ON THE OPTIMALITY OF SEMIDYNAMIC ROUTING SCHEMES (U)

NOV 80 A K AGRAWALA, S K TRIPATHI

AFOSR-78-3654

UNCLASSIFIED TR-975

AFOSR-TR-81-0487
On the Optimality of Semidynamic Routing Schemes

Ashok K. Agrawala
Satish K. Tripathi

Abstract

Semidynamic routing schemes perform better than stochastic schemes. Recently some semidynamic schemes based on the best stochastic schemes have been studied. In this paper, using a simple example, we show that devising semidynamic schemes from stochastic rules may not yield the best performance.

Key Words: resource allocation, performance measurement

This research was supported in part by the Air Force Office of Scientific Research under grant AFOSR-78-3654. The Computing support was provided by the Computer Science Center of the University of Maryland.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSOR)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b). Distribution is unlimited.
A. D. BLOSE
Technical Information Officer
Semidynamic routing schemes perform better than stochastic schemes. Recently some semidynamic schemes based on the best stochastic schemes have been studied. In this paper, using a simple example, we show that devising semidynamic schemes from stochastic rules may not yield the best performance.
1. Introduction

The routing schemes reported in the literature can be classified into two basic categories, Dynamic (adaptive) and Static\(^1\). The dynamic schemes require information about the state at the destination which is obtained through explicit mechanisms which may involve significant overhead. The accuracy (i.e., currentness) of such information depends on the communication delays. Further, such algorithms rarely lend themselves to analysis. The static algorithms are based on the information available at the time of designing the system and do not change as a function of arrivals or loads. An example of such routing are stochastic rules [Schw 77].

Recently a new class of algorithms under the name "Semidynamic" were introduced [AT 80] [Yum 79] [EVW 79] where, while no information from the destination is sought, the controller retains some information from the past and uses it in making its decisions. Extensive analysis of stochastic rules is available in the literature, and the ways of determining the optimal stochastic rule for different speed servers is known [Schw 77]. The study of semidynamic rules is only in its infancy. In [EVW 79] the authors show that for two equal speed servers the deterministic rule of routing to them alternately is the best. YUM [Yum 79] has shown that a deterministic rule based on the best stochastic rule gives better delay performance than the stochastic rule.

Based on a recently developed technique [AT 80], in this paper we show that the deterministic techniques based on the best stochastic rules are not necessarily optimal.

2. Best Stochastic and Semidynamic Rules

Consider an example where a controller (C) routes the arriving

\(^1\)There are many ways of classifying routing techniques, [McQu 77] [Gall 77] [DT 79].
customers to one of the many nodes (N_i); see figure 1.

![Figure 1](image)

The optimal rule for a given class is the rule of that class (for example, Stochastic rules) which minimizes the mean delay in the system2. Assume that the external arrival rate is λ and the processing rate of node i is M_i. The interarrival time and the processing time are each exponentially distributed. An optimal routing probability to node i, P_i, can be obtained [BC 74].

A deterministic (semidynamic) rule corresponding to a stochastic rule is based on a deterministic routing sequence S:

$$S = \{S_1, S_2, \ldots, S_m\}$$

with $S_i = k$ meaning a routing decision in favor of node k for the ith incoming message. For any subsequence of length k, let $D(i/k)$ be the number of i-decisions, $i = 1, 2, \ldots, n$. Sequence S is constructed in such

2 The problem can easily be extended to a network and in that case the routing problem is similar to the Multi-commodity Flow problem in Network Flow Theory. In this paper, however, we restrict ourselves to simple single hop strategies.
a way that $\frac{D(i/k)}{k}$, the fraction of messages routed to N_i in the total of k messages, is as close to P_i as possible for all k [Yum 79]. As an example, consider $n=2$, $P_1=2/3$, and $P_2=1/3$. S is given by:

$$S = \left\{ [1,1,2] \right\}$$

where $[\cdot]$ means sequence inside is to be repeated. Such routing schemes are also referred as cyclic routing where the cycle is $1,1,2$ [AT 80].

3. Optimality of Semidynamic Rules

Semidynamic rules are not only easy to implement but also give better performance than their stochastic parents [Yum 79]. Once the class of admissible rules is expanded to semidynamic rules, however, we can obtain a sequence that gives better performance than the one based on the best stochastic rule.

Consider an example where we have two nodes with the following sequence:

$$S = \left\{ [\frac{11\cdots1}{n_{11}}, \frac{22\cdots2}{n_{21}}, \frac{11\cdots1}{n_{12}}, \frac{22\cdots2}{n_{22}}, \ldots, \frac{11\cdots1}{n_{1k}}, \frac{22\cdots2}{n_{2k}}] \right\}$$

where $n_{ij}>0$. Note that $P_1 = \frac{\sum_{i=1}^{k} n_{1i}}{\sum_{i=1}^{k} (n_{1i} + n_{2i})}$ and $P_2 = \frac{\sum_{i=1}^{k} n_{2i}}{\sum_{i=1}^{k} (n_{1i} + n_{2i})}$

Let us look at the node N_1. The interarrival time distribution this node is given by

$$A = \frac{E_{n_{21}E_{11}E_1}, E_{n_{21}E_{11}E_1}, E_{n_{21}E_{11}E_1}, \ldots, E_{n_{2k-1}E_{11}E_1}}{n_{11-1}}, \frac{E_{n_{22}E_{12}E_2}, E_{n_{22}E_{12}E_2}, E_{n_{22}E_{12}E_2}, \ldots, E_{n_{2k-1}E_{12}E_2}}{n_{12-1}}, \ldots, \frac{E_{n_{2k-1}E_{1k}E_k}}{n_{1k} \ldots E_1}$$

where E_i denotes an i-fold convolution of exponential distributions with the same rate (the arrival rate). Thus, node N is a $G^n/M/1$ queue where the arrival is from different distributions of a cycle length n. Solutions to such a queue are presented elsewhere [AT 80] and we will use them here to
show the non-optimality of semidynamic rules based on optimal stochastic rules.

Let $M_1 = 4$, $M_2 = 1$ and $\lambda = 3$ (requests per unit time). From [BC 74] $P_1 = 8/9$ and $P_2 = 1/9$, and the mean time delay w^* is given by $w^* = 5/6$ time units. The corresponding semidynamic rule is given by the following sequence:

$$(8,1) = \{(1,1,1,1,1,1,1,2)\}$$

where (i,j) denotes a sequence with i jobs going to node 1 and j to node 2. Thus the interarrival time distributions to server 1 are E_2 followed by seven E_1's and to server 2 is E_8. The mean time delay for the $(8,1)$ rule is given in Table 1. This table also gives the waiting time for $(7,1)$, $(6,1)$, $(5,1)$ and $(4,1)$. Clearly the mean time delay for $(8,1)$ is less than w^* but the corresponding delay for $(7,1)$ is less than that for $(8,1)$. From the figures in the table we note that $(6,1)$ gives the minimum mean delay. However, the optimum deterministic semidynamic routing strategy may involve a complex sequence sending a fraction of the incoming jobs between one out of 8 and one out of 6.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Mean Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td></td>
</tr>
<tr>
<td>$(8,1)$</td>
<td>0.8333</td>
</tr>
<tr>
<td>$(7,1)$</td>
<td>0.7642</td>
</tr>
<tr>
<td>$(6,1)$</td>
<td>0.7535</td>
</tr>
<tr>
<td>$(5,1)$</td>
<td>0.7469</td>
</tr>
<tr>
<td>$(4,1)$</td>
<td>0.7532</td>
</tr>
<tr>
<td></td>
<td>0.8018</td>
</tr>
</tbody>
</table>
Further result from the routing sequences with proportions between one out of 8 and one out of 6 is given in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Proportion</th>
<th>Scheme</th>
<th>Mean delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/13</td>
<td>{6,1},{5,1}</td>
<td>.7478</td>
</tr>
<tr>
<td>3/20</td>
<td>{6,1},{6,1},{5,1}</td>
<td>.7472</td>
</tr>
<tr>
<td>4/27</td>
<td>{6,1},{6,1},{6,1},{5,1}</td>
<td>.7470</td>
</tr>
<tr>
<td>1/7</td>
<td>{6,1}</td>
<td>.7469</td>
</tr>
<tr>
<td>3/22</td>
<td>{6,1},{6,1},{7,1}</td>
<td>.7485</td>
</tr>
<tr>
<td>2/15</td>
<td>{6,1},{7,1}</td>
<td>.7495</td>
</tr>
</tbody>
</table>

Note that the minimum delay occurs around one out of 7 proportion. However, obtaining exact optimal sequence is still an open problem.

4. Conclusions

The results presented in this paper show than an optimal semidynamic deterministic routing scheme cannot be constructed simply by using the optimal stochastic proportions. This observation is made from a simple counterexample. The approach to obtain the optimal deterministic sequences needs further investigation.
References

