014-80-0296

Approved:

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Vice President and Director
Computer Science and Technology Division
Table of Contents

I. REVIEW OF PROBLEM AND APPROACH 1
 1. Implementation 3
 2. Applications and Examples 3
 3. Theoretical Foundations 4
 4. Work on Related Specification Languages 5
 5. Publications 6

II. PROGRESS 7
 1. Implementation 7
 2. Foundations 8

III. RESULTS IN PROGRESS 9
 1. Implementation 10
 2. Foundations 15

APPENDICES
A OBJT SUGGESTIONS, BUGS AND COMMENTS 33
B PROGRAMMING LANGUAGE DEFINITION 42
C SYMBOLTREE SPECIFICATION 46
D SPECIFICATION OF GRAPHS AND PATHS 53
E TECHNIQUES FOR HIGHER ORDER SPECIFICATIONS AND OTHER SURPRISES 57
F PARTIAL ALGEBRAS WITH EQUATIONALLY DEFINED DOMAINS 60
G STRICT ERROR ALGEBRAS DEFINED BY TESTS 60
H MODEL-THEORETIC CHARACTERIZATION OF RELATIONAL CLASSES OF PROGRAM SCHEME INTERPRETATIONS 60

REFERENCES 60
I. REVIEW OF PROBLEM AND APPROACH

As hardware becomes less expensive, it is increasingly appropriate and important to put greater emphasis on reducing the cost of software. It is well known that a great deal of the cost of software arises in debugging, and particularly in debugging small changes in large programs during the process of maintaining them. Moreover, it seems clear that a major contributing factor to difficulties of this kind is the generally poor quality of documentation of such large programs, so that the programmer who has to do the maintenance has great difficulty in determining the effects of changes which he makes in the code. It is becoming increasingly clear to the computer science community that formal program specification is promising as a solution, and that specialized specification languages are helpful in expressing such program specifications.

The goal of this research has been to develop a formal and executable algebraic specification language which can be used to specify a variety of application programs, such as database systems, compilers and interpreters for programming languages, and business systems. An advantage of formality in this context is that each specification has a unique unambiguous meaning, so that it is actually meaningful to ask whether or not a given program in fact satisfies a given specification. An advantage of executability is that test cases can be run directly on the specification, to examine properties of programs before they are written, and to help in debugging specifications. The latter is important because large specifications, like large programs, are usually wrong as first written.

We have been investigating the utility of a number of potential advantages of the algebraic approach, including the following:

1. Achievement of a high level of modularity in a natural way;
2. Achievement of a high level of abstraction in a natural way;
3. The possibility of executing test cases;
4. User definition of data types and control structures, using any desired syntax, including pre-fix, post-fix, and "mix-fix" operators, as well as coercions;
5. The specification of error and exception conditions, as well as their handling, and recovery;
6. The use of parameterized abstract modules as a method for structuring specifications;

7. Algorithms for checking consistency and other desirable properties of specifications (e.g., the Knuth-Bendix algorithm); and

8. Provision of a completely rigorous semantics for all these features.
II. PROGRESS
This section describes the progress which we have made on this project.

1. Implementations
J. Tardo has provided a new implementation of OBJ, called OBJT20, which fixes most of the bugs discovered in his previous OBJT implementation. Both OBJT and OBJT20 are currently running on SRI's DEC-20 system, but we will soon retire the old OBJT, and rename the new OBJT20 to OBJT. The bugs found in OBJT are documented in a memorandum, reproduced in Appendix A here, based on our extensive experience using OBJT.

The new OBJT20 implementation runs faster, takes less space, permits lower case letters, supports TOPS20-style command completion with the <escape> character, and allows arbitrarily long file names. Moreover, as described in detail in Appendix A, it corrects many of the bugs which we found in OBJT. The only disadvantage is that it will not run on DEC-10 machines, but only on 20s. Joseph Tardo is a student at UCLA whose just completed thesis [Tardo 81] is on these implementations; he is now working at DEC.

2. Applications and Examples
J. Goguen and K. Parsaye-Ghomi have written a paper entitled "Algebraic Denotational Semantics using Parameterized Abstract Modules" which gives some new techniques for defining the semantics of programming languages, based on the features of OBJ. These techniques are illustrated with the definition of a strongly typed programming language having integer and boolean expressions, conditionals, iteration, block structure, and side-effect-only procedures which can also be passed as parameters. Because procedures can be passed as values, and because the language is strongly typed, the type system must be higher order.

One interesting result of this research was a correspondence between some of the basic constructions in denotational semantics, and some definitions in the OBJT library of basic parameterized objects. For example, the denotationalists' Cartesian product of domains corresponds to PAIR in <OBJT>LIB.OBJ, and the denotationalists function domain construction (usually denoted by "arrow") corresponds to ARRAY.

The paper was presented at the "International Conference on Formalization of Programming Concepts," held in Peniscola, Spain, this April, and has appeared
Goguen has defined a new data type, called symboltree, in OBJ. The purpose of this data type is to provide for fast checking of certain information, such as the types of variables, during interactive editing. The definition, and a large number of test cases showing how the operations of the data type work, is given in Appendix C of this report.

K. Parsaye-Ghomi, with A. B. C. Sampaio of UCLA, has written a specification of a hardware multiplexor in OBJT; a rough draft paper exists.

In response to a challenge from Prof. H. Reichel (of Leipzig), we have shown how to define graphs, and paths in a graph, using the OBJ error algebra formalism, rather than his formalism using partially defined operations. The OBJT code is given in Appendix F. This example is also referred to in Appendix F.

We have discovered some rather tricky methods to achieve certain effects which it might seem cannot be done in OBJT, such as higher order operations, defining the natural numbers from the integers, and imposing new equations on old objects. These are illustrated in Appendix E to this report.

3. Theoretical Foundations
Meseguer and Goguen are working hard on the basic theory of error algebras which underlies OBJ's approach to error definition, handling, and recovery. Although a number of surprising and subtle difficulties have been uncovered, we are convinced that it will be possible to get correct versions of all the basic algorithms needed for OBJ-1. Current efforts are centered on underlying semantic issues, and on the relationship to partial algebras.

We have found a small but vicious flaw in the usual deductive system for many-sorted equational logic, as used for example in most work on abstract
data types; rather shockingly, this system is not sound. Not only have we
given some new axioms which are sound and complete, but we have found
sufficient conditions such that the old deduction system works anyway[Goguen &
Meseguer 81]. Since there are so many people using equations now, it seems
appropriate that this paper reach the fairly broad audience which reads
SIGPLAN Notices. A full version of this paper, with all the proofs, is in an
advanced stage of preparation.

Meseguer has written a deep paper entitled "A Birkhoff-like Theorem for
Algebraic Classes on Interpretations of Program Schemes" which was also
presented at the Peniscola Conference, and appears in its proceedings[Meseguer
81]. This work, which is summarized in Appendix G to this report, follows up
an earlier paper "Varieties of Chain-complete Algebras" which appeared in the
prestigious special issue of the Journal of Pure and Applied Algebra honoring
the sixtieth birthday of Professor Saunders MacLane of the University of
Chicago[Meseguer 80].

K. Parsaye-Ghomi has developed, as part of his nearly completed Ph.D.
dissertation at UCLA, a method for extending OBJ to handle higher order
operations and equations. We have found that this would be extremely useful
in the specification of programming languages, as illustrated in[Goguen &
Parsaye-Ghomi 81]. The thesis and some papers based on it should be available
soon.

4. Work on Related Specification Languages
R. Burstall and J. Goguen have written an informal introduction to their
powerful specification language CLEAR[Burstall & Goguen 81]. This paper,
which will appear in the Academic Press book of Liege lectures, with papers of
Dijkstra, Boyer and Moore, and Manna, includes a sophisticated specification
of a garbage collector.

Burstall and Goguen are also working on the design of a much more
user-oriented specification language with the same underlying semantics as
CLEAR; this new language is to be called ORDINARY, as in some ways it also
builds on the previous generation SRI specification language SPECIAL[Levitt,
Robinson & Silverberg 79]. A draft report is available on this subject[Goguen &
Burstall 80a].

Burstall and Goguen are also working on a program design system which will be
based on their previous work on specification. This system is called CAT, and a concept piece outlining their intentions for it is available as an SRI technical report [Goguen & Burstall 80b] and is included with this report. One general idea is to construct a program transformation system which explicitly addresses the very important fact that in order to verify correctness of an application of a transformation, it is necessary to know some parts of the theory of the program, and to understand how various parts of the theory fit together with various parts of the program.

[Burstall & Goguen 78] gives a complete formal semantics for CLEAR, the first time that denotational semantics has been given for a specification language. [Goguen & Burstall 78] gives the mathematical background on theories on which [Burstall & Goguen 78] is based; we have just completed final revisions of this paper for publication.

[Goguen 80] gives foundations of OBJ, in particular for the use of rewrite rules to implement initial algebras, and or using the Knuth-Bendix algorithm for automatic verification for algebraic specifications.

5. Publications
This subsection lists papers, either published or submitted, which have been supported in whole or in part by this project. It also includes Ph. D. theses.

III. RESULTS IN PROGRESS

This section sketches some results which are now in progress.

1. Implementations

One of the basic ideas behind OBJ is to regard equations as rewrite rules, so that techniques such as the Knuth-Bendix algorithm can be used for execution and verification. D. Smallberg of UCLA is working on a version of the reduction and Knuth-Bendix algorithms which can handle so-called permuting axioms. This system, called KB, is being written in C, to run on VAX machines. It will not have all the features of OBJT, such as mix-fix syntax and error handling, but it will serve as testbed for the eventual integration of these ideas in an OBJ-1 system. The design and implementation of KB is

Also, J. Weiner of the University of New Hampshire has begun work on an implementation of OBJ in Prolog. This should be more efficient than the current Rutgers-UCI LISP implementation, although it will not include all its features. It will also be highly portable.

2. Foundations

We are making significant progress on the difficult problems arising in the theory of error algebras, by making use of advanced mathematical ideas in works such as [Coste 77] and [Gabriel Ulmer 71]. Some of our ideas are described in Appendices F and G. If successful, it appears that this approach will subsume all the various algebraic models which have been so far given in the literature. A major difficulty which we foresee is attempting to convey the ideas in a way which will be understandable to the computer science community at large.
APPENDICES

It is intended that the material in these appendices should provide a good practical background for OBJT users, as supplements to [Goguen & Tardo 79] and [Tardo 81].
A OBJT SUGGESTIONS, BUGS AND COMMENTS

This is a compendium of various discoveries about OBJ and its implementations. Many comments (e.g., in 1.a below) relate to the implementations at SRI-KL, namely OBJT and OBJT20, and are so indicated, while others will apply to any implementation based on the same design. Also, note that many of the OBJT bugs have been corrected in OBJT20. Eventually OBJT20 will supersede OBJT and also acquire its name.

1. Input/Output

a. There is no way to see the result of performing an IMAGE. Perhaps there could be a flag which if set would cause the result of performing an IMAGE to be displayed whenever IMAGE is executed. This flag could also control whether or not an OUT file would include these result displays.

This raises the question of whether it is desirable to display built-in objects such as INT. One possibility is to display just the syntax, with a comment (###) that this is a built-in object; a second possibility is to display a set of equations which define the object, even though the object is not actually implemented by the corresponding rewrite rules.

b. The parsers provide no help when an expression cannot be parsed. It is a difficult but interesting problem to design a parser which will provide useful feedback to the user in such cases. Probably it should be interactive.

2. IMAGE

a. Why should it be permitted to apply IMAGE to built-in objects such as INT? (One explanation is that one could then define NAT from INT; but there is a better way to do that, e.g., using a unary prefix operator, such as #_ : INT -> NAT, and a suitable error equation.)

b. We could define a new OBJ "parameterized object" to have the form SORTS (<param-sort-list>) <new-sort-list> / <old-sort-list> [with the latter optional] for its SORTS declaration, and otherwise the same syntax as present OBJT objects. Furthermore, we should allow only such parameterized objects to be imaged, with only their parameter sorts being mapped. Furthermore, if not all parameter sorts are actually mapped, then the resulting IMAGE object is also parameterized, and this should be indicated in the same way, with parentheses.
c. It should not be permitted to have duplicate copies of ANY objects around, unless they have different names for the object and for new sorts. In particular, IMAGE should not create duplicate objects, either of BOOL or of any other objects.

3. RUM & PERMUTING

a. The present implementations have a bug somewhere; for example, ARRAY with ADD as a PERMUTING operator produces strange LISP-level error messages when SYMBOLTABLE (defined by IMAGE as an ARRAY of STACKs) is run. Similar strange things happen if it is RUMed without the PERMUTING declaration.

b. EQ is not implemented for permuting objects; it should not be very difficult to extend it to do so.

c. It would be useful to be able to set the environment of a RUN to any desired object. The syntax

RUN / <obj-list> <exp> NUR

is one possibility, with default (if there is no "/ <obj-list>")) to the previous object, as at present.

4. Files

a. It would be nice to be able to save OBJT working states. (Using the operating system SAVE seems to use a lot of memory.) More generally, it would be nice to have an incremental object management facility.

5. Updating Objects

a. There are many cases where one wants to enrich an existing object with some new operations, or even some new sorts, and it is a drag to have to give a new name. Even worse, one might like to take an existing large definition and evolve it to serve some new purpose by changing old objects. It would be very nice if there were some systematic way of doing this. Here is a suggestion:

OBJ <id> / <id> ... JBO, where <id> is an identifier, would create a new object <id> which enriches the old one, now designated <id>.-1; and all old references to the old object <id> now updated to become references to <id>.-1. This process could be repeated to yield objects <id>.-2, <id>.-3 etc.

6. Associativity
OBJT and OBJT20 implement something which is fairly close to associativity, but more efficient to run; thus, it is dangerous to rely on associativity working correctly in complex cases. An associative-operator, pattern-matching algorithm could be the basis of a new implementation. It should be possible to do this in such a way that the simple cases are still executed efficiently.

7. Knuth-Bendix Test

It is far from clear how to implement a Knuth-Bendix algorithm which handles all OBJ features, including errors, conditional equations, associativity and permutativity. The current implementation however, does not always run correctly even on classical cases which involve none of these features.

8. Syntax

a. It would be convenient for some applications to be able to define operations with result a tuple of values of specified sorts (this is called "co-arity" in the algebraic literature). One also needs to be able to "untuple" such values. For this, one might build in operations, denoted say 1^*, 2^*, 3^*, ... to extract (respectively) the first, second, third, ... component.

b. Equations of the form
 \[\text{AS S: (X = BAD IF P(X))} \]
 which would be very useful for defining subtypes, such as NAT as a subtype of INT, are not accepted. (This could be done by setting \(S = \text{NAT} \), giving a coercion \(\text{INT} \rightarrow \text{NAT} \), and letting \(P(X) \) be \(X < 0 \).)

c. \text{(HIDDEN)} does not work correctly in OBJT; the first time that an operation declared \text{HIDDEN} is used inside the object where it is declared, one gets an "abnormal termination" warning and is thrown out of the object. (This has been corrected in OBJT20.)

d. It would be nice to have a way to encapsulate a number of previously defined objects, declaring all but some subset of their operations to be \text{HIDDEN}. (See \text{ORDINARY} for one approach.)

9. Built-in Objects

a. The type NAT of natural numbers is not built-in. It should be, with the obvious coercion from NAT to INT.
b. It would be nice if the quotes (e.g., 'A', 'B', etc.) were not necessary for type ID of identifiers.

c. OBJT evaluates some BOOLEAN expressions wrong. For example,

\[\text{RUN } T \text{ AND } (T \text{ AND } T) \text{ NUR} \]

yields the result "T AND T". Similarly for many other truth values and connectives. (This has been corrected in OBJT20.)

10. Trivial but Annoying

a. Input/Output

Spacing conventions are irregular and sometimes confusing. (These have all been corrected in OBJT20.)

(1). Comments received from a file are treated reasonably, but comments acquired directly from the user are not in OBJT (e.g., typing

```
>*** THIS IS A
TWO LINE TEST OF COMMENTS. ***
```

at a terminal produces a rather odd distribution of characters).

(2). For input read from a file, warnings after a RUN skip a line, and the next RUN is right after the warning. (e.g.,

```
>RUN ...........

warning: ...........

>RUN
```

which gives the impression that warning goes with the 2nd RUN).

(3). The built-in OBJT editor is not so easy to use; it would probably be better to use something like EMACS.

b. Syntax

(1). OBJ should not object to using numbers as operator symbols. Of course, ambiguities might arise, but overloading constants is no worse than overloading operators like \(+\) and \(*\). (This is corrected in OBJT20.)

(2). It is actually difficult to use keywords spelled backwards as terminators, because one makes spelling errors; syntax like

```
OBJ .... ENDOBJ
RUN .... ENDRUN
IM .... ENDIM
```

would be easier to remember and to use correctly.
(3). The name "TEST" for the flag which causes OBJ to interpret all RUNs as RUMs is not very suggestive; for example, "RUM" would be better.
B PROGRAMMING LANGUAGE DEFINITION
This is an improved version of the programming language definition in [Goguen & Parsaye-Ghomi 81].

[PHOTO: Recording initiated Mon 6-Jul-81 5:52PM]

Link from GOGUEN, TTY 10

TOPS-20 Command processor 3A(37)-3
End of <GOGUEN>COMAND.CMD.2
@OBJT20

***OBJT 4/17/81

> LISP

242 msec CPU (0 msec GC), 2831 msec clock, 64 conses

* (REALLOC 10000 10000 10000 10000 310000)
OBJT20 Running at 411067 Load 1.57 Used 0:03:40.2 in 1:22:19

(SBEGIN)

>

IN LIB MOD NI

*** HERE IS A BASIC LIBRARY OF PARAMETERIZED TYPES ***

OBJ PAIR
SORTS PAIR LEFT RIGHT
OK-OPS
 \langle;\rangle : LEFT RIGHT -> PAIR
 LEFT_ : PAIR -> LEFT
 RIGHT_ : PAIR -> RIGHT
VARS
 LEFT : LEFT
 RIGHT : RIGHT
 P : PAIR
OK-EQNS
 (LEFT < LEFT ; RIGHT > = LEFT)
 (RIGHT < LEFT ; RIGHT > = RIGHT)
 (< LEFT P ; RIGHT P > = P)
JBO
OBJ ARRAY / BOOL
SORTS ARRAY INDEX ELEMENT
OK-OPS
 NIL-ARRAY : -> ARRAY
 PUT : INDEX ELEMENT ARRAY -> ARRAY
 [] : ARRAY INDEX -> ELEMENT
 IN : INDEX ARRAY -> BOOL
ERR-OPS
 UNDEF : INDEX -> ELEMENT
VARS
 A : ARRAY
 I I' : INDEX
 ELM : ELEMENT
OK-EQNS
 (PUT(I,ELM,A)[I] = ELM)
 (PUT(I,ELM,A)[I'] = A[I'] IF NOT I == I')
 (I IN NIL-ARRAY = F)
 (I IN PUT(I',ELM,A) = I == I' OR I IN A)
ERR-EQNS
 (A[I] = UNDEF(I) IF NOT I IN A)

OBJ LIST / BOOL
SORTS LIST ELEMENT
OK-OPS
 NIL : -> LIST
 _ : ELEMENT -> LIST
 : : LIST LIST -> LIST (ASSOCIATIVE)
 EMPTY? : LIST -> BOOL
 FIRST : LIST -> ELEMENT
 REST : LIST -> LIST
ERR-OPS
 NO-FIRST : -> LIST
 NO-REST : -> LIST
VARS
 L : LIST
 E E' : ELEMENT
OK-EQNS
 (NIL ; L = L)
 (L ; NIL = L)
 (EMPTY?(NIL)= T)
 (EMPTY?(E)= F)
 (EMPTY?(L ; E)= F)
 (FIRST(E ; L)= E)
 (REST(E ; L)= L)
 (FIRST(E)= E)
 (REST(E)= NIL)
ERR-EQNS
 (FIRST(NIL)= NO-FIRST)
 (REST(NIL)= NO-REST)
OBJ STACK / BOOL
SORTS STACK ELEMENT
OK-OPS
 EMPTY : -> STACK
 POP_ : STACK -> STACK
 PUSH : ELEMENT STACK -> STACK
 TOP_ : STACK -> ELEMENT
 EMPTY?_ : STACK -> BOOL
ERR-OPS
 UNDERFLOW : -> STACK
 NO-TOP : -> ELEMENT
VARS
 ELM : ELEMENT
 S : STACK
OK-EQNS
 (POP PUSH(ELM,S) = S)
 (TOP PUSH(ELM,S) = ELM)
 (EMPTY? PUSH(ELM,S) = F)
 (EMPTY? EMPTY = T)
ERR-EQNS
 (POP EMPTY = UNDERFLOW)
 (TOP EMPTY = NO-TOP)

=End of file=

*** WE BEGIN BY DEFINING THE BASIC COMPONENTS OF STATES ***
*** THE STORABLE VALUES OF MODEST ARE TYPE-VALUE PAIRS
 WHICH ARE CALLED ITEMS ***
IM (PAIR => ITEM1)
SORTS (PAIR => ITEM)
 (LEFT => TYPE)
 (RIGHT => VALUE)
OPS
 (<_:_> : LEFT RIGHT -> PAIR => <:_:_>)
 (LEFT_: : PAIR -> LEFT => TYPE-OF_)
 (RIGHT_: : PAIR -> RIGHT => VALUE-OF_)
MI

OBJ ITEM / ITEM1
OK-OPS
 UNDEFINED-TYPE : -> TYPE
 UNDEFINED-VALUE : -> VALUE
 UNDEFINED-ITEM : -> ITEM
*** A TAPE IS A LIST OF ITEMS ***

IM (LIST => TAPE)/ ITEM BOOL
SORTS (LIST => TAPE)
 (ELEMENT => ITEM)
OPS (NO-REST : -> LIST => END-OF-TAPE)
MI

IM (PAIR => I/O-TAPES)/ TAPE
SORTS (PAIR => I/O-TAPES)
 (LEFT => TAPE)
 (RIGHT => TAPE)
OPS (LEFT_ : PAIR -> LEFT => INPUT-OF_)
 (RIGHT_ : PAIR -> RIGHT => OUTPUT-OF_)
MI

*** FROM THE INTEGERS, WE CONSTRUCT FIRST AN ENRICHMENT WITH MORE OPERATIONS, AND THEN AN ABSTRACTION, WITH FEWER ***

OBJ INTE / INT BOOL
OK-OPS
 <=: INT INT -> BOOL
 =>: INT INT -> BOOL
VARS
 I J : INT
OK-EQNS
 (I <= J = NOT(I > J))
 (I => J = NOT(I < J))
JBO

OBJ LOC / INT
SORTS LOC
OK-OPS
 _ : INT -> LOC
 NEXT_: LOC -> LOC
VARS
 I : INT
OK-EQNS
 (NEXT I = I + 1)
JBO

IM (ARRAY => STORE)/ LOC ITEM BOOL
SORTS (ARRAY => STORE)
(ELEMENT => ITEM)
(INDEX => LOC)

OPS
(NIL-ARRAY => ARRAY => NIL-STORE)

MI

IM (PAIR => STATE) / STORE I/O-TAPES BOOL

SORTS (PAIR => STATE)
(LEFT => STORE)
(RIGHT => I/O-TAPES)

OPS
(LEFT_ => PAIR => LEFT => MEMORY-OF_
(RIGHT_ => PAIR => RIGHT => TAPE-OF_

MI

OBJ MAKE-STATE / STATE

OK-OPS

PUT : LOC ITEM STATE => STATE
(_(_) => STATE LOC => ITEM
(IN) => LOC STATE => BOOL
NIL-STATE => STATE

VARS

ITEM : ITEM
STORE : STORE
L : LOC
TAPE : I/O-TAPES

OK-EQNS

(PUT(L,ITEM,< STORE ; TAPE >) = < PUT(L,ITEM,
STORE); TAPE >)
(< STORE ; TAPE > [L] = STORE [L])
(L IN < STORE ; TAPE > = L IN STORE)
(NIL-STATE = < NIL-STORE ; < NIL ; NIL >)

JBO

OBJ I/O / MAKE-STATE

OK-OPS

READ-NEXT-INPUT : STATE => ITEM
WRITE-NEXT-OUTPUT : ITEM STATE => STATE
INITIAL-STATE : TAPE => STATE
SET-INPUT : STATE => STATE

VARS

STORE : STORE
IN-TAPE OUT-TAPE : TAPE
STATE : STATE
ITEM : ITEM

OK-EQNS

(READ-NEXT-INPUT(< STORE ; < IN-TAPE ; OUT-TAPE
>)= FIRST(IN-TAPE))
(WRITE-NEXT-OUTPUT(Item,< STORE ; < IN-TAPE ;
OUT-TAPE >)= < STORE ; < IN-TAPE ;(
OUT-TAPE ; ITEM>)
(INITIAL-STATE(IN-TAPE)= < NIL-STORE ; < IN-TAPE ; NIL >)
(SET-INPUT(< STORE ; < IN-TAPE ; OUT-TAPE >)=< STORE ; < REST(IN-TAPE); OUT-TAPE >)

JBO

OBJ ALLOCATION / I/O
OK-OPS
ALLOCATE : STATE -> LOC
INITIALIZE : TYPE STATE -> STATE
INITIALIZE : ITEM STATE -> STATE
FIND-NEXT : LOC STATE -> LOC

VARS
TYPE : TYPE
STATE : STATE
ITEM : ITEM
LOC : LOC

OK-EQNS
(ALLOCATE(STATE)= FIND-NEXT(1 ,STATE))
(FIND-NEXT(LOC,STATE)= IF NOT(LOC IN STATE)THEN LOC ELSE FIND-NEXT((NEXT LOC),STATE)FI)
(INITIALIZE(TYPE,STATE)= PUT(ALLOCATE(STATE),< TYPE : UNDEFINED-VALUE >,STATE))
(INITIALIZE(ITEM,STATE)= PUT(ALLOCATE(STATE),ITEM,STATE))

JBO

IM (ARRAY => LAYER)/ ID LOC BOOL
SORTS (ARRAY => LAYER)
(INDEX => ID)
(ELEMENT => LOC)
OPS (NIL-ARRAY : -> ARRAY => NIL-LAYER)

MI

IM (STACK => SYMBOL-TABLE)/ LAYER BOOL
SORTS (STACK => ENV)
(ELEMENT => LAYER)
OPS (EMPTY : -> STACK => NIL-ENV)
(Pop_ : STACK -> STACK => EXITBLOCK_)

MI

IM (LIST => ID-LIST)/ ID BOOL
SORTS (LIST => ID-LIST)
(ELEMENT => ID)

MI
OBJ ENVIRONMENT / SYMBOL-TABLE ID-LIST ALLOCATION

OK-OPS

ENTERBLOCK_ : ENV -> ENV
GET : ENV ID -> LOC
RETRIEVE : ID ENV STATE -> ITEM
BIND : ID-LIST ENV STATE -> ENV

ERR-OPS

UNDECL : ID -> LOC
_ALREADY-DECLARED-IN-BLOCK : ID -> ENV

VARS

ENV : ENV
ID : ID
LAY : LAYER
STATE : STATE
ID-L : ID-LIST

OK-EQNS

(ENTERBLOCK ENV = PUSH(NIL-LAYER,ENV))
(GET(ENV,ID)=(TOP ENV)[ID] IF ID IN TOP ENV)
(GET(ENV,ID)= GET(EXITBLOCK ENV,ID) IF(NOT(ID IN TOP ENV))
(RETRIEVE(ID,ENV,STATE)= STATE [GET(ENV,ID)])
(BIND(ID,PUSH(LAY,ENV),STATE)= PUSH(PUT(ID, ALLOCATE(STATE),LAY),ENV))
(BIND(ID ; ID-L,ENV,STATE)= BIND(ID-L,BIND(ID, ENV,STATE),(INITIALIZE(UNDEFINED-ITEM,STATE))))

ERR-EQNS

(GET(NIL-ENV,ID)= UNDECL(ID))
(BIND(ID,PUSH(LAY,ENV),STATE)= ID
 ALREADY-DECLARED-IN-BLOCK IF(ID IN LAY))

JBO

*** WE NOW DEFINE INTEGER AND BOOLEAN EXPRESSIONS ***

OBJ EXPRESSION / ENVIRONMENT

SORTS EXP

OK-OPS

_ : ID -> EXP
VALUE : EXP ENV STATE -> ITEM
TYPE : EXP ENV STATE -> TYPE

VARS

EXP : EXP
ENV : ENV
STATE : STATE
ID : ID
I J : ITEM

OK-EQNS

(VALUE(ID,ENV,STATE)= RETRIEVE(ID,ENV,STATE))
(TYPE(EXP,ENV,STATE)= TYPE-OF VALUE(EXP,ENV, STATE))
OBJ INT-EXP / EXPRESSION

OK-OPS

INT : -> TYPE
_ : INT -> VALUE
INT-VAL : ITEM -> INT
_ : INT -> EXP
*_ : EXP EXP -> EXP
_ : EXP EXP -> EXP
*_: EXP EXP -> EXP

ERR-OPS

DOES-NOT-MATCH : TYPE TYPE -> VALUE

VARS

I : INT
ENV : ENV
STATE : STATE
EXP EXP' : EXP
TYPE : TYPE
VALUE : VALUE

OK-EQNS

(INT-VAL(< INT : I >)= I)
(VALUE(I,ENV,STATE)= < INT : I >)
(VALUE(EXP + EXP',ENV,STATE)= < INT : (INT-VAL(
 VALUE(EXP,ENV,STATE))+ INT-VAL(VALUE(EXP',
 ENV,STATE))))
(VALUE(EXP - EXP',ENV,STATE)= < INT : (INT-VAL(
 VALUE(EXP,ENV,STATE))- INT-VAL(VALUE(EXP',
 ENV,STATE))))
(VALUE(EXP * EXP',ENV,STATE)= < INT : (INT-VAL(
 VALUE(EXP,ENV,STATE))* INT-VAL(VALUE(EXP',
 ENV,STATE))))

ERR-EQNS

(INT-VAL(< TYPE : VALUE >)= TYPE DOES-NOT-MATCH
 INT IF(NOT(TYPE == INT)))

JBO

OBJT20 Running at 405005 Load 3.87 Used 0:04:44.9 in 1:25:16

OBJ BOOL-EXP / INTE INT-EXP

OK-OPS

BOOL : -> TYPE
_ : BOOL -> VALUE
BOOL-VAL : ITEM -> BOOL
_ : BOOL -> EXP
_ AND_ : EXP EXP -> EXP
_ OR_ : EXP EXP -> EXP
NOT_ : EXP -> EXP
EQ : EXP EXP -> EXP
<= : EXP EXP -> EXP
_> : EXP EXP -> EXP
ERR-OPS

 TYPE-CONFLICT : -> ITEM

VARS

 B : BOOL
 TYPE : TYPE
 ENV : ENV
 STATE : STATE
 VALUE : VALUE
 EXP EXP' : EXP
 I J : INT

OK-EQNS

 (BOOL-VAL(< BOOL : B >)= B)
 (VALUE(B,ENV,STATE)= < BOOL : B >)
 (VALUE(EXP AND EXP',ENV,STATE)= < BOOL :
 BOOL-VAL(VALUE(EXP,ENV,STATE))AND BOOL-VAL(
 VALUE(EXP',ENV,STATE)))>
 (VALUE(EXP OR EXP',ENV,STATE)= < BOOL :
 BOOL-VAL(VALUE(EXP,ENV,STATE))OR BOOL-VAL(VALUE(
 EXP',ENV,STATE))))>
 (VALUE(NOT EXP,ENV,STATE)= < BOOL :
 NOT(BOOL-VAL(VALUE(EXP,ENV,STATE))))>
 (VALUE(EXP EQ EXP',ENV,STATE)= < BOOL :
 VALUE(EXP,ENV,STATE)== VALUE(EXP',ENV,STATE)))>
 (VALUE(EXP <= EXP',ENV,STATE)= < BOOL :
 INT-VAL(VALUE(EXP,ENV,STATE))<= INT-VAL(VALUE(EXP',
 ENV,STATE))>)
 (VALUE(EXP > EXP',ENV,STATE)= < BOOL :
 INT-VAL(VALUE(EXP,ENV,STATE))> INT-VAL(VALUE(EXP',
 ENV,STATE))>)

ERR-EQNS

 (BOOL-VAL(< TYPE : VALUE >)= TYPE DOES-NOT-MATCH
 BOOL IF NOT(TYPE == BOOL))
 (VALUE(EXP EQ EXP',ENV,STATE)= TYPE-CONFLICT IF
 NOT(TYPE(EXP,ENV,STATE)== TYPE(EXP',ENV,
 STATE)))
 (VALUE(EXP <= EXP',ENV,STATE)= TYPE-CONFLICT IF
 NOT(TYPE(EXP,ENV,STATE)== INT AND TYPE(EXP',
 ENV,STATE)== INT))
 (VALUE(EXP > EXP',ENV,STATE)= TYPE-CONFLICT IF
 NOT(TYPE(EXP,ENV,STATE)== INT AND TYPE(EXP',
 ENV,STATE)== INT))

JBO

*** WE NOW DEFINE VARIOUS STATEMENTS AND THEIR MEANINGS

IM (LIST => STMT-LIST)/ BOOL
SORTS (LIST => STMT-LIST)
 (ELEMENT => STMT)

MI

23
OBJ EXECUTION / STMT-LIST ENVIRONMENT I/O
SORTS PROGRAM
OK-OPS
 EXECUTE_ : PROGRAM \rightarrow TAPE
 EVAL : STMT-LIST ENV STATE \rightarrow STATE
 WITH-INPUT : STMT-LIST TAPE \rightarrow PROGRAM
VARS
 TAPE : TAPE
 STMT-L : STMT-LIST
OK-EQNS
 \begin{align*}
 (\text{EXECUTE}(\text{STMT-L WITH-INPUT TAPE}) &= \text{OUTPUT-OF}(
 \text{TAPE-OF}(\text{EVAL}(\text{STMT-L},\text{NIL-ENV},\text{INITIAL-STATE}(\text{TAPE}))))
 \end{align*}
JBO

*** FIRST SEMICOLON ***

OBJ SEMICOLON / EXECUTION
VARS
 STMT : STMT
 STMT-L : STMT-LIST
 ENV : ENV
 STATE : STATE
OK-EQNS
 \begin{align*}
 (\text{EVAL}(\text{STMT} ; \text{STMT-L},\text{ENV},\text{STATE}) &= \text{EVAL}(\text{STMT-L},\text{ENV}, \\
 & \quad \text{EVAL}(\text{STMT},\text{ENV},\text{STATE}))
 \end{align*}
JBO

*** DEFINE BLOCK STRUCTURE ***

IM (LIST \Rightarrow DECL-LIST) / BOOL
SORTS (LIST \Rightarrow DECL-LIST)
 (ELEMENT \Rightarrow DECLARATION)
OPS (NIL : \rightarrow LIST \Rightarrow NILDECL)
MI

OBJ DECLARATION / DECL-LIST BOOL-EXP
OK-OPS
 : : ID TYPE \rightarrow DECLARATION
 DECLARE-ENV : DECL-LIST ENV STATE \rightarrow ENV
 DECLARE : DECL-LIST STATE ENV \rightarrow STATE
VARS
 D : DECLARATION
 DL : DECL-LIST
 ENV : ENV
 ID : ID
 TYPE : TYPE
 ID-L : ID-LIST
 STATE : STATE
OK-EQNS
(DECLARE(D ; DL,STATE,ENV) = DECLARE(DL,DECLARE(D,STATE,ENV),DECLARE-ENV(D,ENV,STATE)))
(DECLARE-ENV(D ; DL,ENV,STATE) = DECLARE-ENV(DL, DECLARE-ENV(D,ENV,STATE), INITIALIZE(UNDEFINED-ITEM,STATE)))
(DECLARE(ID : TYPE,STATE,ENV) = INITIALIZE(TYPE, STATE))
(DECLARE-ENV(ID : TYPE,ENV,STATE) = BIND(ID,ENV, STATE))

JBO

OBJ BLOCK / DECLARATION EXECUTION
SORTS BLOCK
OK-OPS
 i: DECL-LIST STMT-LIST -> BLOCK
BEGIN_END : BLOCK -> STMT
VARS
 DCL-L : DECL-LIST
 STMT-L : STMT-LIST
 ENV : ENV
 STATE : STATE
OK-EQNS
 EVAL(BEGIN DCL-L ; STMT-L END ENV STATE) = EVAL(STMT-L, DECLARE-ENV(DCL-L, ENTERBLOCK ENV, STATE), DECLARE(DCL-L, STATE, ENTERBLOCK ENV))
JBO

*** DEFINE ASSIGNMENT ***

OBJ ASSIGNMENT / EXECUTION BOOL-EXP
OK-OPS
 i: ID EXP -> STMT
 ASSIGN : ID ITEM ENV STATE -> STATE
ERR-OPS
 TYPE-OF_CONFLICTS_ : ID ITEM -> STATE
VARS
 ID : ID
 EXP : EXP
 ENV : ENV
 STATE : STATE
 ITEM : ITEM
OK-EQNS
 (EVAL(ID := EXP,ENV,STATE) = ASSIGN(ID, VALUE(EXP, ENV, STATE), ENV, STATE))
 (ASSIGN[ID,ITEM,ENV,STATE] = PUT(GET(ENV,ID),ITEM,STATE))
ERR-EQNS
 (ASSIGN[ID,ITEM,ENV,STATE] = TYPE-OF ID CONFLICTS ITEM IF NOT(TYPE-OF RETRIEVE[ID,ENV,STATE] == TYPE-OF ITEM))

25
Define Read and Print Statements

OBJ INPUT-OUTPUT / EXECUTION ASSIGNMENT

OK-OPS
- READ_ : ID -> STMT
- PRINT_ : EXP -> STMT

ERR-OPS
- NO-INPUT-AVAILABLE-FOR_ : ID -> STATE

VARS
- ID : ID
- ENV : ENV
- STATE : STATE
- EXP : EXP
- STORE : STORE
- OUT-TAPE : TAPE

OK-EQNS
- \(\text{EVAL(READ ID, ENV, STATE)} = \text{ASSIGN(ID, READ-NEXT-INPUT(STATE), ENV, SET-INPUT(STATE))} \)
- \(\text{EVAL(PRINT EXP, ENV, STATE)} = \text{WRITE-NEXT-OUTPUT(VALUE(EXP, ENV, STATE), STATE)} \)

ERR-EQNS
- \(\text{EVAL(READ ID, ENV, < STORE ; < NIL ; OUT-TAPE >>)} = \text{NO-INPUT-AVAILABLE-FOR ID} \)

Define Conditional

OBJ CONDITIONAL / EXECUTION BOOL-EXP STMT-LIST

OK-OPS
- IF: THEN_ELSE_:FI : EXP STMT-LIST STMT-LIST -> STMT

VARS
- EXP : EXP
- STMT-L STMT-L' : STMT-LIST
- ENV : ENV
- STATE : STATE

OK-EQNS
- \(\text{EVAL(IF: EXP THEN STMT-L ELSE STMT-L':FI, ENV, STATE)} = \text{EVAL(STMT-L, ENV, STATE) IF BOOL-VAL(VALUE(EXP, ENV, STATE))} \)
- \((= \text{EVAL(STMT-L', ENV, STATE) IF BOOL-VAL(VALUE(EXP, ENV, STATE))}) \)

Define Iteration

OBJ ITERATION / EXECUTION BOOL-EXP STMT-LIST

OK-OPS
WHILE_Do_Do : EXP STMT-LIST -> STMT

VARS
EXP : EXP
STMT-L : STMT-LIST
ENV : ENV
STATE : STATE

OK-EQNS
(EVAL(WHILE EXP DO STMT-L OD,ENV,STATE) = EVAL(STMT-L ; WHILE EXP DO STMT-L OD,ENV,STATE)
IF BOOL-VAL(VALUE(EXP,ENV,STATE)) == T)
(= STATE IF(BOOL-VAL(VALUE(EXP,ENV,STATE)) == T))

*** THIS OBJECT SUMMARIZES ALL STATEMENT DEFINITIONS ***

OBJ STATEMENTS / EXECUTION SEMICOLON BLOCK
ASSIGNMENT CONDITIONAL INPUT-OUTPUT
ITERATION

*** WE NOW BEGIN DEFINING PROCEDURES ***

IM (PAIR => PROC-DEFN)/ STMT-LIST ID-LIST BOOL
SORTS (PAIR => PROC-DEFN)
(LEFT => ID-LIST)
(RIGHT => STMT-LIST)

OPS (LEFT_ : PAIR => LEFT => FORMALS-OF_)
(RIGHT_ : PAIR => RIGHT => STMT-OF_)

IM (PAIR => CONTOUR)/ PROC-DEFN ENVIRONMENT BOOL
SORTS (PAIR => CONTOUR)
(LEFT => PROC-DEFN)
(RIGHT => ENV)

OPS (LEFT_ : PAIR => LEFT => DEFN-OF_)
(RIGHT_ : PAIR => RIGHT => ENV-OF_)

IM (LIST => PARAM-DECL-LIST)/ BOOL
SORTS (LIST => PARAM-DECL-LIST)
(ELEMENT => PARAM-DECL)

IM (LIST => TYPE-LIST)/ ITEM BOOL
SORTS (LIST => TYPE-LIST)
(ELEMENT => TYPE)
OPS (NIL : -> LIST :=> VOID)
MI

IM (LIST :=> EXP-LIST) / BOOL-EXP BOOL
SORTS (LIST :=> EXP-LIST)
 (ELEMENT :=> EXP) MI

OBJ PROCEDURES / CONTOUR TYPE-LIST EXP-LIST
PARAM-DECL-LIST DECLARATION
SORTS PROC-DECL
OK-OPS
 PROC[] : TYPE-LIST -> TYPE
 _ : CONTOUR -> VALUE
 _ : PROC-DECL -> DECLARATION
 CONTOUR-VAL : ITEM -> CONTOUR
 PROC[]_END : ID PARAM-DECL-LIST STMT-LIST ->
 PROC-DECL
 : : ID TYPE -> PARAM-DECL
 CALL[]_ : ID EXP-LIST -> STMT

VARS
 TYPE-L : TYPE-LIST
 C : CONTOUR
 TYPE : TYPE
 VALUE : VALUE

OK-EQNS
 (CONTOUR-VAL(< PROC[TYPE-L] : C >) = C)

ERR-EQNS
 (CONTOUR-VAL(< TYPE : VALUE >) = TYPE
 DOES-NOT-MATCH PROC[VOID] IF((TYPE == INT
)OR(TYPE == BOOL)))

JBO

OBJ PROC-DECLARATION / PROCEDURES
OK-OPS
 GET-ID : PARAM-DECL-LIST -> ID-LIST
 GET-TYPE : PARAM-DECL-LIST -> TYPE-LIST

VARS
 ID : ID
 PM-L : PARAM-DECL-LIST
 STMT-L : STMT-LIST
 ENV : ENV
 STATE : STATE
 PM : PARAM-DECL
 TYPE : TYPE

OK-EQNS
 (DECLARE-ENV(PROC ID [PM-L] STMT-L END,ENV,
 STATE) = BIND(ID,ENV,STATE))

28
(DECLARE(Proc ID [PM-L] STMT-L END, STATE, ENV)=
 INITIALIZE((<(Proc GET-TYPE(PM-L)):<(<
 GET-ID(PM-L); STMT-L); DECLARE-ENV(Proc
 ID [PM-L] STMT-L END, ENV, STATE>>()>, STATE)
)
 (GET-TYPE(PM; PM-L)= GET-TYPE(PM); GET-TYPE(
 PM-L))
 (GET-TYPE(ID : TYPE)= TYPE)
 (GET-ID(PM; PM-L)= GET-ID(PM); GET-ID(PM-L))
 (GET-ID(ID : TYPE)= ID)
)

OBJ PARAM-PASS-BY-VALUE / PROC-DECLARATION

OK-OPS
PASS-ENV: ID ENV STATE -> ENV
PASS: EXP-LIST STATE ENV -> STATE
GET-ENV: ID ENV STATE -> ENV
GET-PARAMS: ID ENV STATE -> ID-LIST

VARS
EXP: EXP
EXP-L: EXP-LIST
ID: ID
STMT-L: STMT-LIST
STATE: STATE
ENV: ENV

OK-EQNS
(PASS(EXP; EXP-L, STATE, ENV)= PASS(EXP-L, PASS(
 EXP, STATE, ENV), ENV))
(PASS(EXP, STATE, ENV)= INITIALIZE(VALUE(EXP, ENV,
 STATE), STATE))
(PASS-ENV(ID, ENV, STATE)= BIND(GET-PARAMS(ID, ENV,
 STATE), GET-ENV(ID, ENV, STATE), STATE))
(GET-PARAMS(ID, ENV, STATE)= FORMALS-OF(DEFN-OF
 CONTOUR-VAL(VALUE(ID, ENV, STATE))))
(GET-ENV(ID, ENV, STATE)= ENTERBLOCK ENV-OF
 CONTOUR-VAL(VALUE(ID, ENV, STATE)))

OBJ CALL-BY-VALUE / PARAM-PASS-BY-VALUE EXECUTION

OK-OPS
CALL-OK?: ID EXP-LIST ENV STATE -> BOOL
LIST-TYPE: EXP-LIST ENV STATE -> TYPE-LIST
GET-STMT: ID ENV STATE -> STMT-LIST

ERR-OPS
PARAMS-OF-MISMATCH_: ID EXP-LIST -> BOOL

VARS
ID: ID
EXP-L: EXP-LIST
EXP: EXP
ENV: ENV
STATE : STATE
OK-EQNS
(EVAL(CALL ID [EXP-L],ENV,STATE) = EVAL(
GET-STMT(ID,ENV,STATE),PASS-ENV(ID,ENV,
STATE),PASS(EXP-L,STATE,ENV)) IF CALL-OK?(ID
,EXP-L,ENV,STATE))
(CALL-OK?(ID,EXP-L,ENV,STATE) = T IF(TYPE(ID,ENV,
STATE) == TYPE(EXP-L,ENV,STATE)))
(GET-STMT(ID,ENV,STATE) = STMT-OF DEFN-OF
CONTOUR-VAL(VALUE(ID,ENV,STATE)))
(LIST-TYPE(EXP,ENV,STATE) = TYPE(EXP,ENV,STATE))
(LIST-TYPE(EXP; EXP-L,ENV,STATE) = TYPE(EXP,ENV,
STATE); LIST-TYPE(EXP-L,ENV,STATE))
ERR-EQNS
(CALL-OK?(ID,EXP-L,ENV,STATE) = PARAMS-OF ID
MISMATCH EXP-L IF(NOT(TYPE(ID,ENV,STATE) ==
PROC[LIST-TYPE(EXP-L,ENV,STATE)])))
JBO

*** WE NOW SUM UP ALL THE FEATURES OF MODEST ***

OBJ MODEST / STATEMENTS CALL-BY-VALUE
JBO

=End of file=

EXIT
@
@; WE NOW SAVE THE RESULTS OF OBJT20'S PROCESSING OF THIS
@; DEFINITION IN A FILE TO WHICH WE CAN RETURN LATER FOR
@; EXECUTION. IN EFFECT, WE HAVE COMPILED AN INTERPRETER
@; FOR THE LANGUAGE MODEST.
@
@SAVE MOD.EXE
MOD.EXE.3 Saved
@
@VDI MOD.EXE

PS: <OBJT>
MOD.EXE.3; P775200 268 137216(36) 6-Jul-81 18:02:16 GOQUEN

@; THUS FILE MOD.EXE IS IN DIRECTORY <OBJT>, 268 PAGES LONG

@R MOD
[CHKPOINT:(7 6 81) AT (18 2 10)]

IN MODEST NI
TEST PROGRAMS FOR THE MODEST DEFINITION

FIRST TESTS FOR CONDITIONAL

RUN EXECUTE(((BEGIN 'A : INT ; READ 'A ; (IF: 'A <= 4 THEN PRINT('A + 1)ELSE PRINT('A * 2)); FI)END)
WITH-INPUT(< INT : 2 >)) NUR
AS TAPE: (< INT : 3 >)

RUN EXECUTE(((BEGIN 'A : INT ; READ 'A ; (IF: 'A <= 4 THEN PRINT('A + 1)ELSE PRINT('A * 2)); FI)END)
WITH-INPUT(< INT : 5 >)) NUR
AS TAPE: (< INT : 10 >)

A TEST FOR WHILE

RUN EXECUTE(((BEGIN 'A : INT ; 'S : INT ; READ 'A ; 'S := 0 ; WHILE('A > 0)DO('S :=('A + 'S) ; 'A :=('A - 1) ; PRINT 'S)OD END)WITH-INPUT(< INT : 2 >)) NUR
AS TAPE: ((< INT : 2 >);(< INT : 3 >))

A TEST FOR BLOCKS

RUN EXECUTE(((BEGIN 'A : INT ; 'B : INT ; (READ 'A ; 'B :=('A + 11) ; PRINT 'B) ; (BEGIN 'A : INT ; READ
'A ; 'B :=('A + 5) ; PRINT 'B END) ; 'B :=('A + 22) ; PRINT 'B END)WITH-INPUT(< INT : 11 > ; < INT : 5 >)) NUR
AS TAPE: ((< INT : 22 >);(< INT : 10 >);(< INT : 33 >))

TESTS FOR RECURSION, FIRST FACTORIAL

RUN EXECUTE(((BEGIN 'S : INT ; 'M : INT ; PROC 'P ['A : INT]('S :=('S * 'A))END ; 'S := 1 ; READ
'M) ; WHILE('M > 1)DO(CALL 'P ['M]) ; 'M :=('M - 1)OD ; PRINT 'S END)WITH-INPUT(< INT : 2 >)) NUR
AS TAPE: (< INT : 2 >)

RUN EXECUTE(((BEGIN('A : INT ; (PROC 'P ['B : INT](IF: ('B
<= 3)THEN(CALL 'P ['B + 1])ELSE(PRINT('B + 11));(FI)END)); (READ 'A ; CALL 'P ['A])END)WITH-INPUT < INT : 1 >) NUR
AS TAPE: (< INT : 15 >)

31
*** TESTS FOR PROCEDURES AS PARAMETERS ***

RUN EXECUTE((BEGIN('A : INT ; 'Q : PROC[INT] ; (PROC 'S
 ['C : INT])(PRINT 'C)END);(PROC 'P ['R :
 PROC[INT] ; 'D : INT])(CALL 'R ['D])END
);(READ 'A ; 'Q := 'S ;(CALL 'P ['Q ; 'A
]))END)WITH-INPUT(< INT : 22 >)) NUR

AS TAPE: (< INT : 22 >)

RUN EXECUTE((BEGIN('A : INT ; 'Q : PROC[PROC[INT] ;
 INT ; INT]);(PROC 'P [('R : PROC[INT] ;
 'B : INT ; 'C : INT])(CALL 'R [('B + 'C)])
 END);(PROC 'S ['A : INT])(PRINT('A + 11))
 END);('Q := 'P ; READ 'A ;(CALL 'Q ['S ;
 'A ; 'A]))END)WITH-INPUT(< INT : 11 >)) NUR

AS TAPE: (< INT : 33 >)

=End of file=

EXIT
@
@POP

[PHOTO: Recording terminated Mon 6-Jul-81 6:18PM]
C SYMBOLORE SPECIFICATION

[PHOTO: Recording initiated Tue 9-Dec-80 11:32PM]

Link from OBJT, TTY 31

TOPS-20 Command processor 3A(30)-3

@OBJT

***OBJT 12/2/79

IN NAT POBS INDEX TREE STREE NI

*** NAT.OBJ : DEFINES NATURAL NUMBER FROM INTEGER USING
CONSTRUCTOR OPERATION (# N) AND ERROR CONDITION (N < 0) ***

OBJ NAT / INT
SORTS NAT
OK-OPS
 #_ : INT -> NAT
 INC : NAT -> NAT
 DEC : NAT -> NAT
 POS : NAT -> BOOL
ERR-OPS
 NEG : -> NAT
VARS
 N : INT
EQNS
 (DEC(# N)= # DEC(N))
OK-EQNS
 (INC(# N)= # INC(N))
 (POS(# N)= N > 0)
ERR-EQNS
 (# N = NEG IF N < 0)

JBO

*** TEST CASES FOR NAT ***
RUN INC(INC(# 4)) NUR
AS NAT: (# 6)

RUN DEC(DEC(# 1)) NUR
AS NAT: >>ERROR>> NEG

RUN INC(DEC(DEC(# 1))) NUR
AS NAT: >>ERROR>> INC(NEG)

RUN DEC(DEC(DEC(# 1))) NUR

33
AS NAT: >>ERROR>> DEC(NEG)

RUN DEC(INC(DEC(# 1))) NUR
AS NAT: (# 0)

=End of file=

*** POBJ.SOBJ : DEFINES PARAMETERIZED OBJECTS ARRAY AND PAIR ***
OBJ ARRAY / BOOL
SORTS ARRAY INDEX ELEM / BOOL
OK-OPS
NILARRAY : -> ARRAY
PUT : INDEX ELEM ARRAY -> ARRAY
___[]___ : ARRAY INDEX -> ELEM
__IN__ : INDEX ARRAY -> BOOL
ERR-OPS
UNDEF : INDEX -> ELEM
VARS
A : ARRAY
I I' : INDEX
V V' : ELEM
OK-EQNS
(PUT(I,V,A)[I'] = V IF I == I')
(= A [I'] IF NOT I == I')
(I IN NILARRAY = P)
(I IN PUT(I',V,A) = I == I' OR I IN A)
ERR-EQNS
(A[I] = UNDEF(I) IF NOT I IN A)
JBO

OBJ PAIR
SORTS PAIR C1 C2
OK-OPS
___<___ : C1 C2 -> PAIR
___#1__ : PAIR -> C1
___#2__ : PAIR -> C2
VARS
C1 : C1
C2 : C2
P : PAIR
OK-EQNS
(#1 < C1 ; C2 > = C1)
(#2 < C1 ; C2 > = C2)
(< #1 P ; #2 P > = P)
JBO

=End of file=

34
INDEX.OBJ : DEFINES INDEX = POINTER TO A NODE IN A TREE

OBJ INDEX / NAT
SORTS INDEX

OK-OPS
- INDEX : -> INDEX
- POP_ : INDEX -> INDEX
- __ : INDEX NAT -> INDEX
- NEXT_ : INDEX -> INDEX
- PREV_ : INDEX -> INDEX

ERR-OPS
- UNDEF : -> INDEX
- NO-PREV : -> INDEX

VARS
- P : INDEX
- N : NAT

OK-EQNS
- (POP(P . N)= P)
- (NEXT(P . N)= P . INC(N))
- (PREV(P . N)= P . DEC(N))

ERR-EQNS
- (POP INDEX = UNDEF)
- (P . N = NO-PREV IF ERR(N))

JBO

TEST CASES FOR INDEX

OBJ INDEXTEST / INDEX

OK-OPS
- P1 : -> INDEX

EQNS
- (P1 = INDEX . # 1 . # 2 . # 3)

JBO

RUN P1 NUR
AS INDEX: (((INDEX .(# 1)).(# 2)).(# 3))

RUN POP P1 NUR
AS INDEX: ((INDEX .(# 1)).(# 2))

RUN POP POP P1 NUR
AS INDEX: (INDEX .(# 1))

RUN POP POP POP P1 NUR
AS INDEX: INDEX

RUN POP POP POP POP P1 NUR
AS INDEX: >>ERROR>> UNDEF

RUN NEXT P1 NUR
AS INDEX: (((INDEX .(# 1)).(# 2)).(# 4))

RUN PREV P1 NUR
AS INDEX: (((INDEX .(# 1)).(# 2)).(# 2))

=End of file=

*** TREE.OBJ : DEFINES LABLED TREE AS INDEXED ARRAY ,
WITH LABEL AS A PARAMETER ***

IM (ARRAY => LTREE1)/ INDEX
SORTS (ARRAY => LTREE)
(ELEM => LABEL)
OPS (NILARRAY : - ARRAY => NILTREE)
MI

OBJ LTREE / LTREE1
OK-OPS
 ARITY : INDEX LTREE -> INT
 BREADTH : INDEX LTREE -> INT
 FIRST : INDEX LTREE -> INDEX
 LAST : INDEX LTREE -> INDEX
 PUSH : INDEX LTREE -> INDEX
 PUSH : INDEX LABEL LTREE -> LTREE
ERR-OPS
 BAD-INDEX : - INT
 BAD-INDEX : INDEX -> INDEX
 BAD-INDEX : INDEX -> LTREE
VARS
 T : LTREE
 P : INDEX
 N : NAT
 L : LABEL
 I : INT
OK-EQNS
(BREADTH(P . # 1,T)= 0 IF NOT(P . # 1)IN T)
(BREADTH(P . N,T)= BREADTH(P . INC(N),T)IF(P .
 INC(N))IN T)
(BREADTH(P . # I,T)= I IF(P . # I)IN T AND NOT(P .
 # INC(I))IN T)
(FIRST(P,T)= P . # 1 IF(P . # 1)IN T)
(ARITY(P,T)= BREADTH(P . # 1,T))
(LAST(P,T)= P . # ARITY(P,T))
(PUSH(P,T)= P . # INC(ARITY(P,T)))
(PUSH(P,L,T) = PUT(PUSH(P,T),L,T) IF P IN T)

ERR-EQNS
(BREADTH(P . # 0, T) = BAD-INDEX)
(BREADTH(P . N, T) = BAD-INDEX IF NOT P IN T OR
ER(N))
(FIRST(P, T) = BAD-INDEX(P) IF NOT(P . # 1) IN T)
(LAST(P, T) = BAD-INDEX(P) IF NOT(P . # ARITY(P, T))
IN T)
(PUSH(P, L, T) = BAD-INDEX(P) IF NOT P IN T)

*** INSTANTIATE LABEL TO INTEGER IN LTREE AND TEST ***

IM (LTREE => INTREE)/ INDEX
SORTS (LABEL => INT)
MI

OBJ LTREETEST / INTREE
OK-OPS
 P_ : INT -> INDEX
 T_ : INT -> LTREE

EQNS
(P 0 = INDEX)
(T 0 = PUT(P 0,0,NILTREE))
(P 1 = P 0 . # 1)
(T 1 = PUT(P 1,1,T 0))
(P 2 = NEXT P 1)
(T 2 = PUT(P 2,2,T 1))
(P 3 = P 2 . # 1)
(T 3 = PUT(P 3,3,T 2))
(P 4 = NEXT P 3)
(T 4 = PUT(P 4,4,T 3))
(P 5 = NEXT P 4)
(T 5 = PUT(P 5,5,T 4))
(T 6 = PUSH(P 0,6,T 5))
(P 6 = PUSH(P 0,T 5))
(T 7 = PUSH(P 2,7,T 5))
(P 7 = PUSH(P 2,T 5))
(T 8 = PUSH(P 3,8,T 5))
(P 8 = PUSH(P 3,T 5))
(T 9 = PUSH(P 5,9,T 5))
(P 9 = PUSH(P 5,T 5))

JBO

RUN ARITY(P 0,T 5) NUR
AS INT: 2

RUN ARITY(P 2,T 5) NUR
AS INT: 3
(PUSH(P,L,T)= PUT(PUSH(P,T),L,T)IF P IN T)

ERR-EQNS

(BREADTH(P . # 0,T)= BAD-INDEX)
(BREADTH(P . N,T)= BAD-INDEX IF NOT P IN T OR ERR(N))
(FIRST(P,T)= BAD-INDEX(P)IF NOT(P . # 1)IN T)
(LAST(P,T)= BAD-INDEX(P)IF NOT(P . # ARITY(P,T)) IN T)
(PUSH(P,L,T)= BAD-INDEX(P)IF NOT P IN T)

JBO

*** INSTANTIATE LABEL TO INTEGER IN LTREE AND TEST ***

IM (LTREE => INTREE)/ INDEX
SORTS (LABEL => INT)
MI

OBJ LTREE TEST / INTREE
OK-OPS
 P_: INT -> INDEX
 T_: INT -> LTREE

EQNS

(P 0 = INDEX)
(T 0 = PUT(P 0,0,NILTREE))
(P 1 = P 0 . # 1)
(T 1 = PUT(P 1,1,T 0))
(P 2 = NEXT P 1)
(T 2 = PUT(P 2,2,T 1))
(P 3 = P 2 . # 1)
(T 3 = PUT(P 3,3,T 2))
(P 4 = NEXT P 3)
(T 4 = PUT(P 4,4,T 3))
(P 5 = NEXT P 4)
(T 5 = PUT(P 5,5,T 4))
(T 6 = PUSH(P 0,6,T 5))
(P 6 = PUSH(P 0,T 5))
(T 7 = PUSH(P 2,7,T 5))
(P 7 = PUSH(P 2,T 5))
(T 8 = PUSH(P 3,8,T 5))
(P 8 = PUSH(P 3,T 5))
(T 9 = PUSH(P 5,9,T 5))
(P 9 = PUSH(P 5,T 5))

JBO

RUN ARITY(P 0,T 5) NUR
AS INT: 2

RUN ARITY(P 2,T 5) NUR
AS INT: 3
RUN ARITY(P 3, T 5) NUR
AS INT: 0

RUN ARITY(P 4, T 5) NUR
AS INT: 0

RUN ARITY(P 5, T 5) NUR
AS INT: 0

RUN T 5 [P 0] NUR
AS INT: 0

RUN T 5 [P 1] NUR
AS INT: 1

RUN T 5 [P 2] NUR
AS INT: 2

RUN T 5 [P 3] NUR
AS INT: 3

RUN T 5 [P 4] NUR
AS INT: 4

RUN T 5 [P 5] NUR
AS INT: 5

RUN T 9 [P 0] NUR
AS INT: 0

RUN T 9 [P 1] NUR
AS INT: 1

RUN T 9 [P 2] NUR
AS INT: 2

RUN T 9 [P 3] NUR
AS INT: 3
RUN T 9 [P 4] NUR
AS INT: 4

RUN T 9 [P 5] NUR
AS INT: 5

RUN T 9 [P 6] NUR
AS INT: >>ERROR>> UNDEF((INDEX .(# 3)))

RUN T 9 [P 7] NUR
AS INT: >>ERROR>> UNDEF(((INDEX .(# 2)).(# 4)))

RUN T 9 [P 8] NUR
AS INT: >>ERROR>> UNDEF(((INDEX .(# 2)).(# 1)).(# 1)))

RUN T 9 [P 9] NUR
AS INT: 9

=End of file=

*** STREE.OBJ : DEFINES SYMBOLOCTREE , PARAMETERIZED BY
LABEL ***

IM (PAIR => STREE))/ L TREE
SORTS (PAIR => STREE)
 (C1 => INDEX)
 (C2 => L TREE)
MI

OBJ STREE / STREE1
OK-OPS
 NILSTREE : => STREE
 PUSH : STREE LABEL => STREE
 LABEL : STREE LABEL => STREE
 VAL_ : STREE => LABEL
 POP_ : STREE => STREE
 NEXT_ : STREE => STREE
 PREV_ : STREE => STREE
VARS
 ST : STREE
 L : LABEL
OK-EQNS
 (NILSTREE = < INDEX ; NILTREE >)
 (PUSH(ST,L)= = #1 ST . # INC(ARITY(#1 ST,#2 ST)))

39
; PUSH(#1 ST,L,#2 ST)>
(LABEL(ST,L)=<#1 ST;PUT(#1 ST,L,#2 ST)>)
(VAL ST=#2 ST[#1 ST])
(POP ST=<POP #1 ST;#2 ST>)
(NEXT ST=<NEXT #1 ST;#2 ST>)
(PREV ST=<PREV #1 ST;#2 ST>)

JBO

*** INSTANTIATE LABEL TO INT AND TEST ***

IM (STREE => INTSTREE) STREE1
SORTS (LABEL => INT)
MI

OBJ STREETEST / INTSTREE
OK-OPS
 T_ : INT -> STREE
EQNS
 (T 0 = LABEL(NILSTREE,0))
 (T 1 = PUSH(T 0,1))
 (T 2 = PUSH(POP T 1,2))
 (T 3 = PUSH(POP T 2,3))
 (T 4 = PUSH(POP T 3,4))
 (T 5 = PUSH(T 4,5))
 (T 6 = PUSH(POP T 5,6))
 (T 7 = POP T 6)

JBO

RUN VAL T 0 NUR
AS INT: 0

RUN VAL T 1 NUR
AS INT: 1

RUN VAL T 2 NUR
AS INT: 2

RUN VAL T 3 NUR
AS INT: 3

RUN VAL T 4 NUR
AS INT: 4

RUN VAL T 5 NUR
AS INT: 5
RUN VAL T 6 NUR AS INT: 6

RUN VAL T 7 NUR AS INT: 4

RUN VAL PREV T 7 NUR AS INT: 3

RUN VAL PREV T 6 NUR AS INT: 5

RUN VAL PREV T 4 NUR AS INT: 3

=End of file=

> >
EXIT @
@POP

[PHOTO: Recording terminated Tue 9-Dec-80 11:45PM]
D SPECIFICATION OF GRAPHS AND PATHS

[PHOTO: Recording initiated Mon 6-Jul-81 5:04PM]

Link from GOGUEN, TTY 10

TOPS-20 Command processor 3A(37)-3

@OBJT20

***OBJT 4/17/81

> IN GRAPH NI
OBJT20 Running at 404602 Load 2.23 Used 0:02:25.8 in 0:34:03

*** DEFINITIONS OF GRAPH AND PATH, TO BE LATER SPECIALIZED TO PARTICULAR GRAPHS ***

OBJ GRAPH
SORTS NODE ARC
OK-OPS
 BEGIN_ : ARC -> NODE
 END_ : ARC -> NODE
JBO

OBJ PATH / GRAPH BOOL
SORTS PATH
OK-OPS
 SOURCE_ : PATH -> NODE
 TARGET_ : PATH -> NODE
 NIL : NODE -> PATH
 APPEND : PATH ARC -> PATH
ERR-OPS
 ERRORPATH : NODE NODE -> PATH
VARS
 N N' : NODE
 P : PATH
 A : ARC
OK-EQNS
 (SOURCE NIL(N)= N)
 (TARGET NIL(N)= N)
 (SOURCE APPEND(P,A)= SOURCE P)
 (TARGET APPEND(P,A)= END A)
ERR-EQNS
 (APPEND(P,A)= ERRORPATH(SOURCE P,END A)IF NOT
TARGET P == BEGIN A)

OBJ GRAPH1 / PATH
OK-OPS
N1 : --> NODE
N2 : --> NODE
N3 : --> NODE
N4 : --> NODE
A1 : --> ARC
A2 : --> ARC
A3 : --> ARC
OK-EQNS
(BEGIN A1 = N1)
(BEGIN A2 = N2)
(BEGIN A3 = N4)
(END A1 = N2)
(END A2 = N3)
(END A3 = N3)

*** NOW SOME TEST CASES ***

RUN APPEND(NIL(N1),A1) NUR
AS PATH: APPEND(NIL(N1),A1)

RUN APPEND(APPEND(NIL(N1),A1),A2) NUR
AS PATH: APPEND(APPEND(NIL(N1),A1),A2)

RUN APPEND(APPEND(APPEND(NIL(N1),A1),A2),A3) NUR
AS PATH: >>ERROR>> ERRORPATH(N1,N3)

RUN APPEND(NIL(N1),A2) NUR
AS PATH: >>ERROR>> ERRORPATH(N1,N3)

RUN APPEND(APPEND(NIL(N1),A1),A3) NUR
AS PATH: >>ERROR>> ERRORPATH(N1,N3)

*** WE NOW DEFINE ANOTHER GRAPH ***

OBJ GRAPH2 / PATH
OK-OPS
\[
\begin{align*}
N1 & : \rightarrow \text{NODE} \\
N2 & : \rightarrow \text{NODE} \\
N3 & : \rightarrow \text{NODE} \\
N4 & : \rightarrow \text{NODE} \\
A1 & : \rightarrow \text{ARC} \\
A2 & : \rightarrow \text{ARC} \\
A3 & : \rightarrow \text{ARC} \\
A4 & : \rightarrow \text{ARC} \\
\end{align*}
\]

OK-EQNS
\[
\begin{align*}
\text{(BEGIN A1} & = N2) \\
\text{(BEGIN A2} & = N2) \\
\text{(BEGIN A3} & = N3) \\
\text{(BEGIN A3} & = N1) \\
\text{(END A1} & = N1) \\
\text{(END A2} & = N3) \\
\text{(END A3} & = N4) \\
\text{(END A4} & = N1) \\
\end{align*}
\]

*** NOW SOME TEST CASES FOR THE SECOND GRAPH ***

RUN APPEND(NIL(N1),A1) NUR
AS PATH: >>ERROR>> ERRORPATH(N1,N1)

RUN APPEND(NIL(N2),A1) NUR
AS PATH: APPEND(NIL(N2),A1)

RUN APPEND(APPEND(NIL(N1),A1),A2) NUR
AS PATH: >>ERROR>> ERRORPATH((SOURCE ERRORPATH(N1,N1)),N3)

RUN APPEND(APPEND(NIL(N2),A1),A4) NUR
AS PATH: >>ERROR>> ERRORPATH(N2,N1)

RUN APPEND(APPEND(APPEND(NIL(N2),A1),A4),A3) NUR
AS PATH: >>ERROR>> ERRORPATH((SOURCE ERRORPATH(N2,N1)),N4)

RUN APPEND(NIL(N1),A2) NUR
AS PATH: >>ERROR>> ERRORPATH(N1,N3)
RUN APPEND(APPEND(NI(N1),A4),A3) NUR
AS PATH: >>ERROR> ERRORPATH((SOURCE ERRORPATH(N1,N1)),N4
)

=End of file=
>
EXIT
@
@POP

[PHOTO: Recording terminated Mon 6-Jul-81 5:05PM]
HERE ARE SOME INTERESTING THINGS YOU MIGHT NOT HAVE REALIZED
COULD BE DONE WITH OBJT: DEFINE THE NATURALS FROM THE INTEGERS;
GET THE EFFECT OF HIGHER ORDER PARAMETERIZED TYPES; AND DEFINE
PARAMETERIZED TYPES WHICH DO NOT PRESERVE THEIR ARGUMENT OBJECTS,
BUT RATHER DIVIDE THEM BY 5.

[PHOTO: Recording initiated Tue 9-Dec-80 11:32PM]

Link from OBJT, TTY 31

TOPS-20 Command processor 3A(30)-3

***OBJT 12/2/79

IN NAT POBJS INDEX TREE STREE NI

*** NAT.OBJ : DEFINES NATURAL NUMBER FROM INTEGER USING
CONSTRUCTOR OPERATION (# N) AND ERROR CONDITION (N < 0
)

OBJ NAT / INT
SORTS NAT
OK-OPS
 #_ : INT -> NAT
 INC : NAT -> NAT
 DEC : NAT -> NAT
 POS : NAT -> BOOL
ERR-OPS
 NEG : -> NAT
VARS
 N : INT
EQNS
 (DEC(# N)= # DEC(N))
OK-EQNS
 (INC(# N)= # INC(N))
 (POS(# N)= N > 0)
ERR-EQNS
 (# N = NEG IF N < 0)

*** TEST CASES FOR NAT ***

RUN INC(INC(# 4)) NUR
AS NAT: (# 6)

RUN DEC(DEC(# 1)) NUR
AS NAT: >>ERROR>> NEG

RUN INC(DEC(DEC(# 1))) NUR
AS NAT: >>ERROR>> INC(NEG)

RUN DEC(DEC(DEC(# 1))) NUR
AS NAT: >>ERROR>> DEC(NEG)

RUN DEC(INC(DEC(# 1))) NUR
AS NAT: (# 0)

=End of file=

[PHOTO: Recording initiated Mon 13-Apr-81 6:57PM]

Link from OBJT, TTY 1

TOPS-20 Command processor 3A(32)-3
End of COMAND.CMD.1
@OBJT

***OBJT 12/2/79

>IN MAPLIST.OBJ NI

*** MAPLIST AS PARAMETERIZED OBJECT ***

OBJ MAPLIST
SORTS E L
OK-OPS
 _ : E -> L
 NIL : -> L
_ _ : L L -> L (ASSOCIATIVE)
 FE : E -> E
 FL : L -> L

VARS
 L L' : L
 E : E

OK-EQNS
 (NIL . L = L)
 (L . NIL = L)
 (FL(E)= FE(E))
 (FL(NIL)= NIL)
 (FL(E . L)= FE(E) . FL(L))

JBO

47
*** WE NOW INSTANTIATE IT TO A SQUARING FUNCTION ON LISTS, BUT MUST FIRST DEFINE THE SQUARING FUNCTION ***

OBJ INTSQ / INT
OK-OPS
 SQ : INT -> INT
VARS
 N : INT
OK-EQNS
 (SQ(N) = N * N)
JBO

IM (MAPLIST => NATLISTSQ)/ INTSQ
SORTS (E => INT)
 (L => INTLIST)
OPS (FE : E -> E => SQ)
MI

RUN FL(1 , 2 , 3) NUR
AS INTLIST: (1 , 4 , 9)

RUN FL(3 , 6 , 17) NUR
AS INTLIST: (9 , 36 , 289)

*** WE NOW INSTANTIATE THIS TO AN ADD1 FUNCTION ON LISTS ***

IM (MAPLIST => INTLISTINC)/ INT
SORTS (E => INT)
 (L => INTLIST)
OPS (FE : E -> E => INC)
MI

RUN FL(1 , 2 , 3) NUR
AS INTLIST: (2 , 3 , 4)

RUN FL(3 , 6 , 17) NUR
AS INTLIST: (4 , 7 , 18)

=End of file=
>EXIT
@POP

[PHOTO: Recording terminated Mon 13-Apr-81 6:58PM]
Link from OBJT, TTY 1

TOPS-20 Command processor 3A(32)-3
End of COMAND.CMD.1
@OBJT

***OBJT 12/2/79

>IN NAT5 NI

*** NATURAL NUMBERS ***
OBJ NAT
SORTS N
OK-OPS
 Z : -> N
 S : N -> N
 + : N N -> N
VARS
 M P : N
OK-EQNS
 (Z + M = M)
 (S(M) + P = S(M + P))
JBO

RUN Z NUR
AS N: Z

RUN S(Z) NUR
AS N: S(Z)

RUN S(S(Z)) NUR
AS N: S(S(Z))

RUN S(S(S(Z))) NUR
AS N: S(S(S(Z)))

RUN S(S(S(S(Z)))) NUR
AS N: S(S(S(S(Z))))

RUN S(S(S(S(S(Z))))) NUR
AS N: S(S(S(S(S(Z)))))

RUN S(S(S(S(S(S(Z))))) NUR
AS N: S(S(S(S(S(S(Z))))))

RUN S(S(S(S(S(S(S(Z)))))))) NUR
AS N: S(S(S(S(S(S(S(Z)))))))))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS N: S(S(S(S(S(S(S(S(Z)))))))))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS N: S(S(S(S(S(S(S(S(Z)))))))))

RUN S(S(Z))-> S(S(Z)) NUR
AS N: S(S(S(S(S(Z))))))

RUN S(S(Z))-> S(S(S(Z)))) NUR
AS N: S(S(S(S(S(Z))))))

*** THIS PARAMETERIZED OBJECT IDENTIFIES 5 AND 0 ***
OBJ MOD5
SORTS N
OK-OPS
 Z : -> N
 S : N -> N
VARS
 N : N
OK-EQNS
 (S(S(S(S(S(Z))))))= Z)
JBO

*** WE NOW INstantiate IT TO THE NATURALS AS ABOVE ***
IM (MOD5 => NAT5)
SORTS (N => NAT)
MI

RUN Z NUR
AS NAT: Z

RUN S(Z) NUR
AS NAT: S(Z)

RUN S(S(Z)) NUR

50
AS NAT: S(S(Z))

RUN S(S(S(Z)))) NUR
AS NAT: S(S(Z))

RUN S(S(S(S(S(Z))))) NUR
AS NAT: Z

RUN S(S(S(S(S(Z))))) NUR
AS NAT: S(Z)

RUN S(S(S(S(S(S(S(Z))))))) NUR
AS NAT: S(S(Z))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS NAT: S(S(S(Z)))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS NAT: S(S(S(Z)))

RUN S(S(Z)) + S(S(Z)) NUR

?Warning: EXPRESSION CANNOT BE PARSED
RUN S(S(Z)) + S(S(S(Z))) NUR

?Warning: EXPRESSION CANNOT BE PARSED

*** WHAT HAPPENS IF WE TRY IT ON INT? ***

IM (MOD5 => INT5)
SORTS (N => INT)
MI

RUN Z NUR
AS INT: Z

RUN S(Z) NUR
AS INT: S(Z)

RUN S(S(Z)) NUR
AS INT: S(S(Z))

RUN S(S(S(Z))) NUR
AS INT: S(S(Z))

RUN S(S(S(S(Z))))) NUR
AS INT: Z

RUN S(S(S(S(S(Z)))))) NUR
AS INT: S(Z)

RUN S(S(S(S(S(S(Z))))))) NUR
AS INT: S(S(Z))

RUN S(S(S(S(S(S(S(Z)))))))) NUR
AS INT: S(S(S(Z)))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS INT: S(S(S(Z)))

RUN S(S(Z))+ S(S(Z)) NUR
?Warning: EXPRESSION CANNOT BE PARSED
RUN S(S(Z))+ S(S(S(Z))) NUR
?Warning: EXPRESSION CANNOT BE PARSED

=End of file=
>IN NAT5S NI

OBJ NAT5S / INT
OK-EQNS
(5 = 0)
?Warning: INPUT ABNORMALLY TERMINATED
>EXIT
@POP

[PHOTO: Recording terminated Mon 13-Apr-81 7:05PM]

F PARTIAL ALGEBRAS WITH EQUATIONALLY DEFINED DOMAINS

We have investigated partial algebras such that the domains of definition of their operations can be equationally defined. These are very close in spirit to error algebras [Goguen 77], on which the semantics of OBJ is based; the main difference is that, for exceptional cases, an operation is just not defined, instead of producing an error message as in the case of error algebras.

Partial algebras, with equationally defined domains of definition for their operations have a strong expressive power. Moreover, they have initial algebras, relatively free algebras, and all limits and colimits. This supports an initial algebra semantics and many useful constructions.

We shall illustrate the concept with two examples. The first is a version of stack of integers as a partial algebra with equationally defined domains. We give the specification in an OBJ-like style [Goguen & Tardo 79], and will explain our notation below.

OBJ STACK / INTEGER BOOL
SORTS STACK
VARS S: STACK N: INTEGER
OPS EMPTY : -> STACK
ISEMPTY : STACK -> BOOL
PUSH : INTEGER, STACK -> STACK
POP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER
TOP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER
EQNS
ISEMPTY(EMPTY) = T
ISEMPTY(PUSH(N,S)) = F
POP(PUSH(S,N)) = S
TOP(PUSH(S,N)) = N

The only operations that are partial are POP and TOP. Both are defined exactly on those values of the STACK variable S such that the equation ISEMPTY(S) = FALSE holds. This is represented by the notation

POP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER

and similarly for TOP.

Our next definition is the specification of the data type path.

OBJ PATH
SORTS NODE PATH
VARS A B C : NODE
F G H : PATH
OPS ID : NODE -> PATH
DOM : PATH -> NODE
COD : PATH -> NODE
. : PATH : G , PATH : F : (DOM(G) = COD(F)) -> PATH
The only partial operation here is the composition of paths \(F . G \), which is defined exactly for those values of the variables \(F, G \) such that the equation \(\text{DOM}(G) = \text{COD}(F) \)
holds. (Note that the initial algebra of this specification is empty, but constants of types NODE and PATH can be added. Such constraints will specify a given graph, and then the initial algebra is the algebra of paths on that graph.)

In general, not only equations, but also Horn-like conditional equations are allowable. There is a precise formal definition of the concept of partial algebra with equationally defined domains satisfying a certain set of Horn axioms which can be given in terms of "essentially algebraic theories" as defined below[Gabriel Ulmer 71]. These generalize total algebras, and use the algebraic theory approach[Lawvere 63]. Algebraic theories have also been used by[Burstall & Goguen 77, Burstall & Goguen 80] for the semantics of their specification language CLEAR.

Definition 1: A small category \(T \) is an essentially algebraic theory if \(T \) has all finite limits (i.e. finite products and equalizers). A functor \(H: T \to T' \) between two essentially algebraic theories is a morphism of essentially algebraic theories if and only if it preserves limits.

For instance, the specification of the data type PATH above corresponds to a theory \(T_{\text{PATH}} \), in which each object is a finite limit of the objects NODE and PATH. The object COMPOSABLE (where the operation of path composition is defined) is the equalizer

\[
\begin{array}{c}
\text{COMPOSABLE} \ar[r] & \text{PATH} \times \text{PATH} \ar[l]^{\pi_1} \ar[r]_-{\pi_2} & \text{PATH} \ar[r] & \text{PATH} \ar[l]_\text{DOM} \ar[l]_\text{COD}
\end{array}
\]

and the equations correspond to forcing certain diagrams to commute in \(T \).
Definition 2: A category B is a category of partial algebras with equationally defined domains if and only if B is equivalent to the category $\text{Alg}_T = \lim \text{Funct}(T, \text{Set})$ of (finite) limit preserving functors from T to the category of sets, for T some essentially algebraic theory.

If $S \subseteq \text{Ob}(T)$ is a set of objects of T such that any other object is a finite limit of objects in S, we say that S generates T. Then we can define a forgetful functor U_S from Alg_T to the category S-Set of S-sorted sets, given on objects by $U_S(A) = A(s)$, for every s in S. For example, $S = \{\text{NODE, PATH}\}$ generates T_{PATH}, and U_S is in this case the functor sending each PATH data type to its NODE and PATH sets.

Theorem 3: For T an essentially algebraic theory, Alg_T is complete and cocomplete (in particular it has an initial object). If $S \subseteq \text{Ob}(T)$ generates T, then the functor $U_S: \text{Alg}_T \to S$-Set has a left adjoint; i.e., there are free algebras.

There are also free extensions. For instance the specification

```
OBJ  GRAPH
SORTS NODE EDGE
OPS  DOM : EDGE -> NODE
     COD : EDGE -> NODE
```

has an associated (essentially algebraic) theory T_{GRAPH} which can be embedded in T_{PATH}, so that the injection $J: T_{\text{PATH}} \to T_{\text{GRAPH}}$ is a morphism of theories. This induces a functor $U_J: \text{Alg}_T \to \text{Alg}_T$ by composition with $J: A \to A_j$; this functor considers every PATH-algebra as a GRAPH-algebra by forgetting about the operations of composition and identity. U_J has a left adjoint F_J, which gives the free extension of each graph to its algebra of paths. In general we have

Theorem 4: Let $H: T \to T'$ be a morphism of theories, and let $U_H: \text{Alg}_T, \to \text{Alg}_{T'}$ be the functor induced by composition with H. Then U_H has a left adjoint.

Our ultimate goal in this area is to extend the results on rewrite-rules known
for total algebras to the case of partial algebras with equationally defined domains, as a first step toward further extending these results to error algebras, and in particular obtaining for error algebras the powerful structural results mentioned above. This will provide theoretical support for some of the more experimental features of OBJ.

Using results of [Coste 77] we have isolated a deductive system for partial algebras with equationally defined domains which is both consistent and complete, and we are in the process of integrating a version of that deductive system with OBJ-style specifications like those given above. We also plan to study the relationship to the work of [Kaphengst & Reichel 77, Reichel & Hupbach & Kaphengst 80], and to the categorical work of [Gabriel Ulmer 71]. We believe that many of their infinitary constructions will specialize to the finitary case, which is important for the semantics of partial algebras with equationally defined domains, and for error algebras.
G. STRICT ERROR ALGEBRAS DEFINED BY TESTS

We assume familiarity with error algebras [Goguen '77]. For the case of strict error algebras, i.e., error algebras where all the error elements reduce to an error constant E, the meaning of OK and ERROR equations can be captured as ordinary equations on the whole algebra if we introduce a ternary operation IFE(__,__,_), such that IFE(a,b,c) equals b in case a is the error constant and equals c otherwise. For example, if we want the OK part to satisfy the axioms of group theory we can impose equations such as

\[x \cdot (x)^{-1} = \text{IFE}(x,E,1) \]

\[x \cdot 1 = x \]

which correspond to the axiom about the inverse and neutral elements respectively. If we had just imposed

\[x \cdot x^{-1} = 1 \]

as an ordinary equation, this would have given

\[E = E \cdot E^{-1} = 1 \]

and then every element would collapse to the error element, because

\[x \cdot 1 = x \cdot E = E. \]

For any set \(\Gamma \) of OK-equations and ERROR equations encoded in this form, we have given a free construction, which associates to each strict error \(\Sigma \)-algebra another one satisfying \(\Gamma \), and having the obvious universal property. We have also proved that this process is conservative in that, if the \(\Sigma \)-operations restrict to the OK part, and we only have OK-equations, this construction is equivalent to imposing first the OK equations as ordinary equations on the OK part, and then adding an error element. The following is a summary of our definitions and results.

Definition 1: A strict (error) set is a pair \((A,E)\), where \(E \) belongs to \(A \). A function \(f:A \rightarrow B \) between two strict error sets is a strict (error) function if and only if either:

1. \(|A| = |B| = 1 \);
2. \(|B| = 1 \); or
3. none of the above holds but \(f^{-1}(E) = \{E\} \).

For an index set \(S \) of sorts, an \(S \)-sorted strict error set is a family \((A_s, E))_{s \in S} \) of strict error sets, and similarly an \(S \)-sorted strict error function

57
is a family of strict error functions.

Definition 2: For Σ an S-sorted signature of operations, a strict (error) Σ-algebra is an S-sorted strict error set $A = \{(A_s, E)\}_{s \in S}$ together with a Σ-algebra structure on A such that every operation $\sigma \in \Sigma$ gives as result the error element of A_s whenever one of its operands is an error element; i.e.,

(i) $\sigma(x_1, \ldots, E, \ldots, x_n) = E$

for E in any place i, for $1 \leq i \leq n$. A strict (error) Σ-homomorphism is a Σ-homomorphism that is also a strict error function.

Note that every strict error Σ-algebra can be made into a Σ_{IFE}-algebra, for Σ_{IFE} the signature obtained from Σ by adding a constant E for each sort s in S, and a ternary operation $\text{IFE}: s, t, t \rightarrow t$ for each pair of sorts s, t in S. Given a strict error Σ-algebra, we interpret the constants E as error elements, and we define $\text{IFE}(a, b, c)$ to be equal to b if $a = E$, and to be equal to c otherwise. With this definition every strict error homomorphism becomes a Σ_{IFE}-homomorphism.

Theorem 1: Let Γ be a set of Σ_{IFE} equations, and for every Σ_{IFE} algebra A let A/Γ be the quotient algebra obtained from A by imposing the equations in Γ. Then if A is a strict error Σ-algebra A/Γ is also a strict error Σ-algebra, the canonical quotient $q: A \rightarrow A/\Gamma$ is a strict error homomorphism, and for any strict error Σ-homomorphism $f: A \rightarrow B$ such that B satisfies Γ as a Σ_{IFE}-algebra, there exists a unique strict error homomorphism $r: A/\Gamma \rightarrow B$ such that $r.q = f$.

To each ordinary Σ-algebra A we can associate a strict error Σ-algebra A_E by adding a new element E to each sort A_s, and extending the operation σ in Σ in the obvious way. The following theorem shows that the construction of Theorem 1 can be seen as a "conservative extension" of the construction of imposing ordinary Σ-equations when only OK-equations are imposed.
Theorem 2: Let \(\Delta \) be a set of \(\Sigma \)-equations such that, for each equation, the set of variables occurring in its right hand side is contained in the set of variables occurring in its left hand side. Let \(\overline{\Gamma} \) be the set of \(\Sigma_{\text{IFE}} \) equations obtained from those in \(\Delta \) as follows: for each \(u = v \) in \(\Delta \), if the variables occurring in \(u \) and \(v \) are the same, \(u = v \) belongs to \(\overline{\Gamma} \); otherwise \(u = \text{IFE}(u,E,v) \) belongs to \(\overline{\Gamma} \). Then for every \(\Sigma \)-algebra \(A \) there exists a natural isomorphism of strict error \(\Sigma \)-algebras
\[
(A/\Delta)_E \cong (A_E)/\overline{\Gamma}.
\]
A MODEL-THEORETIC CHARACTERIZATION OF RELATIONAL CLASSES OF PROGRAM SCHEME INTERPRETATIONS

Making operations and tests into elements of a signature of operations Σ, any interpretation of a program scheme can be seen as a continuous Σ-algebra, i.e., as an ω-cpo together with a Σ-algebra structure such that the operations preserve limits of ω-chains [Goguen, Thatcher, Wagner & Wright 77, Nivat 75]. For the equivalence problem of program schemes to be tractable, it is convenient to consider not all interpretations, but just those in a class defined by some natural property.

One such case of particular interest, because it allows proofs by computation induction, is the relational classes, i.e., the classes of algebras A such that there is some set of pairs of finitary Σ-expressions (u,v) such that $u(a_1,\ldots,a_n) \leq v(a_1,\ldots,a_n)$ for every $(a_1,\ldots,a_n) \in A^n$ (where n is the number of distinct variables occurring in u or v) for each (u,v). In [Meseguer 81] those classes have been characterized model-theoretically by the following "Birkhoff-like" result:

Theorem 1: A class of continuous Σ-algebras is relational if and only if it is closed under

(i) products

(ii) (continuous) full subalgebras

(iii) (continuous) quotients, and

(iv) algebraic completions.

REFERENCES

[Burstall & Goguen 77]
Burstall, R. M. and Goguen, J. A.
Putting Theories together to Make Specifications.
Proc. 5th Int. Joint Conf. on Artificial Intelligence, 1977.

[Burstall & Goguen 78]
Burstall, R. M. and Goguen, J. A.
Semantics of CLEAR.
1978.
unpublished notes handed out at the Symposium on Algebra and Applications, Stefan Banach Center, Warszawa.

[Goguen & Parsaye-Ghomi 81]
Goguen, J. A. and Parsaye-Ghomi, K.
Algebraic Denotational Semantics using Parameterized Abstract Modules.
Lecture Notes in Computer Science, volume 107.

[Goguen & Tardo 79]
Goguen, J. A. and Tardo, J.
An Introduction to OBJ-T.

[Goguen, Thatcher, Wagner & Wright 77]
Goguen, J. A., Thatcher, J. W., Wagner, E. and Wright, J. B.
Initial Algebra Semantics and Continuous Algebras.

[Goguen 77]
Goguen, J. A.
Abstract Errors for Abstract Data Types.
Also published by North-Holland, 1979, edited by P. Neuhold.

[Goguen 80]
Goguen, J. A.
How to Prove Algebraic Inductive Hypotheses without Induction: with applications to the correctness of data type representations.

[Kaphengst & Reichel 77]
Kaphengst, H. and Reichel, H.
Initial Algebraic Semantics for Non-Context-Free Languages.

[Lawvere 63]
Lawvere, F. W.

[Levitt, Robinson & Silverberg 79]
Levitt, K., Robinson, L. and Silverberg, B.

62
[Meseguer 80] Meseguer, J.
Varieties of Chain-Complete Algebras.

[Meseguer 81] Meseguer, J.
A Birkhoff-like Theorem for Algebraic Classes of Interpretations of Program Schemes.
Lecture Notes in Computer Science, volume 107.

[Nivat 75] Nivat, M.
On the Interpretation of Polyadic Recursive Schemes.

Initial Algebraic Specifications of Data Types, Parameterized Data Types, and Algorithms.

[Tardo 81] Tardo, J.
DATE
TILME