MICROCOPY RESOLUTION TEST CHART
ABSTRACT

The consistency and asymptotic normality of a linear least squares estimate of the form \((X'X)^{-1}X'Y\) when the mean is not \(X\beta\) is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not be the best linear approximation of the true mean function.

Key words: Consistency, asymptotic normality, best linear approximation, model robustness.
1. Introduction

In the standard linear models theory, the mean of an observation vector Y is given $X\beta$ where X is a known matrix of constants and β is an unknown vector of parameters. The estimate $\hat{\beta} = (X'X)^{-1}X'Y$, where $(X'X)^{-1}$ is a generalized inverse of $X'X$, has many well-known and desirable properties. Considering that both regression and analysis of variance problems are part of the linear models theory, estimates like $\hat{\beta}$ are among the most widely used of all parameter estimates.

If the mean of Y is not $X\beta$, the properties of $\hat{\beta}$ are not described by the standard linear models theory. Indeed, it may not be clear what (if anything) $\hat{\beta}$ is estimating. The behavior of $\hat{\beta}$ for large samples when the mean is not $X\beta$ is investigated in this paper. This behavior is found to depend on the design used in the experiment. But, for a given design, $\hat{\beta}$ is shown to estimate the best linear approximation of the true mean function in a sense to be defined.

In Section 2, the model and notation are defined. In Section 3, $\hat{\beta}$ is shown to be a consistent estimate of the best linear approximation. The asymptotic normality of $\hat{\beta}$ is investigated in Section 4. Section 5 contains some examples.

Other authors have considered questions related to those addressed herein. The question of model robustness, what $\hat{\beta}$ is estimating if the mean is not $X\beta$, has been investigated by authors such as Box and Draper (1959), Atwood (1971), Stigler (1971) and Huber (1975). These authors considered specific alternative mean functions to $X\beta$. Rovall and Herson (1973) have described the mean of $\hat{\beta}$ for an arbitrary mean function. Surprisingly recently other
authors such as Drygas (1976), Lai, Robbins and Wei (1978), Anderson and Taylor (1979) and Wu (1980) have considered the consistency of \(\hat{\beta} \) under various conditions, but always under the assumption that the mean is \(\mu \).

2. Model and Notation

Let \(X \) denote a subset of an \(r \)-dimensional Euclidean space (\(r \geq 1 \)). \(X \) is the set of possible values of the independent variable \(x \). A design for a sample of size \(n \) is a specification of \(n \) points, \(x_{1,n}, \ldots, x_{n,n} \), from \(X \) where the \(n \) points specify the values of the independent variable at which observations are to be taken. The \(x_{i,n} \) need not be all distinct. If a point \(x \) is repeated \(p \) times then \(p \) observations are taken at \(x \). A design can be completely described by a discrete probability measure \(\xi_n \) on \(X \) where the probability \(\xi_n \) assigns to a point \(x \) is the proportion of the \(n \) observations to be taken at \(x \). \(\xi_n \) will also be called the design.

The observation vector is \(Y_n = (Y_{1,n}, \ldots, Y_{n,n})' \). It is assumed that for each \(n \)

\[
Y_{i,n} = m(x_{i,n}) + \epsilon_{i,n} \quad i = 1, \ldots, n,
\]

where \(m \), the unknown mean function, is a real-valued bounded and continuous function on \(X \) and \(\epsilon_{i,n}, n = 1, 2, \ldots; i = 1, \ldots, n \), are identically distributed random variables with mean zero and variance \(\sigma^2 \). It is also assumed that \(\epsilon_{1,n}, \ldots, \epsilon_{n,n} \) are independent for each \(n = 1, 2, \ldots \). Thus \(Y_{1,n}, \ldots, Y_{n,n} \) are independent random variables with \(E Y_{i,n} = m(x_{i,n}) \) and variance \(\sigma^2 \).

Let \(f(x) = (f_1(x), \ldots, f_p(x))' \) denote a \(p \times 1 \) vector of real-valued, bounded and continuous functions on \(X \). For a given design, \(x_{1,n}, \ldots, x_{n,n} \), let \(X_n \) be the \(n \times p \) matrix with \((i, j) \)th element \(f_j(x_{i,n}) \). The asymptotic behavior of the estimate \(\hat{\beta}_n = (X_n'X_n)^{-1}X_n'Y_n \) will be investigated in this paper.
\(\hat{\beta}_n \) will be called a **linear least squares estimate** since, for a given observation \(y_n = (y_{1,n}, \ldots, y_{n,n})' \), \(\hat{\beta}_n \) is the vector \(\beta \) which minimizes

\[
\sum_{i=1}^r (y_{i,n} - \beta^*f(x_{i,n}))^2.
\]

Conditions under which \(X_nX_n' \) is non-singular and \(\hat{\beta}_n \) is uniquely defined are given in Lemmas 3.1 and 3.4.

Let \(\xi \) be a probability measure on \(\xi \). A \(p \times 1 \) vector \(\beta(n,\xi) \) will be called a **best linear approximation** of \(m(x) \) if

\[
\int (m(x) - \beta^*(m,\xi)f(x))^2 d\xi(x) = \inf_{\beta} \int (m(x) - \beta^*f(x))^2 d\xi(x). \tag{2.1}
\]

Since \(\beta(m,\xi) \) depends on the unknown mean function \(m \), \(\beta(n,\xi) \) is a parameter. Let \(M(\xi) \) denote the \(p \times p \) matrix with \((i,j)\)th element \(\int f_i(x)f_j(x) d\xi(x) \) and let \(c(\xi) \) denote the \(p \times 1 \) vector with \((i)\)th coordinate \(\int f_i(x)m(x) d\xi(x) \). In optimal design theory (see, e.g., Kiefer (1962)) a multiple of \(M(\xi) \) is called the information matrix of \(\xi \). If \(M(\xi_n) \) is non-singular, \(\sigma^2n^{-1}M^{-1}(\xi) \) is the covariance matrix of \(\hat{\beta}_n \). By equating the partial derivatives

\[
\partial (m(x) - \beta^*f(x))^2 d\xi(x)/\partial \beta_j, \quad j = 1, \ldots, p,
\]

to zero it is easily verified that if \(M(\xi) \) is non-singular then \(\beta(m,\xi) \) is unique and equals \(M^{-1}(\xi)c(\xi) \). Under conditions relating a sequence of designs \(\xi_n \) to \(\xi \), it will be shown that \(\hat{\beta}_n \) is a consistent estimate of \(\beta(m,\xi) \) and \(\hat{\beta}_n \) is asymptotically normal with mean \(\beta(m,\xi) \). In this sense, the best linear approximation \(\beta(m,\xi) \) is the parameter being estimated by the linear least squares estimate \(\hat{\beta}_n \) when the mean \(m(x) \) is not necessarily linear.

3. Consistency

Let \(\xi_n \) be a fixed sequence of designs for sample sizes \(n = 1, 2, \ldots \). Throughout it will be assumed that \(\xi_n \) converges weakly to a probability measure
where weak convergence is defined in Billingsley (1968). The main result in this section, the proof of which is deferred until the end of the section, is the following theorem.

Theorem 3.1: If ξ is non-singular, then β_n is a consistent estimate of $\beta(m,\xi)$ in that the random vectors β_n converge in probability to the real-valued vector $\beta(m,\xi) = \eta^{-1}(\xi) c(\xi)$.

It is important to note that the parameter $\beta(m,\xi)$ which β_n estimates depends on ξ. The experimenter chooses ξ when the sequence of designs ξ_1, ξ_2, \ldots is chosen. ξ should be chosen so that the definition of best linear approximation in (2.1) accurately reflects how the experimenter wishes to measure the closeness of $\beta f(x)$ to $m(x)$. If the support of ξ consists only of a finite number of points, $\beta f(x)$ will be compared to $m(x)$ only at these points in determining $\beta(m,\xi)$. If the aim is to estimate β so that $\beta f(x)$ is close to $m(x)$ for all x in X, a choice of ξ whose support is all of X, e.g., uniform on X, seems more appropriate. In optimal design theory (see, e.g., Kiefer (1955) or Karlin and Studden (1966)) the optimal design often has a support with a finite number of points. These designs may not be very appropriate if the mean $m(x)$ is not of the form $\beta f(x)$. The fact that what β_n is estimating depends on the design if $m(x) \neq \beta f(x)$ has been recognized previously. See, for example, Draper and Smith (1966, Chapter 2, Section 12) or Royall and Herson (1973).

The following lemma gives a condition under which $M(\xi)$ will be non-singular. The functions $f_1(\cdot), \ldots, f_p(x)$ are called linearly independent if, for a $p \times 1$ real-valued vector $a, a f(x) = 0$ a.s. if ξ implies $a = 0$.

Lemma 3.1: If $f_1(x), \ldots, f_p(x)$ are linearly independent then $M(\xi)$ is non-singular.
Proof: Let \(\alpha \) be a \(p \times 1 \) real-valued vector. Assume \(M(\xi)\alpha = 0 \). To show \(M(\xi) \) is non-singular it suffices to show \(\alpha = 0 \). \(M(\xi)\alpha = 0 \) implies
\[\alpha = \alpha' M(\xi) = \int (\alpha' f(x))^2 d\xi(x). \]
This implies \(\alpha' f(x) = 0 \) a.s. \(\xi \). Since \(f_1(x), \ldots, f_p(x) \) are linearly independent \(-\xi, \alpha = 0 \).

To study the asymptotic behavior of \(\hat{\beta}_n \), it is useful to note that

\[
\hat{\beta}_n = (X'X_n)^{-1}X_n'Y_n \tag{3.1}
\]

where \(\epsilon_n = (\epsilon_{n,1}, \ldots, \epsilon_{n,n})' \) and \(m_n = (m(x_{n,1}), \ldots, m(x_{n,n}))' \). The asymptotic behavior of \(n^{-1}X_n' \epsilon_n, n^{-1}X_n'm_n \) and \(n^{-1}X_nX_n' \) is described in the following three lemmas.

Lemma 3.2: Under the model the random vectors \(n^{-1}X_n' \epsilon_n \) converge in probability to 0.

Proof: It suffices to show that for any \(\delta > 0 \),

\[
\lim_{n \to \infty} P(\left| \sum_{i=1}^{n} f_r(x_{i,n}) \epsilon_{i,n} \right| > n \delta) = 0 \text{ for } r = 1, \ldots, p. \tag{3.2}
\]

Let \(a = \max sup f_r(x) \). Since the \(f_r \) are bounded, \(a < \infty \). Fix \(\delta > 0 \). By Chebyshev's Inequality and the fact that \(\epsilon_{1,n}, \ldots, \epsilon_{n,n} \) are uncorrelated with mean zero,

\[
P(\left| \sum_{i=1}^{n} f_r(x_{i,n}) \epsilon_{i,n} \right| > n \delta) \leq \frac{E(\sum_{i=1}^{n} f_r(x_{i,n}) \epsilon_{i,n}^2)}{n^2 \delta^2} \leq \frac{\sigma^2}{n \delta^2}. \]

Thus Equation (3.2) is true. For the sake of completeness it should be noted that the result of Lemma 3.2 and hence the consistency result of Theorem 3.1 holds under the condition that for each \(n \), \(\epsilon_{1,n}, \ldots, \epsilon_{n,n} \) are uncorrelated with means all zero and variances all bounded above by \(\sigma^2 \). The stronger condition that \(\epsilon_{1,n}, \ldots, \epsilon_{n,n} \) are i.i.d. is not necessary.
Lemma 3.3: Under the assumptions of the model, \(\lim_{n \to \infty} n^{-1}X_{n}^{*}m = c(\xi) \).

Proof: Coordinatewise, this result is
\[
\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} f_{r}(x_{i,n})m(x_{i,n}) = \int f_{r}(x)m(x)d\xi(x), \ r = 1, \ldots, p.
\]
(3.3)

Note that \(n^{-1} \sum_{i=1}^{n} f_{r}(x_{i,n})m(x_{i,n}) = \int f_{r}(x)m(x)d\xi_{n}(x) \).

Since \(f_{r} \) and \(m \) are bounded and continuous and \(\xi_{n} \) converges weakly to \(\xi \), Equation (3.3) is true.

Lemma 3.4: If \(\Phi(\xi) \) is non-singular then (i) \(\lim_{n \to \infty} n^{-1}X_{n}^{*}X = \Phi(\xi) \),
(ii) \(n^{-1}X_{n}^{*}X \) is non-singular for all sufficiently large \(n \) and
(iii) \(\lim_{n \to \infty} (n^{-1}X_{n}^{*}X)^{-1} = \Phi^{-1}(\xi) \).

Proof: Elementwise, statement (i) is
\[
\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} f_{r}(x_{i,n})f_{s}(x_{i,n}) = \int f_{r}(x)f_{s}(x)d\xi(x), \ r, s = 1, \ldots, p.
\]
(3.4)

Since \(f_{r} \) and \(f_{s} \) are bounded and continuous and \(\xi_{n} \) converges weakly to \(\xi \), Equation (3.4) is true.

Since the determinant is a continuous function, by (i),
\[
\lim_{n \to \infty} |n^{-1}X_{n}^{*}X| = |\Phi(\xi)| \neq 0.
\]
Thus (ii) is true.

If \(A_{n} \) and \(A \) are non-singular matrices and \(\lim_{n \to \infty} A_{n} = A \), then \(\lim_{n \to \infty} A_{n}^{-1} = A^{-1} \).

By (i) and (ii), \(n^{-1}X_{n}^{*}X \) is non-singular for all large \(n \) and (iii) is true.

Proof of Theorem 3.1: This theorem follows from Equation (3.1) and Lemmas 3.2, 3.3 and 3.4.

4. Asymptotic Normality

In this section, the asymptotic normality of \(n^{1/2}(\hat{\beta}_{n} - \beta(n, \xi)) \) is investigated. As in Section 3, it is assumed that \(\xi_{n} \) is a fixed sequence of designs for sample sizes \(n = 1, 2, \ldots \) which converges weakly to a probability measure \(\xi \). The asymptotic normality result is given in Theorem 4.1.
Theorem 4.1: Assume $H(\xi)$ is non-singular. Let $m_n = (m(x_{1,n}), \ldots, m(x_{n,n}))$.
Assume that $\lim_{n \to \infty} n^{1/2}((X_n'X_n)^{-1}X_n'X_n - \beta(m, \xi))$ exists and equals the $p \times 1$ vector b. Then $n^{1/2}(\hat{\beta}_n - \beta(m, \xi))$ converges weakly to a multivariate normal random vector with mean b and covariance matrix $\sigma^2 H^{-1}(\xi)$.

Proof: Let $T_n = n^{-1/2}X_n'\xi$. Note that

$$n^{1/2}(\hat{\beta}_n - \beta(m, \xi)) = (n^{-1}X_n'X_n)^{-1}T_n + n^{1/2}((X_n'X_n)^{-1}X_n'm_n - \beta(m, \xi)).$$

(4.1)

By assumption, the last term converges to b. By Lemma 3.4, $\lim_{n \to \infty} (n^{-1}X_n'X_n)^{-1} = H^{-1}(\xi)$.

So to prove the desired result it suffices, by an extension of Slutsky's Theorem (Billingsley (1968), Theorem 5.5), to show that the random vectors T_n converge weakly to U where U is a p-dimensional multivariate normal random vector with mean 0 and covariance matrix $\sigma^2 H^{-1}(\xi)$.

To prove the convergence of T_n to U, it suffices, by the Cramer-Wold device (Billingsley (1968), p. 45), to show that $\alpha' T_n$ converges weakly to $\alpha' U$ for all p-dimensional vectors α. Fix $\alpha \neq 0$. Let $\gamma_{j,n} = n^{-1/2}(\alpha'f(x_{j,n}))\epsilon_{j,n}$. Then $\alpha' T_n = \sum_{j=1}^{n} \gamma_{j,n}$ so it suffices to show that $\sum_{j=1}^{n} \gamma_{j,n}$ converges weakly to $\alpha' U$.

By the definition of $\epsilon_{j,n}$, $\epsilon_{1,n}, \ldots, \epsilon_{n,n}$ are independent random variables with zero means and variances respectively equal to $n^{-1}(\alpha'f(x_{j,n}))^2 \sigma^2$. Thus it suffices, by the Normal Central Limit Theorem (Loève (1963), p. 288), to show that

$$\lim_{n \to \infty} \sum_{j=1}^{n} \gamma_{j,n} = \sigma^2 \alpha' H^{-1}(\xi) \alpha$$

(4.2)

and that

$$\lim_{n \to \infty} \sum_{j=1}^{n} \text{E}(\gamma_{j,n} I(|\gamma_{j,n}| > \delta))^2 = 0 \text{ for all } \delta > 0$$

(4.3)

where I is the indicator function.

To verify Equation (4.2) note that $\sum_{j=1}^{n} \gamma_{j,n} = \sigma^2 \alpha' (n^{-1}X_n'X_n) \alpha$. By Lemma 3.4, $\lim_{n \to \infty} (n^{-1}X_n'X_n) = H^{-1}(\xi)$ so Equation 4.2 is true.

Finally to verify Equation 4.3, let $E = \sup_{x} |\alpha' f(x)|$. Since the f_i are bounded, $E < \infty$. Fix $\delta > 0$. Since $\epsilon_{1,n}, \ldots, \epsilon_{n,n}$ are i.i.d. random variables,
In theorem 4.1, the asymptotic mean \(b \) depends on the unknown function \(m(x) \). In order for Theorem 4.1 to be useful for making large sample inferences about \(\beta(m, \xi) \), say to construct confidence sets for \(\beta(m, \xi) \), \(b \) must be zero for all bounded, continuous functions \(m(x) \). Lemmas 3.3 and 3.4 show that \((X_n'X_n - X_{m_n}^m_n) \) converges to \(\beta(m, \xi) \) for all bounded, continuous \(m(x) \). It is reasonable to expect that \(b = 0 \) if \(\xi_n \) converges to \(\xi \) fast enough in some sense. Conditions under which this is true are examined in the remainder of this section. A useful result in this regard is given in Corollary 4.1. It should be noted that one important situation in which \(b = 0 \) is if \(m(x) = \beta f(x) \) for some \(\beta \). In this case \((X_n'X_n - X_{m_n}^m_n) = \beta = \beta(m, \xi) \) for all large \(n \).

To simplify notation, for the remainder of this section assume that \(X = (u, v) \) an interval on the real line. Similar results hold if \(x \) is a \(r \)-dimensional vector. Let \(\xi_n(x) \) and \(\xi(x) \) also denote the distribution functions of the probability measures \(\xi_n \) and \(\xi \). Assume there is a function \(h(x) \) such that

\[
\lim_{n \to \infty} n^{1/2} (\xi_n(x) - \xi(x)) = h(x) \text{ almost everywhere with respect to Lebesque measure on } (u, v).
\]

Assume that \(\int_u^v \sup_n n^{1/2} |\xi_n(x) - \xi(x)| \, dx < \infty \). Assume the functions \(m, f_1, \ldots, f_p \) are differentiable on \((u, v) \). Let \(g' \) denote the derivative of a function \(g \). The mean vector \(b \) in Theorem 3.1 can be written in terms of the function \(h \). To obtain this result, the following lemma will be used.

Lemma 4.1: Let \(\phi(x) \) be a real valued function defined on \((u, v) \) with a derivative \(\phi' \) and let \(G(x) \) be a distribution function with support contained in
Then
\[\int_u^V \phi(x)dG(x) = \int_u^V \phi'(x)(1 - G(x))dx + \phi(u). \] (4.4)

Proof: \(\int_u^V \phi(x)dG(x) = \int_u^V \int_u^x \phi'(u)du \, dG(x) + \phi(u). \)

Equation 4.4 follows from Fubini's Theorem (Loève (1963), p. 135) by interchanging the integration order.

The next theorem gives an expression for the mean \(b \) of Theorem 4.1 in terms of matrices which depend on the function \(h \). Let \(d \) denote the \(p \times 1 \) vector with (i)th coordinate \(\int_u^V f_i(x)m(x)\,dh(x) \). Let \(D \) denote the \(p \times p \) matrix with (i, j)th element \(\int_u^V f_i'(x)f_j(x)\,dh(x) \).

Theorem 4.2: Assume \(h(\xi) \) is non-singular. Then \(b = \hat{h}^{-1}(\xi)(d + DM^{-1}(\xi)c(\xi)). \)

Proof: Let \(A_n = n^{-1}X_nX_n' \). By Lemma 3.4, \(A_n \) is non-singular for all large \(n \) so we shall write \(A_n^{-1} \) for \(A_n^{-1} \).

\[
\begin{align*}
b &= \lim_{n \to \infty} n^{1/2} (A^{-1}_n(n^{-1}X_nX_n') - h^{-1}(\xi)c(\xi)) \\
&= \lim_{n \to \infty} n^{1/2} (A_n^{-1}(1_{n\times n} - c(\xi)) + (A_n^{-1} - h^{-1}(\xi)c(\xi)).
\end{align*}
\]

To prove the desired result it suffices to prove that
\[
\lim_{n \to \infty} n^{1/2} A_n^{-1}(1_{n\times n} - c(\xi)) = h^{-1}(\xi)d. \quad (4.5)
\]
and
\[
\lim_{n \to \infty} n^{1/2} (A_n^{-1} - h^{-1}(\xi)c(\xi)) = h^{-1}(\xi)DM^{-1}(\xi)c(\xi). \quad (4.6)
\]

By Lemma 3.4, \(\lim_{n \to \infty} A_n^{-1} = h^{-1}(\xi). \) Thus to prove Equation 4.5 it suffices to show that
\[
\begin{align*}
\lim_{n \to \infty} n^{1/2} \int_u^V f_r(x)m(x)\,d\xi_n(x) &= \int_u^V f_r(x)m(x)d\xi(x) \\
&= \lim_{n \to \infty} \int_u^V f_r(x)m(x)\,d\xi_n(x) - n^{1/2}(\xi_n(x) - \xi(x))dx \\
&= -\int_u^V (f_r(x)m(x))\,dh(x), \quad r = 1, \ldots, p.
\end{align*}
\]

The first equality is true by Lemma 4.1 and the second equality is true by the assumptions made about \(n^{1/2}(\xi_n(x) - \xi(x)) \) and the Dominated Convergence Theorem.
Note that \(\mathbf{A}_n^{-1} = \mathbf{A}_n^{-1} \mathbf{(\xi - \mathbf{A}_n)^{-1}} \). By Lemma 3.4,

\[
\lim_{n \to \infty} \mathbf{A}_n^{-1} \mathbf{(\xi)} = \mathbf{(\xi - \mathbf{A}_n)^{-1}}.
\]

Thus to prove Equation 4.6 it suffices to show that

\[
\lim_{n \to \infty} n^{1/2} \left(\int_x f_r(x)f_s(x) \, dx - \int_x f_r(x)f_s(x) \, dx_n \right)
= \lim_{n \to \infty} \int_x (f_r(x)f_s(x)) n^{1/2} (\xi_n(x) - \xi(x)) \, dx
= \int_x (f_r(x)f_s(x)) h(x) \, dx, \quad r = 1, \ldots, p; \quad s = 1, \ldots, p.
\]

The first equality is true by Lemma 3.1 and the second equality is true by the assumptions made about \(n^{1/2}(\xi_n(x) - \xi(x)) \) and the Dominated Convergence Theorem.||

Corollary 4.1: Assume \(\xi(x) \) is non-singular. If \(\lim_{n \to \infty} n^{1/2}(\xi_n(x) - \xi(x)) = 0 \) almost everywhere with respect to Lebesgue measure on \((u, v) \) then \(n^{1/2}(\mathbf{b}_n - \mathbf{b}(\mathbf{m}, \xi)) \) converges weakly to a multivariate normal random vector with mean \(\mathbf{0} \) and covariance matrix \(\sigma^{1/2} \).

Proof: \(h(x) = \lim_{n \to \infty} n^{1/2}(\xi_n(x) - \xi(x)) = 0 \) a.e. implies \(\mathbf{c} = \mathbf{0} \) and \(\mathbf{D} = \mathbf{0} \). Thus by Theorem 4.2, the mean \(\mathbf{b} \) in Theorem 4.1 is \(\mathbf{0} \).||

5. Examples

In this section two examples are considered. In the first example a fairly general method of constructing designs which satisfy the conditions of Corollary 4.1 is given. The second example gives a sequence of designs for which the function \(h(x) \) is non-zero.

Example 1: Let \(\xi(x) \) be a fixed continuous and strictly increasing distribution function on the real line. Let \(\xi^{-1}(x) \) denote the inverse of \(\xi(x) \). Let \(n_1, n_2, \ldots \) and \(n'_1, n'_2, \ldots \) be sequences of positive integers such that \(n_i/n'_i \) is an integer for each \(i \) and \(\lim_{i \to \infty} n_i/n'_i = \alpha \). For \(k = 1, \ldots, n_i/n'_i \), let

\(I_{k,i} \) denote the interval \((\xi^{-1}\left((k - 1)n_i/n'_i\right), \xi^{-1}\left((k)n_i/n'_i\right)) \). Let \(\xi_{ni} \) denote any design with \(n_i \) observations in each of the intervals \(I_{k,i} \). Then \(\xi_{ni} \) converges weakly to \(\xi \). Furthermore, \(\sup_{x} |\xi_{ni}(x) - \xi(x)| \leq n_i/n'_i \). So since \(\lim_{i \to \infty} n_i/n'_i = \alpha \),
\lim_{i \to \infty} n_i^{1/2}(\xi_{n_i}(x) - \xi(x)) = 0. By Corollary 4.1, the mean vector in Theorem 4.1 is zero for a sequence of designs constructed in this way. A special case of interest is the case of \(n_i = \infty \) for some fixed \(N \) and \(n_i = Ni \).

Example 2: Here is an example of a sequence of designs for which the \(\eta(x) \) function is non-zero and, by Theorem 4.2, the mean vector \(\mathbf{b} \) in Theorem 4.1 is not zero for all mean functions \(\eta(x) \). Let \([u, v] = [0, 1]\) and let \(\xi \) be the uniform distribution on \([0, 1]\). Let \(n_i = i^2 \) for \(i = 1, 2, \ldots \). Let \(\xi_{n_i} \) be the design which takes one observation at each of the \(i^2 - i \) points \(1/i + k/i^2, k = 1, 2, \ldots, i^2 - i - 1 \), and \(i \) observations at \(1 \). For each \(i \), \(x - 1/i < \xi_{n_i}(x) \leq x \) for all \(x \in [0, 1] \) so \(\xi_{n_i}(x) \) converges to \(\xi(x) \). But for any \(i \) and any \(x \in (1/i, 1) \), \(-1/i < \xi_{n_i}(x) - \xi(x) \leq 1/i - 1/i^2 \). Thus for all \(x \in (0, 1) \), \(h(x) = \lim_{i \to \infty} i^{1/2}(\xi_{n_i}(x) - \xi(x)) = \lim_{i \to \infty} i(\xi_{n_i}(x) - \xi(x)) = -1 \). Suppose \(f_1(x) = 1 \) and \(f_2(x) = x \). Suppose \(m(x) = x^2 \). Then using the result of Theorem 4.2, the mean vector \(\mathbf{b} \) can be calculated to be \(\mathbf{b} = (-1, 2) \).
References

The consistency and asymptotic normality of a linear least squares estimate of the form $(X'X)^{-1}X'Y$ when the mean is not $X\beta$ is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not be the best linear approximation of the true mean function.
DAT
ILM