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\ KBSTRACT
\

; 'Kihe rate of convergence of line search algorithms based on general
interpolating functions is derived, and is shown to be independent of the
particular interpolating function used. This result holds for the root

'i finding problem f(x) = 0 as well. We show how inverse interpolation can

‘ be used in conjunction with the line search problem, and derive its rate of

% convergence. Our analysis suggests that one~-point line search algorithms

: | (in particular Newton's method) are inefficient in a sense. Two-point
{ : algorithms using rational interpolating functions are recommended.i
'3
|
KEY WORDS
b
: Nonpolynomial interpolation

; Inverse interpolation
: 2 Convergence rates
? L1 Line search
? ? Root finding

Zi Mathematical programming

{

‘\1

|

{

]

T gl

]
' S—




23

A

e e . . ——

<¢

P e O .

LA~ SO a2 P SIS

1. INTRODUCTION
An essential part of multidimensional minimization algorithms is

a line search, i.e., a one-dimensional scheme for the solution of the

equation
(1) fr(x) = 0.

Most of the line search algorithms in common use are based on
polynomial interpolation of f. At iteration i, & polynomial Pn,s(x) (the
so-called hyperosculatory interpolation polynomial) which coincides with
f and its derivatives up to order s-1, at each of the n+1 interpolation
points Xyo Xy g5 wees Xy is constructed. The new interpolation point

X507 is the solution of

2) P (x

n,s i+1) = 0.

In fact, to facilitate the solution of (2), a low degree polynomial
is fitted, i.e., r = s(n+1) is small; quadratic and cubic fit being most

commonly used.

In recent years, the possibility of using nonpolynomial interpolation

functilons received some attention. One important situation arises in line
searches associated with n-dimensional constrained problems, solved by
barrier function methods. A fit by a polynomial cannot capture the

singular behavior of the barrier objective function at the boundary of the
feasible region. Wright [20] dealt with the case of the logarithmic barrier

function. She suggests using the interpolating functions
(3) ax + b + r log(x-c)

%) ax2 +bx +c¢ +r log (x-d).
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Bj#rstad and Nocedal [3] analyze the rate of convergence of an

algorithm oased on the interpolating function

(5) E§E_t_§§_i_£
2
(dx + 1)

This function is the one-dimensional restriction of the "conic" model
function suggested by Davidon [5], who lists some important advantages of
the conic model over the quadratic onse.

Independently, we suggested [1] another rational interpolating

function
2
(6) ax_ + bx + ¢
dx - 1 ’

which we analyze in section 3.
Nonpolynomial interpolation was suggested much earlier for the root

finding preblem

(7) f(x) = 0.

Ostrowski [13, p. 82] used in this conjunction the rational function-%%{f%% ,

which Jarratt and Nudds (8] and Jarratt [9] generalized to

where Q(x) is a polynomial. Ben-Tal and Ben-Israel [2] describe nonpolynomial
interpolations by certain types of generalized convex functions.

We formally define the Tn,s— interpolation algorithm as follows.
Let n>0, s>1 be fixed integers and let T be a family of s-1 times

differentiable functions T:R+R, depending on r = s(n+1) parameters. At




iteration i, the points Xis Xy 15 eees are given, and a function

X
i-n
T ¢'T is chosen s0 as to satisfy the interpolation equations

(9) T(k)(xi_J) = f(k)(xi_j) §=0, ..m; k=0, ..., s-1.

A new interpolation point i1s computed from

(10) T (x

| 141 =0

and the oldest point x n is deleted.

i

The practicality of using a particular class ' depends to a great
extent on the degree of difficulty of solving the (generally nonlinear) system
of equations (9) and equation (10). In the case of the logarithmic functions

{3) and (%), equation (10) is easy to solve, but (9) is an ill-conditioned

nonlinear system of equations. Wright [20] uses table look-ups, and applies

Newton's method after operating some transformations on these equations, in

P » order to solve them.

For the conic model studied by Bjdrstad and Noiedal [3], equations (9)

and (10) can be reduced to quadratic equations, while for the rational function
(6) discussed in section 3, equations (9) are reduced to a linear system, and

(10) is very easy to solve.

' Note that in the polynomial case, (9) is a linear system. However,

o A A v - -——

7
[P
-

(10) is difficult to solve unless T is a low degree polynomial. It will be

| shown in section 4, that this difficulty cen be circumvented by employing

TN

inverse interpolationm.

Note also, that for the function (8), the interpolation equations can

be reduced to a linear system, while the solution of T(xi+1) = 0 is simply

[
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In this paper we investigate the rate of convergence of these

minimization algorithms. Here we say that the rate of convergence of a

sequence {xi} converging to o is p, if there exists a positive number C,

such that

(see {19, pp. 1-13]). Ortega and Rheinboldt [11] refer to the rate p defined
above as the C-order of the sequence {xi}. When it exists, it coincides with

their so-called Q- and R- orders (see [11, section 9]).

Rate of convergence analysis is supplied by Bjérstad and Nocedal [3] .
for the cornic function with s = 2, n= 1. The derivation, which uses a
symbol manipulation computer program, is quite elaborate. Moreover, the
analysis does not carry over npaturally to the study of the convergence
properties of an algorithm using the same interpolation function, but with
different data say s = 1, n = 3.

wright [20] gives no rate of convergence anelysis for the algorithms
using the logarithmic interpolating functions (3) and (b).

An outline of the paper is as follows. In section 2 we prove rate of
convergence theorems for gemeral Tn’s'-interpolation methods. We show that the

rate of convergence is given by the unique pusitive root of the irdicial

equation '
n+l n =l j_
(11) £ - (s-1)" - s 2t =0
J=0

Since this equation depends on n and s only, the rate is independent of the class T.
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In section 3 we analyze the specific family of interpolating functions

(6) ax2 +bx+c .
dx ~ 1

Inverse interpolation for minimization algorithms is introduced in
section 4. We show that the rate of convergence in this case is again given

as the positive root of (11).

Numerical examples illustrating the convergence theorems are given

in section 5.

In section 6 we discuss the implications of the rate of convergence

analysis to the design of algorithms.

g
-
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2. RATES OF CONVERGENCE OF NONPOLYNOMIAI, ALGORITHMS
Traub [19] studied the rate of convergence of algorithms that use

polynomials to interpolate f, or its inverse function for the root finding

problem (7). The natural modification of these results for the minimization

problen are discussed by Tamir [17, 18] for the direct polynomial case, i.e.,

when the interpolation requirements are given by (9), T being a polynomial
of degree < r = s(n+l).

The key result for this analysis is the product form formula of the
error incurred in hyperosculatory polynomial interpolation (e.g. [6, p. 67]).
Ostrowski [13, p. 12] generalized this formula to the case where the
interpolating function is not necessarily a polyunomial. However, nc use of
this generalized formula has been made to extend the analysis of Traub and
Tamir to the nonpolynomial case. Using this formula, we will obtain a

difference equation which differs from the one obtained by Tamir in its

right hand side only. This implies that in the nonpolynomial case too,
the rate is given by the positive root of the indicial equation (11).

Tamir [17, 18] gives two separate proofs for the cases s =1, s > 1. We

will give a unified proof, and settle his conjectures in [17].

Stronger results than ours can evidently be obtained by relaxing
some of our assumptions (compare for example Brent [ll] ). We have preferrad,
however, to keep the presentation unobscured by these technicalities. For

the same reason, we have not stated explicitly the interval of (local)

convergence. This is done in great detail in [17] and repeated in [18].

We will denote by a a solution of (1), and by J the interval

J={x: |x - a| € L} for some positive L. The error X, - o will be denoted

. P~ o~

by 2, and the open interval detesmined by {al, vees am} will be denoted by

-,
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The folilowing assumption will be used repeatedly.

Assumption 1 = s{n+l) > 3; £ and T have continuous derivatives of

N it s Al B

order r+1inJ for all T e T ; f"(a) # 0 ; X, € J and x3 # X for
j#k, 1,j,k=0,1,2, ..., n; & # 0 for all k.
Note that if e, = 0 for some 1, Xy is a solution of (1), and the

algorithm is terminated.
i In order that the sequence {xi} defined by the alzorithm be well

defined, the interpolation equations (9), as well as equation (10) for

X1 must have solutions. If T is the class Pn s of polynomials of degree

less than r = s(n+l), equations (9) have a solution if and only if

x, # x, for k # ¢. To quote Davis [6, p. 27], the hope that an interpolation

problem can always be solved providing the number of parameters equals

the number of conditions, is naive. ' can be replaced by Pn,s in iterations
at which (9) has u0 solution, but in practice this case is rather unlikely.
We will assume henceforth that (9) has a solution for all i.

As for equation (10), we will prove that under Assumption 1, it has

a solution for all i, if L 1s small enough. We need the following difference

N relation to prove this and other results.

f Theorem 1 Under Assumption 1, if T" # 0 on J, then the errors e, =X -,

! bd
; ¢ induced by the Tn s interpolation algor thm, satisfy the recursion equation:
3’
~ n n n
o -1 8 8
(12) e . ,=M o m e +N, Te ,
‘ i+l i =0 i-k 320 i-j i 3= i-j

j#k
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where

r-1 r
Y = (5 (ey,) DT L= (“(x1+1)) o,
i ™ @(x;,4)) ’ “1 T"(0(x, 1))

_ (r) (r)
Ml(x) = f (X)r-!' T (E) ) Nl(x) = f(r+l)(x) - T(r+1)(x) ’ N

(r+1)!

5 gﬁtL'HW)€<t’ﬁfxrd"“’xrﬂ> and

3 ‘ 0(x1+1) e <0 X 0> .

X Proof: The error in the interpolation (9) is given by (see [13, p. 12] )

(r) (r) n
- T (g) - £77°(¢) 8
(13) T(t) - f(t) + r! Jgo (t - xi_J) .

Differentiating (13) we have

() £1(8) = ) + (g, () W (e + N (ng(8) WCE)

n
| where W(t) =1 (t - X, )% and Ml’ Nl’ £.(t) and n,(t) are defined above

! §=0 E . 1

i

2 T (for proof see [1, section élwhere we generalize Ralston's result [lh, lSJ on the
. differentiation of the error term, to the hyperosculatory case). Substituting

&
?‘ ‘1 t = a in (14) and using

ey

? TH(a) = T'(a) - T'(x, 4) = -0y 4 T"(G(xi+l)) we obtain (12).

g NS Sl M
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Theorem 2 Under Assumption 1, if L is small enough, there exists x

Proof. By assumption, the sequences M

fT ange R s T S

Under Assumption 1, f"(a) # 0. Since f'(a) = 0, f! must change its sign at
a. It follows by substituting t =a - L and t = « + L in (1%), that T' also
has opposite signs at these two points (for a detailed proof see Appendix A

in [18]), if L is small enough. We summarize this result in

i+1 € J

satisfying equation (10).

Using Theorem 1 in [7, chapter 6, section 5], it follows immediately
from the difference equation (12), that if the initial errors e;, ..., e, are

small enough (i.e., L is small enough), the sequence e, tends to zero, establishing

i
the following local convergence result.

Theorem 3 Under Assumption 1, if L is small enough, the sequence {xi} converges

to the solution o of (1). o

Also note that if L is small enough, and if s > 1, we have by (12)
ley 1] < Ieil , implying x, , # x,. For s = 1 however, we have to assume
%41 F %y (ef. [16]).

We now repiace (12) by a more useful difference equation.

Theorem 4 Under the assumptions of Theorem 3, and if M1+M # 0, then

s-1n s
e e
b1 S P
i+171 j=1 i-j

(15) 0, = A

where Ai+l——>M.

x Ni are bounded. Ifs > 2, (12) implies

e
(16) -__ii'_.l_ - 0 s
%
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(i.e. superlinear convergence). If s = 1, we must have n >2 since we assumed
r =s(n+l) > 3. For n =2, (12) is the basic difference relation governing

the behavior of the Quadratic Fit algorithm, which is known to converge
superlinearly (see Theorem 3.4.1 in Brent [h]). It is evident from (12) that
the rate for n > 2 is not less than the rate for n = 2. Therefore, (16) holds
forall s >1, n >0 if r = (n+l)s > 3. Rewriting (12) in the form

_ s-ln s ] s
an 8,1 = Mie 7_7- o I:l + Z 5 ei
=1 k=1 ]

we see by (16) that (15) holds with

n e N
— i i
A:L+1_Mi[1 * Z ei—k+ M ei:I
k=1 )

Remark In (17, Appendix C), Tamir conjectures that his apriory assumption

(17, Assumption 2] on the superlinear convergence of the sequence {e i} is
redundant. Our proof shows that this asswiuption is indeed redundant.

We now state our main result.

Theorem 5 Under the assumptions of Theorem 4, the sequence {xi} generated

by the Tn,s' interpolation algorithm convergss to the solution o of (1), with

rate of convergence p which is the unique positive root of the equation

n-1 .
£ (o)t - sy t) = 0
J=0

Proof Convergence of {xi} to o is proved in Theorem 3. The assertion nbout

the rate of convergence is a direct consequence of the difference equation (15),

as proved by Tamir{17, 18].
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Remark  The assumption that the sequence My has a nonzero 1iit, enables us

to use the analysis of Tamir in [17, 18] (or Traub in [19] for the root finding
problem). It will hold if the mapping from Xypo e Xy to the parameters of

T defined by (9) is continuous so that the limit exists, and if this limit is
different from zero. In this case the C-, Q- and R- rates of convergence are
exactly p, where p is given in Theorem 5. If the limlt of Mi exists and is

zero, or if this limit does not exist, but the sequence M1 is bounded, equation

(12) implies that the Q- and R- rates of convergence are still at least p.

Corollary The rate of convergence of the sequence generated by the interpolation

algorithm does not depend op the class of interpolating functions T.

Remark It is evident from our analysis that the above corollary holds for
the root finding problem, as well as for the case when the number of pieces of
information used at the interpolation point xi-j depends on j (e.g. the False
Position Method).

It follows from Theorem 5, that the rates of convergence of the interpola-
tion algorithms using the coric interpolating function (5) is p = 1.46 for s = 1,
n = 3 (4 interpolation points with no derivatives); p =2 for 8 = 2,n =1
(f and f' used at two points) and p=3 fors =4, n =0 (£, £', ", f" used
at one interpolation point). Rates of convergence of algorithms using the
interpolating functions mentioned in the introduction, can be computed likewise.

The behavior of the rate p as a function of n, for fixed s, 1s summarized

in Theorem 6.

Theorem 6 For fixed s, p is an increasing function of n., Forn=0,p =38 -1,

2
while for n= 1, p = 3. As n tends to infinity, p tends to —g-+ \/'(—g-> +1 .
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Proof For n = 0, n= 1, the rate is obtained by solving the indicial equations

t - (8-1) = 0 and t2 - (s-1)t - 8 = 0 respectively. The remaining assertions
3 1 are proved in Tamir [17, 18]. 0
i A few numerical values for p, are listed in Table 2.1. .
TABLE 2.1
8 n P
| 1 2 1.3
, 3 1.h
oo 1.6

|
' 2 1 2
7 2 2.3

1 0 2.4
¥ —
; 3 0 2
l 1 3
'
! ) 3.3
! —_
};" s 0 8-l
) ) s ‘
E
i} s
? 0 '5 + 1
™
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/ 2
Since %-+ (%) + 1 i1is close to 8 even for small values of s

(see Table 1), Theorem 6 implies that algorithms using more than two interpolation
points (n > 1) are inefficient. However, two points algorithms are substantially
faster than one point (or memoryless) algorithms. Instead of making the last
statement precise by defining a measure of efficiency (chosen carefully to suit
the authors' purpose), we will note that the tramsition from n=0to n=1
involves storage (but no computation) of s extra pieces of data. In addition to
this, the system of equations (9) will involve 2s instead of s unknowns.

However, this system is linear in the polynomial and rational cases (which are
the most important ones) and need to be solved once only for the clags T. The
main difficulty is the solution of equation (10). This, in the case of s = 3,

n = 1 (Newton's Method with memory) with polynomial interpolation, is a polyno-
mial equation of degree 4. Solution of this equation can be avoided by using
inverse interpolation, to be discussed in section 4. On the other hand, for line

(k)(t) involves in fact computation of the

search algorithmg, computation of f
derivatives of a function on RP (i.e., gradient vectors and Hessian matrices,)

making the extra effort worthwhile.




EE R G T

- . <3 i 4 W PTG KNSR e 5 L g
D T T o Lol bt s Ses TS B it Ao 1 WA ot DA v

14.

3. A CLASS OF RATIONAL INTERPOLATING FUNCTIONS

In this section we briefly discuss the four parameter rational interpolatir,

function
ax2+bx+c
(18) R) = %1
Writing (18) in the form
(19) (dx-1)R(x) = ax?' +bx+c,

differentiating (19) implicitly and then using the interpolation equations (9),
leads to a linear system of equations for the coefficients a,b,c,d. For ex-

ample, with data s =4, n=0, the equations are

2
/ - =
‘dxi l)f(xi) ax, + bxi + ¢

(dxi-l)f'(xi) + df(xi) = Zaxi +b

(dxi-l)f" (xi) + 24f! (xi) = 2a

(dxi-l)f"' (xi) + 34" (xi) =0.

Note that if d=0, R(x) has no singularity. Therefore, it may be expected
that R(x) will provide a good f£it to functions with regular or singular behavior.

We now turn our attention to the solution of (10) for x If d=0, R(x)

i+’

is a quadratic and (10) yields xi+1= -'i%. For d#0, it is convenient to re-

write R(x) in the form

(20) R(x) = ax + § + %




15.

b a c b a 1
where (1=£,B=-+-—-,Y=-+—-+-.—. 5 ==,

d d d2 d d2 d3 ’ d
Differentiating (20) we have

! (21) R'(x) = 0=t
(x=8)
(22) R" (x) = ——21—3
(x=5)

From (22) we see that R"(x) has exactly one change of sign at x=8. The

| point X1 will be a minimum of f 1if

(23) R'(xi+1) =0
i
(26) R (xy,p) > 0
po From (21)-(24) we have
i (25) Xi4q = O T Jyla
!
!
[‘ assuming
5
,'; 3
! (26) o >0 .
v N

.

The two solutions in (25) correspond to the minimum point of the convex

branch of R, and the maximum point of the concave branch of R. Multiplying

(22) by (x-a)a, we see that in order for (24) to hold, 've must have vy (x

=3) > 0,

P s> PP izl

i+l
which combined with (25) yields

¥
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=85 +eVyla, £=signy .

X1

Condition (26) will hold near the solution under the assumptions of Theorem 2.

Remarks. Rational interpolations are particularly useful in cases where f,
or its derivatives, have rapid changes, even when f has no singularities (see
section 5).

Use of rational functions other than (5) and (6) suggests itself, especilally

when higher degree interpolation is needed, possibly combined with inverse interp-

olation (see section 4).
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4. TINVERSE INTERPOLATION FOR LINE SEARCH

Inverse interpolation methods for the root finding problem £(x)=0 are
well known. Assuming that f' is nonzero and f(r)(x) is continuous on an
interval J mapped by f onto K, then f has an inverse F, and F(r)

is continuous on K. If T 4is a hyperosculatory interpolating function satise

fying

k) = K = k= -
- TV =F O5.) 310,05 k=0,...,8- 1,

Viey = f(xi_j)
then
PP, )1 @ @) n \
(28) F(t) = T(t) + r' n (t-yi_j) ’
! §=0

with Gi(t) € (t,yi, Yigeeeo yi-n)' In the inverse interpolation algorithm

for the root finding problem, we approximate a=F(0) by xi+1==T(0).

The derivatives of the inverse function F can be expressed in terms of the

derivatives of f. Indeed, letting

’ °~k=f(k) ’ k=1,2,... ,

we have (see [12])

n kl 1 {2n k1 2)! ; {2n k1 1).akz. o
1 1 V..ol cee ’
n.kz.k3. kn. 1 2 n

@9) B =T D

where the summation is taken over all kl’ k2""’ kn satisfying

n n
Zh=n-1, Y ik, =2n-2, k,>0,.
i=1 i=1
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18.

Let T be a polynomial Qn s of degree < r. By the above and since
b

, Q can be expressed in terms of the

y. '=f(xi-j) and F(yi-j)=xi-j n,s

i-]

data x, , and f(k)

1] Xy ). If T is not a polynomial, we first construct
- “J

the interpolating polynomial Qn s satisfying (27), and proceed to solve the
’

system
(k) - o® . s
T (Yi-j) = Qn,s(yi_j) j=0,...,03 k=0,...,8 -1,

yi.=f(x ) .

-3 i-3

Traub [19] shows that the rate of convergence of the polynomial inverse
interpolation algorithm is given by the positive root of the (root finding)
indicial equation tn+1 -3 § tj==0, exactly as in the case of direct polynomial
interpolation. Similar tojzgr derivation in section 2, it can be shown that the
rate of convergence is independent of the interpolating class of functionms.

Inverse interpolation has not been applied so far to the solution of line
search problems. We will define the Tn,s-inverse interpolation algorithm, and
prove that under the appropriate assumptions, its rate of convergence is given
by the positive solution of the indicial equation (11).

A difficulty in applying inverse interpolation to the line search problem
is that one cannot assume that f has an Inverse near an extremum point «,
since necessarily £'(a)=0. Denoting, however, g=f' we can write equation

(1) as g{a) =0. Assuming that o« 1is a simple zero of g, g has an inverse

G defined on a neighborhood of g(a). Since the gsolution a of (1) satisfies

g{a) =0, it is given by

30) a = G() .




s W

A

The assumption on the differentiability of g implies that G is differentiable.

Hence G is .ontinuous and has a primitive function F (i.e., an indefinite in-

tegral of G), satisfying
(31) F'(t) = G(t) .

Equation (31) determines F wup to an additive constant. By (30) o« is given in

terms of any solution F of (31) by
(32) a=F'(0) .

Now let F be any solution of (31), and let T be a hyperosculatory interpolating

function satisfying
k
T( )(Yi-j) =F(yi.j) j=0,o-o,n; k=0,-.o,8'1 ()
33)
Yi_j = g(xi"j) .

The inverse interpolation process for the solution of (1) consists of approximating

a in (32) by

(34) = T'(0) .

i+l

Evidently, Xi,q 38 defined by (34) is independent of the particular integration
constant associated with F. Let Qn,s be the interpolation polynomial of degree
< r satis{ying (33). We will later express (34) in this case in terms of the data.
If T is not a polynomial, we can express equations (33) in terms of the data by
first constructing Q“’s (i.e., replace T by Q“’s in (33)) and then interpolate
Qn,s by T (i.e., replare F by Qn,s in (33)).

In order to write (34) explicitly in the polynomial case, we can proceed to

construct Pn S(x), the direct interpolating polynomial determined by (9), differ-
b

entiate it to obtain
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r=2

&) = Z o (x=x, )

from which we obtain directly by [12] the inverse interpolation formula for

line search

r-2

(35) X =%t kzl Bk(-a,o)

where Bk is given in terms of the mk's in (29).
As an example, we now construct the algorithm (35) for the case n=1, s=3,
This is the algorithm which uses Newton's method data £, f' and f£', at the

interpolation points Xy and x . The rate of convergence of this algorithm 1is 3,

i-1
Replacing X % and X, PY Xq, X and Xy . respectively, and de-
noting f(k)(xi) by fik), we have
(36) P(x) = £, + (xex,)E) + (xex,) ) + axex,)’

+ b(x-x2)3(x-x1) + c(x-xz) (x-xl)2

where the coefficients a,b,c are determined by (9) as:
1 « 2.4
( (£=£5) = (xy-%)) £) = ¥(x, =%,) fy
. (xy %)
*17%2
(f'-f )= (x X )f" 3a(x,= )
2 2 1 2 s
(xl-xz)
1N - 11
.. (f' f') 6a(x1 xz)-6b(x 2)
§ 2(x1-x2)
Rearranging (36) and differentiating, we obtain
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g X
P'(x) = (x-x,)
k=0fk 2

with

Q
o
1}
+h
B -
R
i
]
133
|

3oy = 3lanh (xyoxy) +elx 1) ’T
(38)

@y = 4[b-2c(xl-x2)] s Oy 5¢ .

Tinally, the iveration (35) becomes

} 2 3 4
(39) Xg = X, =0oBy + Bylg =Bg% * B o

where

1 )
‘:1—&,—’ ﬁ2=-—3-' 333: ——
1 %y
(40) 3_ 2
) Sonloczcx.3 - 50(.2 - a.la 4
By 7 .
!

Formulas (37), (38), (40) and (39) define the algorithm.

Similar computation for s=2, n=1 yields for inverse interpolation with

f and f' at ¥y and X510 the following formulas:

£ 3b(E)2
f X = X --—2. “ —..——.-2-—-
3 2 2c 3
8¢
where

3 - 1
(Fy=E9) = (xy =) f,

(xl-xz)2
(41) T
ﬁ . (fl-vfz)-Za(xl--x2

2
(xl-xz)

c = a~b(x1-x2) .
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Remark. If P(x) is a quadratic (which is the case for the classical Newton,
False Position and Quadratic Fit metheds), P'(x) is a linear function, with
linear inverse, so that in this case the direct and inverse interpolation formulas
coincide.

The inverse interpolation formula for s=4, n=0 (with rate 3), will differ
by the above argument from the direct interpolation formula for this case. It is
given by
£ (e

i 1 Mi7 %

42) Xy ,q = X, =77 = 7
i fg 2 (f;)3

i+l

.

Note that omitting the term with the third order derivative in (42) yields
Newton's method. Note also that the direct interpolation formula in this case is

given by the solution of the quadratic equation

1 =
PO,S(xi+1) 0, where

- ' e V2 1 \3en
P0,3(x) = fi + (x-xi)fi + ¥(x xi) f; + 6(x xi) fi' .

We now turn to the analysis of rate of convergence of this class of algorithms,

starting with the derivation of a basic difference equation.

Theorem 7. Let f"#0 and let f<r+{), T(r+1) be continuous on an interval J,

Let the derivative G of F be the inverse of g=f', and let

Xigpr Xgororo Xyq € J, where xi+1==T'(O) and T satisfies (33). Then
43) e =K E eﬁ-1 ; e  +1L ; el
I T/ R e IS I e S
i#k

where
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-DFsK; 6, (0)) n =1L @, 0))
K =3 LEw® ), Li=—
' 8 j=0 8
(£, )] [£"(9,_))]
j=0 3=0
F(r)(x)-Térz(x) F(r+1)(x)-T§r:1)(x)
K (&) = ] » o Ly = =) .

€ (8)sny () e &y sy, yseenny, ), and 0.y ¢ {xyyra) .

Proof. Differentiating the error formula (28), we have

(44) F'(t) = T'(t) + K, (5, (W' () + Ly (n, (DIWCS)
n,s n
where W(t) = T (twy, ° and Ky, Ly, ¢, (8), n,(t)
§=0

1 are defined above. Substituting t=0 in (44), and using e -q =

141 T4
e T' () -=F'(0) we obtain
: n, s

n n n
r -1 s + 8
| 45) ey = (TR GO T yin Ty + DT oo T v, .
; i+l 1%1 k=0 ik §=0 i-j 1M1 4=0 i=]
i‘ j#k
N We can now express yi_j in terms of the error ei-j
'& J
t‘
. = - o = 1 = '
{ where gi-j is in the interval determined by xi-j and o. Substituting (46)

in (45) yields (43). &

—— s~

i

'
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The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r+1, in the
interval J={x: |x~a| <L)}, Let f'(a)#0. If L is small emough, if
Xpseees X € J and the sequence {xi] is constructed by the inverse interpolation

algorithm for line search (i.e. xi+1=T'(0), where T satisfies (27)), then

X4 € J. Furthermore, if the algorithm does not terminate, and the sequence K1
defined in Theorem 7 satisfies Ki > K#£0, then Xy > oo with rate of convergence
p which is the unique positive root of

n-1
1) (o)t s T el =0 .

j=0
Proof. The proof is identical with the proof of Theorem 5.

Indeed, both Theorems 8 and 5 are consequences of the same basic difference
equation, namely (43) or (12), where the coefficients Ni and Li are bounded
and 1lim Mi , lim Ki are nonzero,

Equation (47) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).
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5. NUMERICAL EXAMPLES
The purpose of this section is to illustrate that the theoretical rate of
convergence predicted by the preceding theorems, is well reflected in the actual

behavior of the various direct and inverse algorithms., Ten algorithms (without

safeguards) are applied to minimizing two functions:

£f(x) = %x6-x3 + 2%
and
- 1
£(x) = x + 1
e =1

The first function, although nonsingular, behaves very much like a singular
one in the interval [0,2], due to rapid changes of f and its derivatives in
the interval. This in particular caused the cubic fit method to diverge.

The second function is highly singular at x=1., For this function, three
of the methods based on polynomial interpolation diverged. In contrast, all four
methods based on rational interpolation worked well.

The results are summarized in Tables 5.1, and 5.2, The Rational &nd Conic

2 2
functions referred to in these tables are ax _thxte and ax_thxte respectively.
dx-1 (dx+1)2

Initial values used in Table 5.1 are (2}, {2,2.1}, {2,2.1,2.2)}, and {2,2.1,2.3,2.3)
according to the number of interpolation points. Initial values used in Table 5.2
are {1.75}, (1..7,1.8}, {1.7,1.75,1.8}, and {1.7,1.73,1.77,1.8}.

As can be seen from these tables, there is an excellent agreement between the

*
predicted rate of convergence, and the actual behavior of the error sequence {xi-x }.




AT
s

TRTET

I RS S

preees

S8 R

A R e

T
Hi TS R

T

e,

"

ey

s

T

St

PRI

e

ST NG

s T I

C e ¢ — e

=

g e,

o~

| .

oot T o

.3

3G e

(Quadratic Fit)

e Al TR e e e I o
C e e 1.6
TABLE 5.1: Solution of f'(x) = 0, f(x) = gx =X + 2x 26.
Algorithm Iterations
, *
Polynomial No. X £'(x) X=X

01 2.,100000000L0
L 167365314100

2 LLE07129031010

H LaLO233685G10

T4 L 3BSSEA488EQ
LG 1 31836 7301F0

S 120724 1L0L30E0
71 1.209510430200
a1 L 17609991910
P21 L 1HI78331260
1O 1413597315370
T 1126917080
L e LR A0831 A0

2:961101000%
G784 0
A,97288392.0060
288203816350
Lo 3469018000 O
/’. SHHAKAAT9TE™)
fBODLETHEPET )
1.‘)97?)50860'« !
LeQOMAHBIO /T |
4 71 88BULAABETD
03440411 '/"'""""’
/ SRR KT WA To
D203 IXB00 A

P 7RAGTIRYTET)
TeHRPLON2PEET
4,8638641 ‘?\Sr'“"
3.815942440E71
2. 6479 18768F7 Y
1.976246894F7
1.364989189E7]
B 876782049K72
e G3G/30723ET2
3 104070026872
+ 92305419770
6) 1700962 G0E "3
1. 86G/0G0 /313

Ha 0493430001 ]
J. 7090912690 )
2281884841020 |
L QAQSBYH401EQ |}
Ji 9364613400 |
142V 24096863077 ) 1
D2 Q030461 7SH1ETD |
1eHB063181 1LE™D )
SeA0RHRAO4 2T 3 )
4,146/ 78386000774 |
QK019 71L30ETY |
243 ‘)’4“’:6(‘)7‘3()“ 7
KN (‘:I‘\'u’a PERLAFTLO

117925738980
4.277185666171
3. 4””94658l““
2.320417710%"
l.“u67304llﬁ"1
G 63440547772
Fo267H36421F72
Le1944941 37072
2 BH1AY /7133
3 GHN043235074
I.)é?b/ﬂh)d“"“
2.085619388 11277
P LEAHG020 /87T

01 2,30000000080
LE LobaBasL 173170
O 146303724980
S 1302784380070
A1 120611460000
B Lo 1820866660
1 1 1N34LT97 600
21 L 132687097300
81 Le123%9430960
P10 L E2L0R Z405EQ
A0 La12076030410
LHE 112074281200
Lo 11207428120 0
0l 2,000000000:0
LE L é76470588K0
Q1 LeAa%b09R362150
J1 L 289992740 0

41 L LRN00BSY00
w1 144001369580
A1 1 1245900020 0
A1 L L20B752021 0
Bl 1. 12024077800
91 L b2024041 100

220000000000 |
G BLLLAG228F0 |
LoOXZLLBH20K0 |
W 799409462V R
LaD2BALL2B/E T )
J44078928460170 |
4e6AFALRDPUE TR |
Len4a33u4n 2k 74 )
LeR4NLYYRBOX7 |
S QK958 13

879257388745 |
5V SH7279 769K
50:3434(}; 5 L,

HR2L0L46807
F 4”6608/09|~q

75875747102
3'“59$?wqavr“%
1032676093517 "4
146704939711 7

TRVAVTVEBA84E )

Data: f at 3 points
Rate: 1.3
Rational
Data: f at 4 points
Rate: 1.4
Polynomial
(Newton)
Data: £, f', f" at
1 point
Rate: 2
Rational
Data: f, f' at 2 points
Rate: 2

O 2.100000500-0
LE o Lo d2/797844070
SEO T 33LaNNNART
S LadvAgLLYL 210
1L IR O I 3 DA I R R
ol Lo L2700 aAEE Q)
8 N S R R I R A RV
b L0 ZA2451050 0

DeVSTIOLOOON ) |
22010900 ’0‘/‘%‘0 |
Boa21730480 " !

‘ 1! 5())\)“-\)1 'l ]
uoHn‘HQ'JQ "“”3 |
D2 ARNIIeAL 3
5 IR ARSI AN NP |

AL 200Ny

Pe7R2L23BB /T
3772360334
DatLeneaye )
21 33ANINE T
T 0008849 /8LI 72
JaORP0347240°° 3
RIS R PR RIS
S AYURURNEN T
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TABLE 5.1 Continued 27.
Algorithm Iterations
' %
Inverse Polynomial No. x ' (x) X=X
01 2,100000000E0 | 2.961L101000E1 | 1.100000000E0
Data: £, f' at 2 points 11 1.62008480880 | ;.48 9441 38E0 | 6.?80848878“"1
21 119050873550 1 L 395258096E57) P0B087348F ™1
L3 7.0143761A2ET] 1 6.9370507796ET1 | “: PR542IBEHET
Rate: 2 Al 9.2067492G3EL 1 L ABE7SE77AK T | "7, 932507474572
SE9GH08130LA8ETL | 2, 189400795F7T0 | UL 91869851 6872
1 9.991112109E™1 | 894116552274 | T8, 887890512674
71 9.999982581F 7] 1 1. 74190906874 | L. 74188782887 6
31 Le000000000F0 | &, RB8904510/F 7121 “6.,889045541E 12
Cont 01 2,10000000000 | 2,.96L10L000ET 1 §,799%73887E™
vaic LI 1445835120880 1 2,2018090916E0 | 3.3760861708 71
21 1.298130361F0 1 4. QLAGRRADETL 1 L 7S3B77493E™
Data: f, f' at 2 points ST Lo 172934697550 1 9,07600893201E70 | 5, 219434 3BGE™2
41 Lo LALAL227880 | 1.397/58045570 | 1,086966669E2
2 S 1 21263007170 0 1 4,0875646210E74 | 5,203952432F™4
Rate: A1 Lol2074400600 1 1, 4681494620576 | 1,444434108576
P11 120742601000 1 1L, 128799608ET 1L T8, 4363366126711
) ‘ O 2,10000000070 1 2,96L10L000FL | 9.792573887E™1
Inverse Polynomial CHL 1449749600800 | 2,8030946043E0 | 3.767533944F™1
Data: f,f',f" D1 L 21A243480) 1 2,0236092620E7L 1 9,.550086866K70
at 2 points A1 Lo 12BOAZRIVED 1 9,.8942098735 73 1 7.900627235E83
41 1 12074413950 1 L, 279/81898576 | LL.S28009852E74
Rate: 3 ST 1o L20742861 100 | 8087360238077 191 U9, 40435407511
01 2.000000000F) | 2,200000000E1 | §.790573887E™ |
Inverse Polyncmial L LGS 7945 756F0 | 3,.896700674R0 1 4,372031440E 1
' gn g AL LLO9RLE028F0 1 4,374399816FE7 1 | 1. 7840811602E" 1
Data: f£,£f', ¢ at S 117161424700 1 B 95500 L0ETD | 5 0871635387 "D
1 point 41 1 126488019F0 | 7, ons>25/,nv'4 I 9.743407871E™3 .
G 1 12024878800 1 4, oazzunn’u| B D, AL76408788 Y
Rate: 3 1 Lel207426 1160 1 350045 1680E121 "9, 099150816811
O 2,00000000010 1 L, 20000000001 | 8, 7OIS7I0Q7E" |
Rational PE O LaAZ2%4008 780 | DL AIRNS7843F0 | 3,51799455810° |
S LG20023AYHLEO T L 4MRE099E T | 1,019 3 78 e |
Data: f,f',f',f" at ST 1 LSAV99/1L0F0 1 1L,858880102070 | L 40%709866R7 0
1 point A 1208843600 1-$ﬁ|h9?945ﬁ“4 I 1. 41695402 /574
S 112024261100 ) VE00 720507 LOT 1, 036082452710
Rate: 3




TABLE 5.2:

= x+1/ (ex-l-l)

g emer e
« %

e 2 e e s L

Rate: 3

Solution of £'(x) =0, f£f(x) 28.
Algorithm Iterations
£ *
Polynomial No. X (x) X=X
(Quadratic Fit) 01 1.800000000E0 | “4,817670946E71 | ~1,6242346501E™1
TLE 1089818802100 | THUH9UIDASHAETL | T, 4RSS 7RG
Data: f at 3 points 21 1eR33LL3075E0 | TA4JHE7ALIBEOETD | TR, 931057467 ETD
B L 9U3ABEIIRR0 1 L. 98031446/ 1 T8, 7353346800F73
A1 1096102420850 1 "3, 136116528573 | 1, 399442557F3
Rate: 1.3 51 Le962262511F0 | " 3,604098014F74 | "1.61139%109K™4
61 1496241642100 | "L L4248V | U7, ng789 7941574
21 109624085070 | TR, 7623060711 7 | 71, 035376457k "7
Bl L.962423649F0 | T2,808337056F "9 | T, OE500451 1ETQ
01 1480000000050 1 “4,817670946E71 | ™1.,624236501E~1
Rational T 1.96234346850 | ™1, /"31&1999F" I "B, 0182573508
DI LeR62405344E0 | TA,0¥ 3437 LAAETS 1 L 83058829055
Data: f at 4 points I Le96RA2I6A2EY | U1 BO609E930E" 9 I "8,077110926E9
A1 LeR624238650E0 | UL AGLABBHVET LR 6. 55EH6 3 IEEE™ 3
Rate: 1.4 .

1 01 Le750000000E0 | 6,967368901E"1 | ~2, 12423650 LK™ 1
Polynomia LI 189705352850 | "1,623305337571 | ~6,5270120248 2
(Newton) R - T s

D1 Le9EEOIRALBEO | TLLAVODSEBAPE™D | T4, 511 39081 F3
. EE L at g 31 194235744350 | 7L, 480U AYURAE 4 7640 62073590455
bate péinl A% oe 41 1 POEAADTLAZL0 | TLLSIALHE2H0FTE | T 6. B60964333E9
Rate: 2 4 dPOADZEGONO 1 L SATVBIIODTTLAL T R IDIGI4TI IR Y
Rational . - Coo - s st e
O LeRO0OQO0OOOOFD | "4,817670948F™1 | "1, 62423850 1F ]
Data: f£,f'at 2points| 11 1.96234520350 | ~1.7%434327 48" 4 I "7, 844698087F™
Rate: 2 21 J PHRA2IEINTO ) TRLA4L7BIGTAETR | L, 092001476F 8
31 CPO2ALIETOE0 | TLLBEAUDZZITETIT] TH, 2399BE51IF 1Y
Conic O 1.,800000000R0 | ~4,817670944+" 1 b "1, 62403650 18 "
LU Le96974238360 | L 617959 L93E™D | 7,31873279 163
. ' o4 N
Data: f£,f'at2points D1 L V6RISAA02EQ | 1.33493143&!"4 """ I "5, 92481341 1E™YS
Rate: 2 ST 196242385180 | 1,8407109476%¢ | 9 330Z0SENEE1(
Inverse Polynomial O 175000000070 | "6,94/358901E "1 | 2 |»4"56J01'*'1
Data: f,f',f" "™ i: t 3?9¥3§ég§ﬁ8 : fﬁ.qﬁyﬁg?{ﬁ?fmﬁ : ’.g?9ognhva
t o ot B2y "J ok b2V BLIFETY TR ULS7034540 78
at one poin ST Le962423865060 | L, 36435567 4| “h.l()lqﬂﬁﬂhol“l4
Rate: 3
Rational Ol 1.750000000F0 | 4,967348901%" | | 12403850 L1 " l
" oen e LI 1.962341099F0 | ™1,846144048E4 | 3.3“5140)14
Data: f,£,f%,f 19624236500 | T] L, 397N 700481 D000 sy
at one point - 7R Red0alR0 L AP7U70968IET LA T, D400 .}8684" l
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6. CONCLUDING REMARKS

Our analysis (and limited numerical experience) suggest that rational interp-
olating functions should be preferred over polynomials; the rate of convergence is
the same, and for both rational functions and polynomials the system (9) is linear.
However, rational functions can better cope with singularities and perform equally
well for regular functions.

The analysis also points to the inefficiency of interpolation algorithms based
on more than two interpolation points (OT more than three points if function values
only are used). Two-point algorithms are significantly faster than one~point algor-
ithms, the latter are therefore useful only if computation of the derivatives of f
are relatively very cheap.

Use of inverse interpolation is recommended if equation (10) is difficult to
solve. Note that even in the Cubic Fit case where the interpolating function is a
cubic, solution of equation (10) involves computation of square roots (see [10, p.
142]), in itself a relatively costly operation on the computer (cf. equations (41)).

Finally, note that any modifications made in the algorithms in order to ensure

convergence (see e.g. [10 section 7.3]), may severely affect the rate of convergence,

since the basic difference equations may be fundamentally changed by such modifications.

Asgsume, for example, that we modify the Quadratic Fit algorithm so that one of
the points x1+1, X X1 Xi-2 (not necessarily xi_z) is dropped, in such a manner
that the remaining points bracket the solvtion o, Then we may choose

eq <0< e, < e and small enough L, such that equutiou (15) of Theorem 4 would

imply that, for M > 0, we nave e > 0 for all i. Hence, in the bracketing

algorithm, one of the three interpolation points is fixed as and in the

Xq 5
difference relation (15) one of the indexes should be replaced by 3, leading to

difference equation with an indicial equation different than (11).
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Thus the statement in Tamir [17], that bracketing algorithms do not lend
themselves to the difference equation approach, and the conjecture made there

that the interpolation and the bracketing algorithms have the same rates of

convergence, are both false.

A bracketing procedure that aims at maintaining the rate of convergence of

the underlying interpolation, should coincide with it near the solution.
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