An Improved Synthesis of Bis(Trimethylsilyl) Chloromethane

A. H. Cowley* and R. A. Kemp

Department of Chemistry
The University of Texas at Austin
Austin, Texas 78712

March 1981

Prepared for publication in Synthesis and Reactivity in Inorganic and Metal-organic Chemistry

synthesis
bulky ligands

A new "one pot" synthesis of the important intermediate \((\text{Me}_3\text{Si})_2\text{CHCl}\) is described. The method involves the reaction of \(\text{CH}_2\text{Cl}_2\), \(\text{Me}_3\text{SiCl}\), and \(n\text{-BuLi}\) in a mixed solvent system. The overall yield of \((\text{Me}_3\text{Si})_2\text{CHCl}\) based
upon the CH₂Cl₂ consumed is 78%. Apart from the obvious advantage of being a single step procedure, the method also has the advantage of utilizing relatively inexpensive starting materials. Moreover, the method can be scaled up without significant diminution of the yield.
AN IMPROVED SYNTHESIS OF BIS(TRIMETHYLSILYL)CHLOROMETHANE

A. H. Cowley* and R. A. Kemp

Prepared for Publication

in

SYNTHESIS AND REACTIVITY IN
INORGANIC AND METAL-ORGANIC CHEMISTRY

Department of Chemistry
University of Texas at Austin
Austin, Texas 78712

March 11, 1981

Reproduction in whole or in part is permitted for any purpose of
the United States government

Approved for Public Release: Distribution Unlimited
AN IMPROVED SYNTHESIS OF BIS(TRIMETHYLSILYL)CHLOROMETHANE

A. H. Cowley* and R. A. Kemp

Department of Chemistry
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT
A new "one pot" synthesis of the important intermediate, \((\text{Me}_3\text{Si})_2\text{CHCl}\), is described. The method involves the reaction of \(\text{CH}_2\text{Cl}_2\), \(\text{Me}_3\text{SiCl}\), and \(\text{n-ButLi}\) in a mixed solvent system. The overall yield of \((\text{Me}_3\text{Si})_2\text{CHCl}\) based upon the \(\text{CH}_2\text{Cl}_2\) consumed is 78%. Apart from the obvious advantage of being a single step procedure, the method also has the advantage of utilizing relatively inexpensive starting materials. Moreover, the method can be scaled up without significant diminution of the yield.

INTRODUCTION
Use of the bis(trimethylsilyl)methyl ligand has permitted the isolation of several novel transition metal and main group compounds.\(^1\) The most common method for the introduction of the bis(trimethylsilyl)methyl ligand is by treatment of \((\text{Me}_3\text{Si})_2\text{CHLi}\) with an active halide. The precursor for the preparation of the lithio derivative is the chloride, \((\text{Me}_3\text{Si})_2\text{CHCl}\). Several methods of preparation of this key compound have now appeared in the literature. The present paper describes an improved "one pot", inexpensive synthesis of \((\text{Me}_3\text{Si})_2\text{CHCl}\).
DISCUSSION

Two general approaches have been taken to the synthesis of (Me₃Si)₂CHCl. One involves the prior synthesis of (Me₃Si)₂CCl₂ starting with either CH₂Cl₂,³ or C1Me₂SiCHCl₂.⁴ In turn, the (Me₃Si)₂CCl₂ is converted into (Me₃Si)₂CHCl by reaction of the former with n-BuLi at low temperature followed by a protic quench of the anion. The second approach involves the deprotonation of Me₃SiCH₂Cl with s-BuLi followed by treatment with Me₃SiCl.⁵,⁶ All of these preparative methods have drawbacks. The disadvantage of the first approach is that the yield of the intermediate dichloride, (Me₃Si)₂CCl₂, is only moderate (50-65%).²,³ Even though the conversion of (Me₃Si)₂CCl₂ to (Me₃Si)₂CHCl proceeds in higher yield, the overall yield of the desired compound is small. One of the problems with the second approach is that the reaction is difficult to scale up to the quantities of (Me₃Si)₂CHCl needed for our work. Furthermore, in our hands the reaction of Me₃SiCH₂Cl with s-BuLi was difficult to reproduce with or without TMEDA activation.

In view of the foregoing, it became highly desirable to develop an inexpensive, reproducible, high yield synthesis of (Me₃Si)₂CHCl. A key feature of our synthetic procedure is that it is not necessary to isolate the intermediate, (Me₃Si)₂CCl₂. The "one pot" reaction is conducted in two distinct stages and controlled by the temperature and sequence of reagent addition. In the first stage, CH₂Cl₂ is treated with two equivalents of Me₃SiCl and n-BuLi at -110°C in a THF/Et₂O/n-pentane mixed solvent system (eq. 1).

\[
\text{CH}_2\text{Cl}_2 + 2\text{Me}_3\text{SiCl} + 2n\text{-BuLi} \rightarrow (\text{Me}_3\text{Si})_2\text{CCl}_2 + 2n\text{-C}_4\text{H}_{10} + 2\text{LiCl}
\] (1)

This stage of the reaction is completed by warming briefly to room temperature as evidenced by the precipitation of LiCl.
After re-cooling the reaction mixture to -110°C, the second stage of the reaction is conducted by addition of one equivalent of n-BuLi, followed by quenching with 95% EtOH (eq. 2).

\[
\text{(Me}_3\text{Si)}_2\text{CCl}_2 + \text{n-BuLi} \rightarrow \text{(Me}_3\text{Si)}_2\text{C(Cl)Li} + \text{n-BuCl} \\
\downarrow \text{EtOH} \\
\text{(Me}_3\text{Si)}_2\text{C(Cl)}\text{H (2)}
\]

Overall reproducible yields of 78% are obtained based upon the CH\textsubscript{2}Cl\textsubscript{2} consumed, and the reaction can be conducted on at least a one mole scale.

EXPERIMENTAL

Materials and General Procedures

Until the EtOH quench, all manipulations were performed under anhydrous, oxygen-free conditions. Chlorotrimethylsilane and n-BuLi were procured commercially and used without subsequent purification. All solvents were dried rigorously. Tetrahydrofuran was freshly distilled from CaH\textsubscript{2}. Et\textsubscript{2}O was distilled from LiAlH\textsubscript{4} and stored over 4Å molecular sieves, and CH\textsubscript{2}Cl\textsubscript{2} and n-pentane were each distilled from P\textsubscript{4}O\textsubscript{10} immediately prior to use.

Synthesis of (Me\textsubscript{3}Si\textsubscript{2}CHCl

To a solution of CH\textsubscript{2}Cl\textsubscript{2} (22.4 ml, 350 mmol), Me\textsubscript{3}SiCl (92.2 ml, 725 mmol) in THF (250 ml), Et\textsubscript{2}O (90 ml), and n-pentane (40 ml) held at -110°C was added dropwise a pre-cooled solution (-78°C) of n-BuLi (453 ml of 1.6 M solution, 725 mmol) via a double-tipped needle. The addition of the n-BuLi solution took approximately 40 minutes. Following this addition, the reaction mixture was allowed to warm to room temperature, during
which time the precipitation of LiCl was clearly in evidence. The reaction mixture was then re-cooled to -110°C, and the second stage of the synthesis was accomplished by dropwise addition of a pre-cooled (-78°C) solution of n-BuLi (219 ml of 1.6 M solution, 350 mmol). The light tan color characteristic of the [(Me₃Si)₂CCl]⁻ anion became apparent during the addition. After stirring for 45 minutes at -100°C, the reaction mixture was treated with 100 ml of 95% EtOH. Following this, the reaction vessel and its contents were allowed to warm slowly from -100°C. When the temperature reached -40°C, 100 ml of 6 N HCl solution was added in order to quench the LiOEt which had formed in the previous step of the reaction. After warming to room temperature the aqueous layer was separated from the organic layer and extracted twice with 75 ml portions of n-hexane. After combination of the organic solutions, the solvents were removed by means of a rotary evaporator, leaving (Me₃Si)₂CHCl as a pale yellow liquid. Fractional vacuum distillation, bp 68-80°C/25 torr, afforded 52.8 g (272 mmol) of pure material. The overall yield based upon the consumption of CH₂Cl₂ is thus 78%. Identification of (Me₃Si)₂CHCl was made on the basis of ¹H NMR spectroscopy.

ACKNOWLEDGMENT

The authors are grateful to the Office of Naval Research (Contract N00014-76-C-0577, Task No. NR 053-612) for generous financial support.

REFERENCES

