Source Flow Effect on Lineshape

H. Mirels
Aerophysics Laboratory
Laboratory Operations
The Aerospace Corporation
El Segundo, Calif. 90245

10 July 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Sponsored by
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DOD)
DARPA Order No. 3646
Monitored by SD under Contract No. F04701-80-C-0081

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center
Los Angeles, Calif. 90009

THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT ARE THOSE
OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS NECESSARILY
REPRESENTING THE OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF
THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY OR THE U.S.
GOVERNMENT.
This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract No. F04701-79-C-0080 with the Space Division, Deputy for Technology, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation by W. R. Warren, Jr., Director, Aerophysics Laboratory, Lieutenant J. C. García, SD/YLVS, was the project officer for Technology. Dr. H. Allan Pike is the Program Director for the DARPA Washington Office. This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

James C. García, Lt, USAF
Project Officer

Florian P. Meinhardt, Lt Col, USAF
Director of Advanced Space Development

FOR THE COMMANDER

William Goldberg, Colonel, USAF
Deputy for Technology
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 SD-TR-81-17

2. **GOVT ACCESION NO.**
 AD-A103 835

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 SOURCE FLOW EFFECT ON LINESHAPE

5. **AUTHOR(s)**
 Harold Mirels

6. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 The Aerospace Corporation
 El Segundo, Calif. 90245

7. **CONTRIBUTING ORGANIZATION NAME AND ADDRESS**
 Defense Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209

8. **Sponsoring Sponsor's Order No.**
 DARPA Order 7646

9. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**

10. **DEPARTMENT OF THE REPORT DATE**
 10 July 1981

11. **REPORT NUMBER**
 TR-0081(6764)-1

12. **ABSTRACT**
 The effect of mean fluid motion on the lineshape of a Doppler-broadened medium is investigated for the case of radiation that is perpendicular (transverse) to the axis of a two-dimensional source flow with semi angle \(\theta_e \). The case \(\theta_e^2 \ll 1 \) is considered. Transverse flow effects are significant when \((V_e/a)^2 \geq 0.1\), where \(V_e\) and \(a\) characterize the transverse mean motion and thermal motion, respectively. For typical cw chemical lasers, the latter condition corresponds to flows in the range \(\theta_e^2 \geq 0 \) (1/25).
CONTENTS

I. INTRODUCTION ... 5
II. THEORY ... 7
III. APPLICATION ... 17
FIGURES

1. Source Flow..6
2. Particle Space in V-v and W-w Coordinates.........................10
3. Lineshape...12
4. Anomalous Index of Refraction..15
5. Effect of Threshold Gain and Source Flow on Output Power from Multiple Longitudinal Mode CW Chemical Laser Employing a Fabry-Perot Resonator..18
I. INTRODUCTION

The effect of particle motion on spectral lineshape (i.e., Doppler broadening) is usually evaluated by assuming that the particles have a random thermal motion. In high-speed gas-flow lasers, of which chemical lasers are an example, the working fluid may have significant mean velocities as well as random velocities in the optical path direction. In these cases, it is necessary to take the mean motion into account when evaluating the spectral lineshape. The effect of a source flow on Doppler-broadened lineshape is evaluated herein for the case where radiation is perpendicular to the source flow axis (Fig. 1). The application to a cw chemical laser is then noted.

II. THEORY

Consider a two-dimensional source flow with half angle θ_e (Fig. 1). A radiation field $I(\nu)$ is assumed to propagate in a direction that is transverse to the flow axis. The divergence of the flow results in mean motion in the transverse (optical path) direction. Local mean velocity and random velocity in the transverse direction are denoted by V and v, respectively. The resultant transverse velocity field is $W = V + v$. The radiation frequency ν, which is resonant with particles of velocity W, is found from the Doppler relation

$$W = (\nu - \nu_o) \frac{c}{\nu_o}$$ \hspace{1cm} (1)

where ν_o is the resonant frequency for stationary particles and c is the speed of light. The spectral lineshape is found by determining the distribution function for particles in the range W to $W + dW$, which is found in the following paragraphs.

Consider the case $\theta_e^2 \ll 1$. The flow density and axial flow velocity at each streamwise station x are independent of θ, whereas the transverse velocity can be expressed

$$\frac{V}{V_e} = \frac{\theta}{\theta_e}$$ \hspace{1cm} (2)

where V_e is the value of V corresponding to $\theta = \theta_e$. The fraction of particles in the velocity range V to $V + dV$ is
\[F(V) = \begin{cases} \frac{1}{2V_e} & |V| < V_e \\ 0 & |V| > V_e \end{cases} \]

Under equilibrium conditions, the fraction of particles in the velocity range \(v\) to \(v + dv\) has a Maxwellian distribution\(^1\)

\[f(v) = \frac{1}{\pi^{1/2}a} e^{-v^2/a^2} \]

where \(a = (2kT/m)^{1/2}\) is the most probable random particle speed. The quantities \(F(V)\) and \(f(v)\) are normalized so that

\[\int_{-\infty}^{\infty} f(v) dv = \int_{-\infty}^{\infty} F(V) dV = 1 \] \hspace{1cm} (5a) \]

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) F(V) dv dV = 1 \] \hspace{1cm} (5b) \]

The integrand in Eq. (5b) denotes the fraction of particles in the combined range \(V\) to \(V + dV\) and \(v\) to \(v + dv\). We now replace the independent variables \(V, v\) by the pair \(W, w\) defined by

\[W = v + V \] \hspace{1cm} (6a) \]
\[w = v - V \quad (6b) \]

It is seen from Fig. 2 that \(W, w \) are orthogonal variables. The particles are confined to the region \(-V_e < V < V_e\) in \(\nu, \nu \) space and to the region \(W - 2V_e < w < W + 2V_e\) in \(W, w \) space. The particles in the velocity range \(V \) to \(V + dV \) and \(\nu \) to \(\nu + d\nu \) are related to the particles in the range \(W \) to \(W + dW \) and \(w \) to \(w + dw \) by

\[
f(v) f(V) d\nu dV = f\left(\frac{W-w}{2}\right) f\left(\frac{W+w}{2}\right) \frac{\partial(v,V)}{\partial(w,W)} dw dW
\quad (7)
\]

where \(\frac{\partial(v,V)}{\partial(w,W)} \) is the Jacobian given by

\[
\frac{\partial(v,V)}{\partial(w,W)} = \left| \begin{array}{cc} \frac{V}{w} & \frac{V}{w} \\ \frac{V}{w} & \frac{V}{w} \end{array} \right| = \frac{1}{2}
\quad (8)
\]

Equation (5b) becomes

\[
1 = \int_{-\infty}^{\infty} dW \int_{W-2V_e}^{W+2V_e} dw \left(\frac{e^{-\left(\frac{W+W}{2a^2}\right)}/(4\pi)^{1/2}}{aV_e} \right)
\quad (9a)
\]

\[
= \int_{-\infty}^{\infty} dW \left[\frac{\text{erf}\left(\frac{W+V_e}{a}\right) - \text{erf}\left(\frac{W-V_e}{a}\right)}{4V_e} \right]
\quad (9b)
\]

The integrand in Eq. (9b) can be interpreted as the fraction of particles in the range \(W \) to \(W + dW \). Introduce the notation \(X_e \equiv V_e/a \), and

\[^3D. \, H. \, Menzel, \, Fundamental \, Formulas \, of \, Physics, \, Vol. \, I, \, (Dover \, Publications, \, New \, York, \, 1960), \, p. \, 26. \]
Fig. 2. Particle Space in V-W and W-W Coordinates
\[X = \frac{W}{a} = \frac{v_v - v_o}{v_o} \frac{c}{a} = 2(\ln 2)^{1/2} \frac{v_v - v_o}{\Delta v_D} \]

where \(\Delta v_D \) is the Doppler width (FWHM) corresponding to \(X_e = 0 \). The fraction of particles in the interval \(X \) to \(X + dX \) is denoted \(n(X, X_e) \) and, from Eq. (9b), equals

\[n(X, X_e) = \frac{[\text{erf}(X + X_e) - \text{erf}(X - X_e)]}{(4X_e)} \]

Limiting forms of \(n(X, X_e) \) are

\[\pi^{1/2} n(X, X_e) = 1 - \left(\frac{X_e^2}{3} + X^2 \right) + \left(\frac{X_e^4}{10} + X_e^2 X^2 + \frac{X^4}{2} \right) - \cdots \]

\[= e^{-X^2} \left[1 + O(X_e^2) \right] \]

\[= \frac{\pi^{1/2}}{2X_e} \text{erf} (X_e) \left[1 + O(X^2) \right] \]

Thus, transverse mean flow effects are negligible for \((X_e)^2 \ll 1 \) and must be considered for \((X_e)^2 > 0(1) \). This result is physically realistic, since \(X_e \) is the ratio of characteristic mean to characteristic random motion in the transverse direction. The variation of \(\pi^{1/2} n(X, X_e) \) with \(X \) is plotted in Fig. 3 for various values of \(X_e \). Figure 3 can be used directly to estimate the effect of
Fig. 3. Lineshape [Eqs. (11) and (13)]
transverse mean motion on zero power gain of a Doppler-broadened medium. If we let \(g_0(X, X_e) \) denote the zero power gain corresponding to \(X, X_e \), it follows that in the Doppler limit\(^4,5\) (i.e., in the limit of \(\Delta \nu_h / \Delta \nu_D < < 1 \), where \(\Delta \nu_h \) is the homogeneous half-width)

\[
\frac{g_0(X, X_e)}{g_0(0, 0)} = \pi^{1/2} n(X, X_e)
\]

(13)

where \(g_0(0, 0) \) is the line center value in the absence of transverse motion.

Thus, the ordinate in Fig. 3 is a direct measure of the effect of transverse mean motion on zero power gain. Line center gain is decreased, and the lineshape is broadened as \(X_e \) is increased. The corresponding value of the anomalous index of refraction \(n(X, X_e) \) can be expressed\(^4,5\) for \(\lambda \equiv c/\nu_o \),

\[
\frac{2\pi}{\lambda} \frac{n(X, X_e)-1}{g(0,0)} = \frac{1}{8\pi^{1/2} X_e} \int_{-\infty}^{\infty} \frac{dx}{x-X_0} \left[\text{erf}(X+X_e) - \text{erf}(X-X_e) \right]
\]

(14a)

\[
= \frac{1}{\pi^{1/2}} \frac{X}{X_e} D(X_e) [1 + O(X^2)]
\]

(14b)

\[
= \frac{1}{\pi^{1/2}} D(X) [1 + O(X_e^2)]
\]

(14c)

\(^4\)H. Mirels, AIAA J. 17 (5), 478 (1979)

where D() is the Dawson integral. Equation (14a) is plotted in Fig. 4. The maximum value of the index decreases as X increases and occurs at values of X and X related by \(D(X + X_e) = D(X - X_e) \), which for \((X + X_e)^{-2} \ll 1\) becomes

\[
X^2 = X_e^2 + 0.5 \left[1 + 0(X + X_e)^{-2} \right].
\]
Fig. 4. Anomalous Index of Refraction [Eq. (14)]
III. APPLICATION

It is convenient to express the parameter X_e in terms of local flow Mach number. The most probable speed a is related to the local speed of sound a_s by

$$a_s/a = (\gamma RT/m)^{1/2}$$

where γ is the ratio of specific heats, which equals 7/5 and 5/3 for diatomic and monatomic gases, respectively. Let $M_e \equiv V_e/a_s$ denote the characteristic transverse flow Mach number, and it follows that X_e is related to M_e by

$$X_e = (2/\gamma)^{1/2} M_e$$

Thus, X_e is nearly equal to the characteristic transverse flow Mach number.

The present results can be applied to cw chemical lasers in which transverse flow expansion is permitted. Typical axial flow Mach numbers are in the range 4 to 6 and can be characterized as being of order 5. The corresponding value of X_e is then of order $X_e = 0(50)$. Thus, transverse flow effects are negligible for $\theta_e^2 << 0(1/25)$ and must be considered for $\theta_e^2 > 0(1/25)$.

The effect of source flow on cw chemical laser output power is being investigated for the case of a two-level model, laminar mixing, a Fabry Perot resonator, and multiple longitudinal modes spacing [i.e., $\Delta \nu_c/\Delta \nu_h \propto (1)$, where $\Delta \nu_c = c/2L$ is the longitudinal mode spacing]. Preliminary results are indicated in Fig. 5. The ordinate P/P_{sat} is the ratio of output power to saturated output power, and the abscissa is the ratio of cavity threshold gain, g_c, to the maximum zero power gain, g_{zp}, for the case $X_e = 0$. The decrement in output power caused by source flow is seen to become more severe as threshold gain is increased.
Fig. 5. Effect of Threshold Gain and Source Flow on Output Power from Multiple Longitudinal Mode CW Chemical Laser Employing a Fabry-Perot Resonator
LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting experimental and theoretical investigations necessary for the evaluation and application of scientific advances to new military concepts and systems. Versatility and flexibility have been developed to a high degree by the laboratory personnel in dealing with the many problems encountered in the Nation's rapidly developing space systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that contribute to this research are:

Aerophysics Laboratory: Aerodynamics; fluid dynamics; plasma dynamics; chemical kinetics; engineering mechanics; flight dynamics; heat transfer; high-power gas lasers, continuous and pulsed, IR, visible, UV; laser physics; laser resonator optics; laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric reactions and optical backgrounds; radiative transfer and atmospheric transmission; thermal and state-specific reaction rates in rocket plumes; chemical thermodynamics and propulsion chemistry; laser isotope separation; chemistry and physics of particles; space environmental and contamination effects on spacecraft materials; lubrication; surface chemistry of insulators and conductors; cathode materials; sensor materials and sensor optics; applied laser spectroscopy; atomic frequency standards; pollution and toxic materials monitoring.

Electronics Research Laboratory: Electromagnetic theory and propagation phenomena; microwave and semiconductor devices and integrated circuits; quantum electronics, lasers, and electro-optics; communication sciences, applied electronics, superconducting and electronic device physics; millimeter-wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; composite materials; graphite and ceramics; polymeric materials; weapons effects and hardened materials; materials for electronic devices; dimensionally stable materials; chemical and structural analyses; stress corrosion; fatigue of metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation from the atmosphere, density and composition of the atmosphere, aurora and airglow; magnetospheric physics, cosmic rays, generation and propagation of plasma waves in the magnetosphere; solar physics, x-ray astronomy; the effects of nuclear explosions, magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and magnetosphere; the effects of optical, electromagnetic, and particulate radiations in space on space systems.