An extension of a previous result on the analysis of a method O--ETC
DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
WEAPONS SYSTEMS RESEARCH LABORATORY
DEFENCE RESEARCH CENTRE SALISBURY
SOUTH AUSTRALIA

TECHNICAL MEMORANDUM
WSRL-0169-TM

AN EXTENSION OF A PREVIOUS RESULT ON THE ANALYSIS OF
A METHOD OF MEASURING THE SIGNAL TO NOISE RATIO OF
A SINUSOID IN NOISE

A.P. CLARKE

Technical Memoranda are of a tentative nature, representing the views of the author(s), and do not necessarily carry the authority of this Laboratory.

Approved for Public Release.

COPY No. 24
SEPTEMBER 1980
The official documents produced by the Laboratories of the Defence Research Centre Salisbury are issued in one of five categories: Reports, Technical Reports, Technical Memoranda, Manuals and Specifications. The purpose of the latter two categories is self-evident, with the other three categories being used for the following purposes:

Reports
- documents prepared for managerial purposes.

Technical Reports
- records of scientific and technical work of a permanent value intended for other scientists and technologists working in the field.

Technical Memoranda
- intended primarily for disseminating information within the DSTO. They are usually tentative in nature and reflect the personal views of the author.
AN EXTENSION OF A PREVIOUS RESULT ON THE ANALYSIS OF A METHOD OF MEASURING THE SIGNAL-TO-NOISE RATIO OF A SINUSOID IN NOISE.

A.P. Clarke

SUMMARY

This paper presents the derivation of closed form expressions for the probability density function and the associated mean and variance when estimating tonal signal-to-noise ratio from a power spectrum obtained as the average of a set of power spectra. Computer programs are described that can aid in experimental design and some possible lines of examination are indicated.
<table>
<thead>
<tr>
<th>1 DOCUMENT NUMBERS</th>
<th>2 SECURITY CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Number: WSRL-0169-TM</td>
<td>b. Title in Isolation: Unclassified</td>
</tr>
<tr>
<td>Other Numbers:</td>
<td>c. Summary in Isolation: Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN EXTENSION OF A PREVIOUS RESULT ON THE ANALYSIS OF A METHOD OF MEASURING THE SIGNAL TO NOISE RATIO OF A SINUSOID IN NOISE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 PERSONAL AUTHOR(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.P. Clarke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 DOCUMENT DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 TOTAL NUMBER OF PAGES 19</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7.1 CORPORATE AUTHOR(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weapons Systems Research Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.2 DOCUMENT SERIES AND NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weapons Systems Research Laboratory 0169-TM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 REFERENCE NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Task: DST 79/069</td>
</tr>
<tr>
<td>b. Sponsoring Agency: DST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 COST CODE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>380 BA 326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 IMPRINT (Publishing organisation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defence Research Centre Salisbury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11 COMPUTER PROGRAM(S) (Title(s) and language(s))</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12 RELEASE LIMITATIONS (of the document):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Public Release.</td>
</tr>
</tbody>
</table>

Security classification of this page: UNCLASSIFIED
This paper presents the derivation of closed form expressions for the probability density function and the associated mean and variance when estimating tonal signal-to-noise ratio from a power spectrum obtained as the average of a set of power spectra. Computer programs are described that can aid in experimental design and some possible lines of examination are indicated.
TABLE OF CONTENTS

1. INTRODUCTION 1 - 2
2. THE CHARACTERISTIC FUNCTION OF SIGNAL PLUS NOISE POWER 2 - 3
3. THE PROBABILITY DENSITY FUNCTION OF SIGNAL PLUS NOISE POWER 3 - 4
4. THE PROBABILITY DENSITY FUNCTION OF THE NOISE POWER 4
5. THE PROBABILITY DENSITY FUNCTION FOR THE SIGNAL-TO-NOISE RATIO ESTIMATOR 4 - 6
6. THE MEAN AND VARIANCE OF THE SIGNAL-TO-NOISE RATIO ESTIMATOR 7 - 8
7. AN ALTERNATIVE DERIVATION 9 - 10
8. SOME PRACTICAL RESULTS 11
9. CONCLUSIONS 11
10. ACKNOWLEDGEMENT
 REFERENCES 12

LIST OF APPENDICES

I MATHEMATICAL DETAILS 13 - 14
II COMPUTER PROGRAMS 15

LIST OF FIGURES

1. Variation in the probability density function for the estimate of signal-to-noise ratio from an average of N spectra using 10 noise bins at an input signal-to-noise ratio of 5 dB
2. Variation in the probability density function for the estimate of signal-to-noise ratio from an average of N spectra using 10 noise bins at an input signal-to-noise ratio of -5 dB
3. Deviation of the mean when using N spectra to estimate signal-to-noise ratio for a 1 Hz bin width and using 10 noise bins for estimating noise power
4. A demonstration of the effect of using N spectra to estimate signal-to-noise ratio for a 1 Hz bin width and using 10 noise bins for estimating noise power
1. INTRODUCTION

The statistical properties of estimators of signal-to-noise ratio of acoustic tones are needed in ongoing studies of acoustic signal processing (Task No. DST 79/069 - Signal Processing for Underwater Detection) in areas as widely separated as measurement of acoustic transmission loss and signal detection theory. In a previous paper by the author (ref. 1) an expression was derived for the probability density function of an estimate of the signal-to-noise ratio of a sine wave in Gaussian noise. The estimate was obtained from the power spectrum of a sampled data sequence. The analytic results in reference 1 have been used to obtain functional forms for the coefficient of variation of signal-to-noise ratio estimates derived from data obtained from several sea-going experiments. The agreement between analysis and experiment was found to be excellent.

Reference 1 did not address the situation where the spectrum used for estimation was obtained as the average of a number of spectra derived from consecutive sequences of data samples. This present paper gives a solution to this problem by using a characteristic function approach with the aid of some integrals presented in Appendix I. The problem is to find the distribution of z

$$z = \frac{1}{r} \left\{ \frac{1}{N} \sum_{i=1}^{N} x_i \right\} - 1$$

where x_i is the power in the signal bin for the i-th spectral estimate and y_{ij} is the power in the j-th noise bin for the i-th spectral estimate.

The noise bin must not include the signal bin or contain extraneous signal residues.

N is the number of spectra from which an average spectrum is obtained.

p is the number of noise bins in the average spectrum used to estimate noise power

$\frac{1}{r}$ is the bin width in Hertz.

Equation (1) can be rewritten as

$$z = \frac{1}{r} \left\{ \sum_{i=1}^{N} x_i \right\} - 1$$

$$= \frac{1}{r} \left\{ \sum_{j=1}^{p} \frac{1}{N} \sum_{i=1}^{N} y_{ij} \right\}$$

Equation (2) can be rewritten as
Before proceeding with the development of the solution, some results of a standard nature are summarised from reference 2 in order to aid in reading this paper, viz:

1. The characteristic function of a random variable \(x \) with probability density function \(f(x) \) is given by

\[
\phi(t) = \int_{-\infty}^{\infty} dx \exp(jtx) f(x)
\]

2. The characteristic function of the sum \(S \) of \(N \) random variables whose individual characteristic functions are \(\phi(t) \) is

\[
\phi_S(t) = \{\phi(t)\}^N
\]

3. If \(\phi(t) \) is absolutely integrable over the range \((-\infty, \infty)\) then

\[
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \exp(-jtx) \phi(t)
\]

2. THE CHARACTERISTIC FUNCTION OF SIGNAL PLUS NOISE POWER

For a single spectral estimate the probability density function of the signal + noise power is given by equation (7) of reference 1. Note that the nomenclature is the same, i.e:

\[
f(x) = A^2 \exp \left\{ -A^2(x + K^2) \right\} I_0(2A^2 K \sqrt{x}), \quad x \geq 0
\]

\[
= 0, \quad x < 0
\]

where \(I_0(.) \) is the modified Bessel function of zero order. The characteristic function of this density function is then, after a simple rearrangement, given by

\[
\phi(t) = A^2 \exp(-A^2 K^2) \int_0^\infty dx \exp \left\{ -(A^2 - jt) x \right\} I_0(2A^2 K \sqrt{x})
\]

By making the elementary substitutions

\[
a = A^2 \exp(-A^2 K^2)
\]

\[
\beta = A^2 - jt
\]

\[
\gamma = 2j A^2 K
\]

\[
\mu = \sqrt{x}
\]
and using the relation \(I_0(\mu) = J_0(j\mu) \) the characteristic function can be written as

\[
\phi(t) = 2a \int_0^\infty d\mu \mu \exp(-\beta \mu^2) J_0(\gamma \mu)
\]

\[\tag{9}\]

Applying the formula I.1 from the Appendix I gives

\[
\phi(t) = \frac{a}{\beta} \exp(\frac{\gamma^2}{4\beta})
\]

\[\tag{10}\]

ie

\[
\phi(t) = A^2 \left(\frac{A^2 + it}{A^2 + t^2} \right) \exp(-A^2 K^2) \exp \left[-A^2 K^2 \left(\frac{A^2 + it}{A^2 + t^2} \right) \right]
\]

\[\tag{11}\]

3. THE PROBABILITY DENSITY FUNCTION OF SIGNAL PLUS NOISE POWER

The density function derived in this section is for the summation in the numerator of equation (2).

For the sum of \(N \) terms each distributed as in equation (6)

\[
\phi_{\text{sum}} = \{ \phi(t) \}^N = \left(\frac{a}{\beta} \right)^N \exp \left\{ -\frac{N\gamma^2}{4\beta} \right\}
\]

\[\tag{12}\]

\[\text{.... from equation (10)}\]

Hence the probability density function for the sum is

\[
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \left(\frac{a}{\beta} \right)^N \exp(-jt x) \exp \left(-\frac{N\gamma^2}{4\beta} \right)
\]

\[\tag{13}\]

\[\text{.... from equation (5)}\]

As \(\beta \) is a function of \(t \), viz \(\beta = A^2 - jt \), the integral can be rewritten in terms of \(\beta \) to give, after some rearrangement:

\[
f(x) = \frac{ja^N}{2\pi} \exp(-A^2 x) \int_{-\infty}^{\infty} d\beta \frac{1}{\beta^N} \exp(x\beta - \frac{N\gamma^2}{4\beta})
\]

\[\tag{14}\]

Using the formula I.2 in the Appendix I gives, after some algebra:

\[
f(x) = \frac{A^2}{j^{N-1} \left(\frac{x}{NK^2} \right)^{(N-1)/2}} \exp(-A^2 (x + NK^2)) J_{N-1}(2jA^2 K\sqrt{NK})
\]
The Bessel function of the first kind of order \(n \) is related to the modified Bessel function of order \(n \) by

\[
I_n(x) = (-j)^n J_n(jx)
\]

Hence

\[
f(x) = A^2 \left(\frac{x}{NK^2} \right)^{(N-1)/2} \exp \left[-A^2 (x + NK^2)\right] I_{N-1}(2A^2 K \sqrt{Nk})
\]

(15)

4. THE PROBABILITY DENSITY FUNCTION OF THE NOISE POWER

From reference 1, equation (8), each term \(y_{ij} \) in the denominator of equation (2) is distributed as \(X^2 \). Hence, using the well-known addition theorem(ref. 2) for \(X^2 \) variates, the double summation term in equation (2) is distributed as \(X^2 \), \(1/A \sqrt{2} \)-ie:

\[
\text{if } \mu = \sum_{j=1}^{P} \sum_{i=1}^{N} y_{ij}
\]

then

\[
f_U(y) = \frac{A^2 pN \cdot y^{pN-1} \cdot \exp(-A^2 y)}{2^pN \cdot \Gamma(pN)}
\]

(16)

5. THE PROBABILITY DENSITY FUNCTION FOR THE SIGNAL-TO-NOISE RATIO ESTIMATOR

The probability density function for the ratio of the summation terms in equation (2) can now be obtained by applying the classical relation given in Parzen(ref. 2) for the density of the ratio of two independent positive random variables, viz:

\[
f_{X/Y}(y) = \int_{0}^{\infty} f_X(xy) f_Y(x) \, dx
\]

(17)
\[
f_{x/y}(y) = \int_{0}^{\infty} dx \times A^2 \left(\frac{yx}{NK^2} \right)^{(N-1)/2} \exp(-A^2 (yx+ NK))
\]

Gathering terms independent of \(x \) gives

\[
\frac{A^{2pN+2}}{\Gamma(pN)} \left(\frac{y}{NK} \right)^{(N-1)/2} \exp(-NA^2K^2)
\]

The integral rearranges to

\[
\int_{0}^{\infty} dx \times x^{pN+(N-1)/2} \exp(-A^2 x(y+1)) I_{N-1}(2A^2K\sqrt{Nx})
\]

As stated previously a simple relation holds between the modified Bessel functions and the Bessel functions of the first kind, ie:

\[
I_k(x) = j^{-k} J_k(jx)
\]

Hence the integral becomes

\[
\int_{0}^{\infty} dx \times x^{pN+(N-1)/2} \exp(-A^2 x(y+1)) j^{-N+1} J_{N-1}(2A^2Kj\sqrt{Ny})
\]

With the substitution \(\mu^2 = x \) the integral becomes

\[
2j^{-N+1} \int_{0}^{\infty} d\mu \times \mu^{2pN+N} \exp(-A^2 (y+1) \mu^2) J_{N-1}(2A^2Kj\sqrt{Ny} \mu)
\]

\[
= 2j^{-N+1} \int_{0}^{\infty} d\mu \times \mu^{\alpha-1} \exp(-\beta^2 \mu^2) J_{\alpha-1}(\gamma \mu)
\]

where the substitutions
\[\alpha = 2pN+N+1 \]
\[\beta = A(y+1)^{1/2} \]
\[\gamma = 2A^2 K \sqrt{N} \]

are distinct from the use previously made in manipulating equation (7).

A simple application of the formula given by equation I.1 in the Appendix I enables the integral (22) to be evaluated to give

\[
\frac{2^j N^+1 \Gamma(\frac{a+n-1}{2}) \gamma^{N-1} M(\frac{a+N-1}{2}, N, -\frac{\gamma^2}{4\beta})}{\Gamma(N) \beta^{a+N-1}}
\]
(24)

Substitution for \(\alpha, \beta, \gamma \) gives, after some rearrangement:

\[
\frac{\Gamma(pN+N) K^{N-1} N(N-1)/2 \gamma^{(N-1)/2} M(pN+N,N,NA^2K^2(\frac{\gamma}{\gamma+1}))}{\Gamma(N) A^2 pN+2 (y+1)^{pN+N}}
\]
(25)

Forming the product with (19) gives, after some algebra:

\[
f_{X/Y}(y) = \frac{\exp(-NA^2K^2) \gamma^{N-1}}{\beta(pN,N) (y+1)^{pN+N}} M(pN+N,N,NA^2K^2(\frac{\gamma}{\gamma+1}))
\]
(26)

where \(\beta(...) \) is the bivariate \(\beta \)-function.

The distribution of \(z \) as defined by equation (2) then follows from

\[
f_z(z) = \frac{r}{p} f_Y(\frac{rz+p+1}{p})
\]
(27)

where \(z = \frac{p}{r} y - \frac{1}{r} \) from equation (2).

The above is simply derived from the classic relation(ref.2)

\[
f_{aX+B}(y) = \frac{1}{a} f_X(\frac{y-B}{a})
\]
(28)

ie

\[
f_z(z) = \frac{r p^{pN} e^{-NA^2K^2(rz+p+1)^{-N-1}} M(pN+N,N,NA (\frac{rz+p+1}{rz+p+1}))}{\beta(pN,N) (rz+p+1)^{pN+N}}
\]
(29)

A simple consideration of equation (2) indicates that \(z \) will only take values in

\[-\frac{1}{r} \leq z < \infty \]
6. THE MEAN AND VARIANCE OF THE SIGNAL-TO-NOISE RATIO ESTIMATOR

The mean and variance of \(z \) follow readily from the moments of \(y \), where \(y \) is the ratio of the summation terms appearing in equation (2). The moments of \(y \) can be derived from the density equation (26), ie:

\[
E[y^n] = \frac{\exp(-N^2 K^2)}{\beta(pN,N)} \int_0^\infty dy \frac{y^{n+(N-1)}}{(y+1)^{pN+N}} M(pN+N,N,NA^2 K^2) \left(\frac{y}{y+1}\right) \tag{30}
\]

A series expansion for \(M(\ldots,\ldots) \) written in the form

\[
M(a,b,z) = \frac{\Gamma(b)}{\Gamma(a)} \sum_{r=0}^\infty \frac{\Gamma(a+r)}{r!} \frac{z^r}{r!} \tag{31}
\]

can be substituted in the above equation to give, after reversing the order of integration and summation and using the \(\Gamma \)-function form of the \(\beta \)-function:

\[
E[y^n] = \frac{\exp(-N^2 K^2)}{\Gamma(pN)} \sum_{r=0}^\infty \frac{(pN+N+r) (NA^2 K^2)^r}{\Gamma(N+r) r!} \int_0^\infty dy \frac{y^{n+N+1+r}}{(y+1)^{pN+N+r}} \tag{32}
\]

As shown in the derivation I.3 in the appendix the integral is simply the \(\beta \)-function

\[
\beta((n+N+r),(pN-n))
\]

This \(\beta \)-function can be written in terms of appropriate \(\Gamma \)-functions and after a rearrangement of terms the \(n \)-th moment of \(y \) can be written as

\[
E[y^n] = \exp(-N^2 K^2) \frac{\beta(pN-N,N+n)}{\beta(pN,N)} M(N+n,N,NA^2 K^2) \tag{33}
\]

Hence

\[
E[y] = \frac{N \exp(-N^2 K^2)}{pN-1} M(N+1,N,NA^2 K^2) \tag{34}
\]

A simple application of the formulae 13.4.1 and 13.6.12 in Abromawitz and Stegun (ref.3) gives

\[
E[y] = \frac{N(1+A^2 K^2)}{pN-1} \tag{35}
\]

A similar application of the same formulae enables the second moment of \(y \) to be written

\[
E[y^2] = \frac{N}{(pN-1)(pN-2)} \left\{ (NA^2 K^2+N+2)(1+A^2 K^2)-1 \right\} \tag{36}
\]
From equation (2)

$$E[z] = \frac{P}{r} E[y] - \frac{1}{r} \quad (37)$$

and

$$\text{var}(z) = \frac{P^2}{r^2} \left\{ E[y^2] - E^2[y] \right\} \quad (38)$$

Hence precise expressions can be written for the mean and variance of z, ie:

$$E[z] = \frac{pN(1+A^2k^2)}{r(pN-1)} - \frac{1}{r} \quad (39)$$

and

$$\text{var}(z) = \frac{p^2}{r^2} \left\{ \frac{N^2A^4k^4 + 2N(pN+N-1)A^2k^2 + (pN^2+N^2-N)}{(pN-1)^2(pN-2)} \right\} \quad (40)$$

And, the coefficient of variation defined as

$$C = \frac{\sigma}{E[z]} \quad (41)$$

where σ is the standard deviation can be written down immediately.

Substituting $N=1$ in equations (39) and (40) gives

$$E[z] = \frac{p(1+A^2k^2)}{r(p-1)} - \frac{1}{r} \quad (42)$$

$$\text{var}(z) = \frac{p^2}{r^2} \left\{ \frac{A^4k^4 + 2pA^2k^2 + p}{p-2} \right\}^{1/2} \quad (43)$$

and after some algebra

$$C = \frac{P}{pA^2k^2 + 1} \left\{ \frac{A^4k^4 + 2pA^2k^2 + p}{p-2} \right\}^{1/2} \quad (44)$$

These are precisely the respective equations developed in reference 1 and hence equations (42), (43) and (44) supply a partial validation of the analysis contained in this memorandum.
7. AN ALTERNATIVE DERIVATION

On realising (note the acknowledgement at the end of this paper) that the quotient in equation (1) is the ratio of a non-central chi-squared variate (with $2N$ degrees of freedom) to a chi-squared variate with $2pN$ degrees of freedom, it is possible to derive the formulas equations (29), (38) and (40) as particular cases of a more general formula. The non-central F with ν_1 degrees of freedom in the numerator and ν_2 degrees of freedom in the denominator has a probability density function

$$f_Y(y) = \frac{\exp(-\lambda/2)}{\Gamma(\nu_2/2)} \left(\frac{\nu_1}{\nu_2} \right)^{\nu_1/2} z^{\nu_1/2 - 1} \times \left(1 + \frac{\nu_1}{\nu_2} z \right)^{-(\nu_1 + \nu_2)/2} \times \sum_{j=0}^{\infty} \frac{\Gamma((\nu_1 + \nu_2)/2 + j)}{\Gamma(\nu_1/2 + j) j!} \times \left\{ \frac{2\lambda \nu_1}{2\nu_2 + 2\nu_1 z} \right\}^{j} \left(\frac{1 + \nu_1 z}{\nu_2} \right)^{-j}$$

where λ is the non-centrality parameter. This equation can obviously be written as

$$f_Y(y) = \frac{\exp(-\lambda/2)}{\Gamma(\nu_2/2)} \left(\frac{\nu_1}{\nu_2} \right)^{\nu_1/2} z^{\nu_1/2 - 1} \times \left(1 + \frac{\nu_1}{\nu_2} z \right)^{-(\nu_1 + \nu_2)/2} \times \frac{\Gamma((\nu_1 + \nu_2)/2)}{\Gamma(\nu_1/2)} \times \left(\frac{2\lambda \nu_1}{2\nu_2 + 2\nu_1 z} \right)^{j} \left(\frac{1 + \nu_1 z}{\nu_2} \right)^{-j}$$

On making the substitutions

$$\nu_1 = 2N, \quad \nu_2 = 2pN, \quad \lambda = 2N^2A^2k^2$$

and carrying out some elementary algebra

$$f_Y(y) = \frac{\exp(-N A^2k^2)}{\beta(pN,N)} \left(\frac{pN}{p + y} \right)^{\nu_1} \frac{1}{\beta(pN,N)} \frac{y^{\nu_1}}{(y + p)^{\nu_1}}$$

In this alternative derivation $z = \frac{1}{r}y - \frac{1}{r}$
Hence

\[f_z(z) = r f_y(rz + 1) \]

as a result of applying equation (2)

\[f_z(z) = \frac{r p^N \exp(-N^2 K^2) (rz + 1)^N - 1}{\beta(pN,N)(rz + p + 1)pN + N} \]

which agrees with equation (29).

The nth order moment of the non-central F-distribution to be derived from equation (45) involves evaluating an integral

\[
\int_0^\infty \frac{dy}{y^n} \frac{y^{\nu_2/2}}{(1 + \frac{\nu_1}{\nu_2} y)^{(\nu_1 + \nu_2)/2}} \frac{y^j}{(1 + \frac{\nu_1}{\nu_2} y)^j}
\]

(48)

The integral can be written as

\[
\int_0^\infty dz \frac{z^{C_1}}{(1 + az)^{C_2}}
\]

(49)

where

\[C_1 = n + j + \frac{\nu_1}{2} - 1, \quad C_2 = \frac{\nu_1 + \nu_2}{2} + j, \quad a = \frac{\nu_1}{\nu_2} \]

On making the substitution \(az = \mu \) the integral becomes

\[
\frac{1}{a^{C_1 + 1}} \int_0^\infty d\mu \frac{\mu^{C_1}}{(1 + \mu)^{C_2}}
\]

\[
= \frac{1}{a^{C_1 + 1}} \beta(C_2 - C_1 - 1, C_1 + 1)
\]

(50)

On substituting this integral in the appropriate expression for \(E[y^n] \) and carrying out some algebra

\[
E[y^n] = \exp(-\lambda/2) \left(\frac{\nu_2}{\nu_1} \right)^n \Gamma\left(\frac{\nu_1}{2} + n, \frac{\nu_1}{2}, \frac{\lambda}{2}\right) \left(\frac{\Gamma\left(\frac{\nu_2}{2} - n\right) \Gamma\left(\frac{\nu_1}{2} + n\right)}{\Gamma\left(\frac{\nu_2}{2}\right) \Gamma\left(\nu_1\right)} \right)
\]
Using the substitutions $\nu_1 = 2N$, $\nu_2 = 2pN$, $\lambda = 2NA^2k^2$ for values of n of 1 and 2 in this expression then enables $E[z]$ and $E[z^2]$ to be derived from

$$z = \frac{1}{r} y - \frac{1}{r}$$

Although not carried out in detail the results are easily shown to be identical to equations (39) and (40).

8. SOME PRACTICAL RESULTS

In order to give some idea of how to use the formulae, two steps were taken. First, a program (program A in Appendix II) was developed to examine the variation in the form of the density function as the number of spectra used to obtain an average spectrum is increased. Results are shown in figure 1 for a moderately high input signal-to-noise ratio of 5 dB, using 10 noise bins and a bin width of 1 Hz, ie $p=10$, $r=1$. It is surprising that even at this signal level the spread in a number of estimates can be high. This spread should be compared with the results in figure 2 for a much lower input signal-to-noise ratio of -5 dB. The comparison indicates a necessity for a further detailed examination.

The second step taken was to develop a program (program B in the appendix) to examine the variation with signal-to-noise ratio of the mean, standard deviation, and coefficient of variation of the estimate for a specified number of bins used to estimate noise power. Typical results for the mean and coefficient of variation are shown in figures 3 and 4 respectively, using $p=10$ and $r=1$ as in figure 1. In figure 3 the bias (due to the asymmetry of the distribution) is clear at even high signal levels. At low signal levels it is obvious that it is necessary to average a large number of spectra to minimise the bias in the mean. In figure 4 the behaviour in the coefficient of variation indicates the large number of spectra to be analysed to keep the frequency of occurrence of negative estimates of signal-to-noise ratio to a minimum. This need is of course going to conflict with the non-stationarity of the statistics of any physical medium in which an experiment is taking place such as when measuring acoustic signal transmission properties in the ocean.

9. CONCLUSIONS

This paper presents a rigorous mathematical analysis and a brief look at some experimental implications of a definition and associated measurement technique of the signal-to-noise ratio of a sine wave in white noise. The computer programs developed as a result of this analysis can be used to carry out a detailed examination of any proposed experimental scenario. During the development of the analysis it has appeared that the probability distribution function for both signal plus noise and signal-to-noise ratio are both amenable to an analysis that extends techniques reported in this paper and it is proposed to publish results on this shortly. It is anticipated that this further work will throw some interesting light on some of the problems of detection theory.

10. ACKNOWLEDGEMENT

I would like to register here my gratitude to Dr. D.A. Gray for pointing out the connection between the sought-after result and the non-central F-distribution. This has enabled the analysis in Section 7 to be presented as an ideal verification of the earlier portion of the paper.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Abromowitz, M. and</td>
<td>Handbook of Mathematical Functions</td>
</tr>
<tr>
<td></td>
<td>Stegun, I.A.</td>
<td>Dover Publications, 1970</td>
</tr>
<tr>
<td>4</td>
<td>Watson, G.N.</td>
<td>A Treatise on the Theory of Bessel Functions; CUP, 1944</td>
</tr>
</tbody>
</table>
APPENDIX I

MATHEMATICAL DETAILS

I.1 A general integral formula first due to Hankel (ref. 4)

\[\int_0^\infty dt \, t^{\mu-1} \exp(-p^2 t^2) \, J_N(at) = \frac{\Gamma\left(\frac{\mu + \nu}{2}\right) a^\nu}{\Gamma(\nu + 1) \left(2^\nu + 1\right) \frac{\nu + \mu}{2} M\left(\frac{\mu + \nu}{2}, \nu + 1, -\frac{a^2}{4p^2}\right)} \]

\[|\arg p| < \frac{\pi}{4}, \text{Re}(\mu + \nu) > 0 \]

If the substitutions \(a = \gamma, \nu = 0, \mu = 2, p = \sqrt{\beta} \) are made then

\[\int_0^\infty dt \, t \exp(-\beta t^2) \, J_0(\gamma t) = \frac{1}{2\beta} M\left(0, 1, -\frac{\gamma^2}{4}\right) \]

\[= \frac{1}{2\beta} \exp\left(-\frac{\gamma^2}{4}\right) \]

from applying formula 13.6.12 (ref. 3).

I.2 An integral formula (ref. 4), generally attributed to Sonine, for the ordinary Bessel function is

\[J_\nu(z) = \left(\frac{iz}{2}\right)^\nu \int_{C+j\infty}^C \frac{dt}{(t)^\nu+1} \exp\left(t - \frac{z^2}{4t}\right) \]

where the path of integration is the straight line \(\Re(t) = C > 0 \)

If the substitutions \(\nu+1 = N, t = x\beta, z^2 = N\gamma^2 x, C = A^2 \) are made, then

\[J_{\nu-1}(\gamma\sqrt{N}x) = \frac{\gamma}{N\pi j} \int_{A^2-j\infty}^{A^2+j\infty} d\beta \, \frac{1}{\beta} \exp(x\beta - \frac{N\gamma^2}{4\beta}) \]

I.3 \(\beta \)-functions can be written in the integral form

\[\beta(p,q) = \int_0^\infty \frac{y^{q-1}}{(y+1)^{p+q}} \, dy \]
Make the parameter substitutions

\[q = n + N + r \]
\[p = pN - n \]

Then

\[p + q = pN + N + r \]

Hence

\[\int_0^\infty dy \frac{y^{n+N-1+r}}{(y+1)^{pN+N+r}} = \beta(n+N+r,pN-n) \]

as \(\beta(p,q) = \beta(q,p) \)
APPENDIX II

COMPUTER PROGRAM

A

```plaintext
C
C E VALUATE SNR PDF FOR l
C 1=1
C M SPECTRA (XX.)
C P NOISE BINS (XX.)
C SIGNAL TO NOISE RATIO(DB)
C FUNCTION CHSF(A,C,Z)

C
Z(1)=1
R=1
WRITE(6,100)
READ(5,40) N,P,S
DO 10 I=1,320
D=CHSF(P,NM),(N),(SRSRZ(I)+1.)/(RSRZ(I)+P+1.))
10 IF(LT.0.0,AND.S.NE.5) GO TO 20
RETURN
STOP
END

C REAL N,P,S(320),LGDEN(320),DEN(320)
Z(1)=1.
WRITE(6,100)
READ(5,40) N,P,S
DO 10 I=1,320
D=CHSF(P,NM),(N),(SRSRZ(I)+1.)/(RSRZ(I)+P+1.))
10 IF(LT.0.0,AND.S.NE.5) GO TO 20
RETURN
STOP
END
```

B

```plaintext
C
C COMPUTE COEFF. OF VARIATION, MEAN, SD OF
C SNR ESTIMATION OF TONE IN WHITE NOISE
C FROM AVERAGE SPECTRA.
C M SPECTRA
C P NOISE BINS
C
C REAL SS(12),EZ(12),SZ(12),C(12),M
C R=1.
C X=-40.
WRITE(6,100)
100 FORMAT ( "ENTER N,P (REAL)"
150 READ(5,1) N,P
160 DO 11 I=1,12
X=X+5.
170 S=10.8+X(10.)
180 EZ(I)=MPPP(I)-S)/((SSP(I)-1.)/2
190 SZ(I)=(P)/MPPP(I)/(SSP(I))
200 C(I)=C(I)/EZ(I)
210 S(SIP(I)-1./DBS(I))/((SSP(I)-1.)*DBS(I)-1.)
220 C(I)=S(I)-EZ(I)
230 10 SS(I)=X
240 WRITE(6,200)
250 200 FORMAT ( "S",F5.2,EZ SD ,C"
260 WRITE(6,300) SS(I),EZ(I),SZ(I),C(I)
270 DO 29 I=1,12
280 WRITE(6,300) SS(I),EZ(I),SZ(I),C(I)
290 300 FORMAT (EX,F5.2,EX,EX,EX)
STOP
END
```
Figure 1. Variation in the probability density function for the estimate of signal-to-noise ratio from an average of N spectra using 10 noise bins at an input signal-to-noise ratio of 5 dB.
Figure 2. Variation in the probability density function for the estimate of signal-to-noise ratio from an average of \(N \) spectra using 10 noise bins at an input signal-to-noise ratio of -5 dB
Figure 3. Deviation of the mean when using N spectra to estimate signal-to-noise ratio for a 1 Hz bin width and using 10 noise bins for estimating noise power.
Figure 4. A demonstration of the effect of using N spectra to estimate signal-to-noise ratio for a 1 Hz bin width and using 10 noise bins for estimating noise power.
DISTRIBUTION

EXTERNAL

In United Kingdom
Defence Scientific and Technical Representative, London
Dr D. Nunn, Department of Electrical Engineering, University of Southampton
Dr C. Hart (RN3 Division), Royal Aircraft Establishment, Farnborough
Mr G. Lawson (RN3 Division), Royal Aircraft Establishment, Farnborough
British Library Lending Division, Boston Spa, Yorks

In United States of America
Counsellor Defence Science, Washington
National Technical Information Services, Springfield, Va USA

In Australia
Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes
Director, Joint Intelligence Organisation (DDSTI)
Superintendent, RAN Research Laboratory
Defence Information Services Branch (for microfilming)
Defence Information Services Branch for:
United Kingdom, Ministry of Defence, Defence Research Information Centre (DRIC)
United States, Department of Defense, Defense Documentation Center
Canada, Department of National Defence, Defence Science Information Service
New Zealand, Ministry of Defence
Australian National Library
Professor R.G. Keats, Mathematics Department, University of Newcastle
Dr A. Cantoni, Department of Electrical Engineering, University of Newcastle
Defence Library, Campbell Park
Library, Aeronautical Research Laboratories
Library, Materials Research Laboratories
WITHIN DRCS

Chief Superintendent, Weapons Systems Research Laboratory 34
Chief Superintendent, Electronics Research Laboratory 35
Superintendent, Electronic Warfare Division 36
Superintendent, Weapon Systems Division 37
Superintendent, Radar Division 38
Principal Officer, Cybernetic Electronics Group 39
Principal Officer, Microwave Radar Group 40
Senior Principal Research Scientist, Marine Studies 41
Dr M. Lees, Jindalee Development Group 42
Principal Officer, Signal Processing and Classification Group 43
Dr D.A. Gray, Underwater Detection Group 44
Dr D. Kewley, Underwater Detection Group 45
Dr A.K. Steele, Underwater Detection 46
Dr D.G. Cartwright, Signal Processing and Classification Group 47
Author 48 - 49
DRCS Library 50 - 51
Spares 52 - 57