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ABSTRACT

tThe rate of convergence of line search algorithms based on general

interpolating functions is derived, and is shown to be independent of the

particular interpolating function used. This result holds for the root

finding problem f(x) = 0 as well. We show how inverse interpolation can

be used in conjunction with the line search problem, and derive its rate of

convergence. Our analysis suggests that one-point line search algorithms

(in particular Newton's method) are inefficient in a sense. Two-point

algorithms using rational interpolating functions are recommended.
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I. INTRODUCTION

An essential part of multidimensional minimization algoiithms is

a line search, i.e., a one-dimensional scheme for the solution of the

jequation

(1) f'(x) = 0.

Most of the line search algorithms in common use are based on

polynomial interpolation of f. At iteration i, a polynomial P W(X) (the

Pn, 8

so-called hyperosculatory interpolation polynomial) which coincides with

f and its derivatives up to order s-i, at each of the n+1 interpolation

points xi, xi- 1 , ... , i-n, is constructed. The new interpolation point

xi+ 1, is the solution of

(2) Pn,s (Xi+1

In fact, to facilitate the solution of (2), a low degree polynomial

is fitted, i.e., r = s(n+S) is small; quadratic and cubic fit being most

commonly used.

In recent years, the possibility of using nonpolynomial interpolation

functi;ons received some attention. One important situation arises in line

oearches associated with n-dimensional constrained problems, solved by

barrier ftnctlon methods. A fit by a polynomial cannot capture the

singular behavior of the barrier objective function at the boundary of the

feasible region. Wright [20) dealt with the case of the logarithmic barrier

function. She suggests using the interpolating functions

(3) ax + b + r log(x-c)

() ax2 + bx + c + r log (x-d).

.7c
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Bj~rstad and Nocedal [31 analyze the rate of convergence of an

algorithm oased on the interpolating function

2
(5) ax +bx+c

(dx + 1)

This function is the one-dimensional restriction of the "conic" model

function suggested by Davidon [51, who lists some important advantages of

the conic model over the quadratic one.

Independently, we suggested [] another rational interpolating

function

2

(6) ax + bx + c
dx-1

which we analyze in section 3.

Nonpolynomial interpolation was suggested much earlier for the root

finding problem

(7) f(x) = 0.

Ostrowski (13, p. 82] used in this conjunction the rational PMction ax + b
cx + d

which Jarratt and Nudds [6] and Jarratt [9] generalized to

(8) x-a
x-aQ(8)

where Q(x) is a polynomial. Ben-Tal and Ben-Israel [21 describe nonpolynomial

interpolations by certain types of generalized convex functions.

We formally define the T n, s - interpolation algorithm as follows.

Let n -O, s>1 be fixed integers and let T be a family of s-1 times

differentiable functions T:R R, depending on r = s(n+1) parameters. At
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iteration i, the points xi , x 1 , ... , i n are given, and a function

T e l is chosen so as to satisfy the interpolation equations

(9) - = -f(k) ( 0, ...n; k =0, s-i.

A new interpolation point is computed from

(10) T'(xi+I) 0

and the oldest point xin is deleted.

The practicality of using a particular class T depends to a great

extent on the degree of difficulty of solving the (generally nonlinear)system

of equations (9) and equation (10). In the case of the logarithmic functions

(3) and (4), equation (10) is easy to solve, but (9) is an ill-conditioned

nonlinear system of equations. Wright [2C] uses table look-ups, and applies

Newton's method after operating some transformations on these equations, in

* order to solve them.

For the conic model studied by Bj~rstad and Notedal [3], equations (9)

F and (10) can be reduced to quadratic equations, while for the rational function

(6) discussed in section 3, equations (9) are reduced to a linear system, and

(10) is very easy to solve.

Note that in the polynomial case, (9) is a linear system. However,

(10) is difficult to solve unless T is a low degree polynomial. It will be

shown in section 4, that this difficulty cni be circumventea by employing

inverse interpolation.

Note also, that for the function (8), the interpolation equations can

be reduced to a linear system, while the solution of T(x i+l) = 0 is simply

xi+1 = a.

e a



In this paper we investigate the rate of convergence of these

minimization algorithms. Here we say that the rate of convergence of a

sequence {x converging to a is p, if there exists a positive number C,

such that

x -
i+l

xi -aj

(see [19, pp. 1-131). Ortega and Rheinboldt [I11 refer to the rate p defined

above as the C-order of the sequence {xi .I When it exists, it coincides with

their so-called Q- and R- orderu (see Il, section 9]).
Rate of convergence analysis is supplied by Bjgrstad and Nocedal [3]

for the conic function with s = 2, n = 1. The derivation, which uses a

symbol manipulation computer program, is quite elaborate. Moreover, the

analysis does not carry over naturally to the study of the convergence

properties of an algorithm using the same interpolation function, but with

different data say s = 1, n = 3.

Wright [20] gives no rate of convergence analysis for the algorithms

If using the logarithmic interpolating functions (3) and (4).

An outline of the paper is as follows. In section 2 we prove rate of

convergence theorems for general Tn,s -interpolation methods. We show that the

rate of convergence is given by the unique positive root of the irdicial

equation

n+l n-)tn  nl

j=0

Since this equation depends on n and s only, the rate is independent of the cLass



In section 3 we analyze the specific family of interpolating functions

2
(6) ax + bx + c

dx- 1

Inverse interpolation for minimization algorithms is introduced in

section 4. We show that the rate of convergence in this case is again given

as the positive root of (11).

Numerical examples illustrating the convergence theorems are given

in section 5.

In section 6 we discuss the implications of the rate of convergence

analysis to the design of algorithms.

2
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2. RATES OF CONVERGENCE OF NONPOLYNOMIAL ALGORITHMS
Traub [19] studied the rate of convergence of algorithms that use

polynomials to interpolate f, or its inverse function for the root finding

problem (7). The natural modification of these results for the minimization

problem are discussed by Tamir [17, 18] for the direct polynomial case, i.e.,

when the interpolation requirements are given by (9), T being a polynomial

of degree < r = s(n+l).

The key result for this analysis is the product form formula of the

error incurred in hNperosculatory polynomial interpolation (e.g. [6, p. 67]).

Ostrowski [13, p. 12] generalized this formula to the case where the

interpolating function is not necessarily a polynomial. However, no use of

this generalized formula has been made to extend the analysis of Traub and

Tamir to the nonpolynomial case. Using this formula, we will obtain a

difference equation which differs from the one obtained by Tamir in its

right hand side only. This implies that in the nonpolynomial case too,

the rate is given by the positive root of the indicial equation (11).

Tamir [17, 18] gives two separate proofs for the cases s = 1, s > 1. We

will give a unified proof, and settle his conjectures in [17].

Stronger results than ours can evidently be obtained by relaxing

some of our assumptions (compare for example Brent [4] ). We have preferred,

however, to keep the presentation unobscured by these technicalities. For

the same reason, we have not stated explicitly the interval of (local)

convergence. This is done in great detail in [171 and repeated in [18].

We will denote by a a solution of (1), and by J the interval

J = {x: Ix - al * L) for some positive L. The error xk - a will be denoted

by e k, and the open interval deteriined by fal  . am will be denoted by

tI
3 ! i lIi•l il~ l l ll m i m im m aelmm la mI
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(an, ap.

The following assumption will be used repeatedly.

Assumption 1 r = s(n+l) > 3; f and T have continuous derivatives of
order r + 1 in J for all T e T ; f"(a) 0 ; xi c J and x xk for

j #k, j,j, k = 0, 1, 2, ..., n ; ek 0 for all k.

Note that if ei = 0 for some i, xi is a solution of (1), and the

algorithm is terminated.

In order that the sequence {xi} defined by the algorithm be well

defined, the interpolation equations (9), as well as equation (10) for

Xi+l, must have solutions. If T is the class Pn,s of polynomials of degree

less than r = s(n+l), equations (9) have a solution if and only if

xk # x, for k 0 t. To quote Davis [6, p. 27], the hope that an interpolation

problem can always be solved providing the number of parameters equals

the number of conditions, is naive. T can be replaced by Pn,s in iterations

at which (9) has no solution, but in practice this case is rather unlikely.

We will assume henceforth that (9) has a solution for all i.

As for equation (10), we will prove that under Assumption 1, it has

a solution for all i, if L is small enough. We need the following difference

relation to prove this and other results.

Theorem 1 Under Assumption 1, if T" # 0 on J, then the errors ei =x - ,

induced by the Tn,s- interpolation algor thm, satisfy the recursion equation:

nn n 8
(12)n e M E s-i 7re + N 7(12) el = Mi- e i=O e -j Ni J= e -j

Ji k

U md . m ~ muHw mun lmn~mm mm ,U
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where

Ml(%ixi9) (_l)r-1 • N1 (N ixl)) (1 )r•~ =i - 1 ( ( xi+l)) i ,,n(xi+i))
T1 (0(x+) T r ) ,(

M W f(r)(x) (r)X N(X) = f(r+l)(x) - T(r+l)(W)1 rI 1 (r+l)! (x

i(t), ni (t) C<t, x, xil, ...,Xi n > and

o(x +I  6 < O, xi+ > .

Proof: The error in the interpolation (9) is given by (see (13, p. 12] )

(13) T(t) = f(t) + 7r)(t -frl J=O - x-j "

Differentiating (13) we have

n
where W(t) (t - x -J) and Mi, NI, Ei(t) and rli(t) are defined above

(for proof see [i, section jwhere we generalize Ralston's result [14, 15] on the

differentiation of the error term, to the hyperosculatory case). Substituting

t =a in (14) and using
TIN T= a T=xil) -~ T1(((X i+l) we obtain (12).

* ~~T' (c) =T'(a) - T' (xi.+l) ei.+1 TIOx. eoti 1)

0

Oki
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Under Assumption 1, f"(c) 0. Since f'(c) - 0, f' must change its sign at

a. It follows by substituting t a - L and t = a + L in (14), that T' also

has opposite signs at these two points (for a detailed proof see Appendix A

in 118]), if L is small enough. We summarize this result in

Theorem 2 Under Assumption 1, if L is small enough, there exists xi+I e J

satisfying equation (10).

Using Theorem 1 in 17, chapter 6, section 5], it follows immediately

from the difference equation (12), that if the initial errors e0, ..., en are

small enough (i.e., L is small enough), the sequence ei tends to zero, establishing

the following local convergence result.

Theorem 3 Under Assumption 1, if L is small enough, the sequence {xi ) converges

to the solution a of (1).

Also note that if L is small enough, and if s > l, we have by (12)
ei+lj < jel implying xi+I  xi . For s = 1 however, we have to assume

x1 xi (cf. [16]).IX~I ii+l i

We now replace (12) by a more useful difference equation.

Theorem 4 Under the assumptions of Theorem 3, and if Mi -R # 0, then

(15) ei+l A e-lje
J=l

where Ai+l--M.

Proof. By assumption, the sequences Mi, Ni are bounded. If s > 2, (12) implies

e(16) -ei+l 0ei
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(i.e. superlinear convergence). If s = 1, we must have n > 2 since we assumed

r = s(n+l) > 3. For n = 2, (12) is the basic difference relation governing

the behavior of the Quadratic Fit algorithm, which is known to converge

superlinearly (see Theorem 3.4.1 in Brent [4i1). It is evident from (12) that

the rate for n > 2 is not less than the rate for n = 2. Therefore, (16) holds

for all s > 1, n > 0 if r = (n+l)s > 3. Rewriting (12) in the form

(17 es-1ln s e n  e i  Ni(17) ei+l = M e 7 -r i e i
j=1 -- i-k i J

we see by (16) that (15) holds with

n ei NiA i+l = Mi I + ek M e

k1l

Remark In (17, Appendix C), Tamir conjectures that his apriory assumption

[17, Assumption 21 on the superlinear convergence of the sequence {ei} is

redundant. Our proof shows that this assumption is indeed redundant.

We now state our main result.

Theorem 5 Under the assumptions of Theorem 4, the sequence {xi} generated

by the T - interpolation algorithm converges to the solution a of (1), with

rate of convergence p which is the unique positive root of the equation

tnl- (s-1)t n - s~ltj = 0.tn~

j=0

Proof Convergence of {xi } to a is proved in Theorem 3. The assertion ribout

the rate of convergence is a direct consequence of the difference equation (15),

as proved by Tamlr [17, 181.

0



Remark The assumption that the sequence Mi has a nonzero li dit, enables us

to use the analysis of Tamir in [17, 181 (or Traub in [19] for the root finding

problem). It will hold if the mapping from xi n ' ... , xi to the parameters of

T defined by (9) is continuous so that the limit exists, and if this limit is

different from zero. In this case the C-, Q- and R- rates of convergence are

exactly p, where p is given in Theorem 5. If the limit of Mi exists and is

zero, or if this limit does not exist, but the sequence Mi is bounded, equation

(12) implies that the Q- and R- rates of convergence are still at least p.

Corollary The rate of convergence of the sequence generated by the interpolation

algorithm does not depend on the class of interpolating functions T.

Remark It is evident from our analysis that the above corollary holds for

the root finding problem, as well as for the case when the number of pieces of

information used at the interpolation point xi j depends on j (e.g. the False

Position Method).

It follows from Theorem 5, that the rates of convergence of the interpola-

tion algorithms using the conic interpolating function (5) is p = 1.46 for s = 1,

n = 3 (4 interpolation points with no derivatives); p 2 for s = 2, n =1

(f and f' used at two points) and p = 3 for s = 11, n = 0 (f, f', f, f used

at one interpolation point). Rates of convergence of algorithms using the

interpolating functions mentioned in the introduction, can be computed likewise.

The behavior of the rate p as a function of n, for fixed s, is summarized

in Theorem 6.

Theorem 6 For fixed s, p is an increasing function of n. For n = 0, p = s - 1,

while for n 1, p =s. As n tends to infinity, p tends to I+ +1

I J +
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Proof For n = 0, n = 1, the rate is obtained by solving the indicial equations

t - (s-1) = 0 and t2 - (s-l)t - s = 0 respectively. The remaining assertions

are proved in Tamir [17, 18]. 0

A few numerical values for p, are listed in Table 2.1.

TABLE 2.1

s n p

1 2 1.3

3 1.4

00 1.6

2 1 2

2 2.3
002.4

3 0 2

1 3

00 3.3

0 s-]

1 s

I +i
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Since E + + 1 is close to s even'for small values of s

(see Table 1), Theorem 6 implies that algorithms using more than two interpolation

points (n > 1) are inefficient. However, two points algorithms are substantially

faster than one point (or memoryless) algorithms. Instead of making the last

statement precise by defining a measure of efficiency (chosen carefully to suit

the authors' purpose), we will note that the transition from n = 0 to n = 1

involves storage (but no computation) of s extra pieces of data. In addition to

this, the system of equations (9) will involve 2s instead of s unknowns.

However, this system is linear in the polynomial and rational cases (which are

the most important ones) and need to be solved once only for the class T. The

main difficulty is the solution of equation (10). This, in the case of 8 = 3,

n = 1 (Newton's Method with memory) with polynomial interpolation, is a polyno-

mial equation of degree 4. Solution of this equation can be avoided by using

inverse interpolation, to be discussed in section 4. On the other hand, for line

search algorithms, computation of f(k)(t) involves in fact computation of the

derivatives of a function on Rn (i.e., gradient vectors and Hessian matrices,)

making the extra effort worthwhile.

II

i
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3. A CLASS OF RATIONAL INTERPOLATING FUNCTIONS

In this section we briefly discuss the four parameter rational interpolatir3

function

(18) R(x) =a2bx + c

Writing (18) in the form

2
(19) (dx-l)R(x) = ax + bx + c

differentiating (19) implicitly and then using the interpolation equations (9),

leads to a linear system of equations for the coefficients a,b,c,d. For ex-

ample, with data s= 4, n= 0, the equations are

(dxi-l)f(x) 2ax + bxi + c

(dxi-l)f' (xi) + df(xi) = 2axi + b

(dxi-l)f' (xi) + 2df' (xi) = 2a

(dxi-l)f'" (xi) + 3df'(xi) 0

Note that if d= 0, R(x) has no singularity. Therefore, it may be expected

that R(x) will provide a good fit to functions with regular or singular behavior.

We now turn our attention to the solution of (10) for xi+I . If d= 0, R(x)

is a quadratic and (10) yields b For d #0, it is convenient to re-is qudraic nd I0)yieds i+l ="2a

write R(x) in the form

(20) R(x) = ax + +
x-C
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where a b a c b awhed c = , = -d2' 'Y d 2+7 3'6 =

d d d2 d d 2 d3d

Differentiating (20) we have

(21) R' (x) = m - - --(x-5) 2

(22) R" (x) = (x-8)3

From (22) we see that R"(x) has exactly one change of sign at x-.5. The

point x i+l will be a minimum of f if

(23) R'(x i+)= 0

(24) R" (x ) > 0

From (21)-(24) we have

(25) xi+1  M

assuming

(26) aY > 0

The two solutions in (25) correspond to the minimum point of the convex

branch of R, and the maximum point of the concave branch of R. Multiplying

(22) by (x-ct) 4, we see that in order for (24) to hold, e must have y(xi+l-b) > 0,

I which combined with (25) yields
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x1+1 = + --, c = sign y

Condition (26) will hold near the solution under the assumptions of Theorem 2.

"I Remarks. Rational interpolations are particularly useful in cases where f,

or its derivatives, have rapid changes, even when f has no singularities (see

section 5).

Use of rational functions other than (5) and (6) suggests itself, especially

when higher degree interpolation is needed, possibly combined with inverse interp-

olation (see section 4).

It

Li
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4. INVERSE INTERPOLATION FOR LINE SEARCH

J Inverse interpolation methods for the root finding problem f(x) =0 are

well known. Assuming that f' is nonzero and f(r) (x) is continuous on an

interval J mapped by f onto K, then f has an inverse F, and F(r)

is continuous on K. If T is a hyperosculatory interpolating function satis-

fying

(27) T (k) (Y j  Fk(yivj j) ,...,n; k=O,.s-1,

I = f (x')iYi-j -

then

F (r) (0 i(t))-T (r) (Q i (t)) n

(28) F(t) = T(t) + r. j o (t-Y=J)'

with Mi(t) e (t'Y'Yiq.-' 9-" Y In the inverse interpolation algorithm

for the root finding problem, we approximate m=F(O) by xi+i=T(O).

The derivatives of the inverse function F can be expressed in terms of the

derivatives of f. Indeed, letting

Ok= F(k) ' , k f (k , k=l,2,...

we have (see [121)

n(k l i (2n-k1 -2)! -(2n-k 1-l) k2  k(29) Pk =  (2 nk!k3"''k n 1 % 2 '"" " nn

where the summation is taken over all k1 , k2 ,..., kn satisfying

n n
ik 2n

i~~l i=l -
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Let T be a polynomial Qn,s of degree < r. By the above and since

Yi-j f(x i-j) and F~ -j) =i-j i-j' Qn,s can be expressed in terms of the

data xi- J and f(k)" "kxi)" If T is not a polynomial, we first construct

the interpolating polynomial Qn,s satisfying (27), and proceed to solve the

system

T (k) (y-) Q (k,)(Y-) j = O', ' '. n ; k=O0, ... ,s-,

i-j n,s -

Yi-j = f(x. j )•

Traub [19] shows that the rate of convergence of the polynomial inverse

interpolation algorithm is given by the positive root of the (root finding)
~n

indicial equation tO s, exactly as in the case of direct polynomial
J=O

interpolation. Similar to our derivation in section 2, it can be shown that the

rate of convergence is independent of the interpolating class of functions.

Inverse interpolation has not been applied so far to the solution of line

search problems. We will define the V -inverse interpolation algorithm, and
n,s

prove that under the appropriate assumptions, its rate of convergence is given

by the positive solution of the indicial equation (11).

A difficulty in applying inverse interpolation to the line search problem

is that one cannot assume that f has an inverse near an extremum point a,

since necessarily f'(a)= 0. Denoting, however, g= f' we can write equation

(1) as g() = 0. Assuming that a is a simple zero of g, g has an inverse

G defined on a neighborhood of g(c). Since the solution a, of (1) satisfies

g(a) =0, it is given by

(30) G(O)
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The assumption on the differentiability of g implies that G is differentiable.

Hence G is ontinuous and has a primitive function F (i.e., an indefinite in-

tegral of G), satisfying

(31) F'(t) = G(t)

Equation (31) determines F up to an additive constant. By (30) a is given in

terms of any solution F of (31) by

(32) F'(0)

Now let F be any solution of (31), and let T be a hyperosculatory interpolating

function satisfying

( T(k)(yJ) = F(Yi.J) J=0,...,n; k=0,...,s-
,13) (Yi-j) ( Y i-J

The j..j= g(xj~j)•

The inverse interpolation process for the solution of (1) consists of approximating

a in (32) by

(34) =T'(0)
3i+ 1

Evidently, xi+ as defined by (34) is independent of the particular integration
i~

constant associated with F. Let Qn s be the interpolation polynomial of degree

< r satisfying (33). We will later express (34) in this case in terms of the data.

If T is not a polynomial, we can express equations (33) in terms of the data by

first constructing Qn,s (i.e., replace T by Qns in (33)) and then interpolate

Qn,s by T (i.e., replace F by Qn,s in (33)).

In order to write (34) explicitly in the polynomial case, we can proceed to

construct Pn, (x), the direct interpolating polynomial determined by (9), differ-

entiate it to obtain
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|k~r-2

P x, = Zcxk(x~xi)kk=O

from which we obtain directly by [12] the inverse interpolation formula for

line search

r-2 k
(35) xi+1 

= xi + E 0k (-CO )

k=l

where is given in terms of the mk's in (29).

As an example, we now construct the algorithm (35) for the case n=l, s = 3.

This is the algorithm which uses Newton's method data f, f' and f", at the

interpolation points xi and x i.. The rate of convergence of this algorithm is 3.

Replacing xi 1 , x, and xi.1  Dy x3 , x2 and x I  respectively, and de-

noting f (k) (x by f(k) we havej (xi)

(36) P(x) = f 2 + (x-x 2 )f2 + k(x-x 2 )f'2 + a(x-x 2 ) 3

3 3 2+ b(x-x 2 ) (x-x1 ) + c(x-x 2 ) (X-X1 )

where the coefficients ab,c are determined by (9) as:

(fl~f2).(xl~x2)

b=(fI f 2)-(X1-x 2)f 2 ( 1 x 2

aX =_ 2) 3

:!!(f '-f')-(xl x2) f -3a (xl- :'()
(37) b 3

(x 1 -x 2 ) 3

(f'i-f')-6a(x -x 2 )-6b(x 1 -x 2) 2

2 (x1- x 2 )

Rearranging (36) and differentiating, we obtain

•II
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4 kP' (X) E N, %x-x2 ) k

k=O

With

a0 f ' 2= 3[a-b(x 1-x2 ) +C(X1 -x2 ) ]

(38)
a 3 

= 4[b-2c(xl'X2)] a4 = 5c

A 'Finally, the iteration (35) becomes

2 3 4
(3)x3 = A2 -c 0 0 1 + 2' 3 + 4'

where

2a2 2c 2 "aYr3

_2 2 171 0 2 =  - 3 3 5

(40) 3 , 2 C'I
5a 5I a2 (X3 "5a 2" a1 4

4 =  7

Formulas (37), (38), (40) and (39) define the algorithm.

Similar computation for s = 2, n 1 yields for inverse interpolation with

f and f' at Y and xl the following formulas:

f2' 3b(f 2)2

3 22c 8 3

h where

(x! ( X') ) 2

( ) (xf 1-)-2a(x - x
2 )

b . ... . .

(x-x 2)

.i ~c= a-b(xl-x 2 •
#2
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Remark. If P(x) is a quadratic (which is the case for the classical Newton,

False Position and Quadratic Fit methods), P'(x) is a linear function, with

linear inverse, so that in this case the direct and inverse interpolation formulas

coincide.

The inverse interpolation formula for s= 4, n= 0 (with rate 3), will differ

by the above argument from the direct interpolation formula for this case. It is

given by

(42) xi+ xi -  2 3i+1 i 2 (fl)3

Note that omitting the term with the third order derivative in (42) yields

Newton's method. Note also that the direct interpolation formula in this case is

given by the solution of the quadratic equation

P 3 (xi+) 0, where

(X) = f + (x'xi)fI + k(xx 1) 2 f+ (x'xi) fj

We now turn to the analysis of rate of convergence of this class of algorithms,

starting with the derivation of a basic difference equation.

Theorem 7. Let f"# 0 and let f(r+l) T(r+l) be continuous on an interval J.

Let the derivative G of F be the inverse of g= f', and let

SX c J, where x+ T'(0) and T satisfies (33). Thenx~i+ I, xi  .. i-n  J whr xi+ I

n n n

(43) e++I  K i  elik  1 eli Li N ,

jjk

where

.1 -JI
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(-1) rsK ( (0)) n (-1r+l ( (0))
Ki= Z f" 0  LII [f'(9i1 )]B j=O (fi'[f ( L]

)~ Ij j =Of (oJ--O =0-

F (r) (x)-T (r) (x) F (r+l) .-(r+l)
K1 (x) r. 

1(x) (r+l)'

Ei(t) 9 r(t) e (ty' Y i-l 'Y-n) and 9i-J £ (x..j, a)

Proof. Differentiating the error formula (28), we have

(44) F' (t) = T' (t) + Kl(i(t))W' (t) + L l(ri(t))W(t)
n n

where W(t) = (t-yij)s and K1, LIi(t), Ti(t)J=0 O

are defined above. Substituting t =0 in (44), and using ei+l = x i+ -  =

T' (0) -F' (0) we obtain
* n,s

n n
n n sn a

(45) ei+l ('l)rSK1 (yi(0))E Y-k -0 Yi-j + (.l)r l(ri(O))=0 Yi-i ,
k=0 J=0 J=0

j#k

We can now express y in terms of the error ei.

(46) yi-j = g( i-j) - g(C() = (Qi-j= ei-jg@ i-J)

where - is in the interval determined by xii and a. Substituting (46)
i-i -

In (45) yields (43). 0

:1

I
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The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r+l, in the

interval J= (x: Ix-mLI _ L). Let fV(a) 0 0. If L is small enough, if

X0 ,I... Xn 6 J and the sequence (xi) is constructed by the inverse interpolation

algorithm for line search (i.e. x =T'(0), where T satisfies (27)), then

xi+I C J. Furthermore, if the algorithm does not terminate, and the sequence Ki

defined in Theorem 7 satisfies Ki * KO 0, then xi * a with rate of convergence

p which is the unique positive root of

n-l(47) _ (s-_) tn - t 0
(47 -sZ =0

J.0

Proof. The proof is identical with the proof of Theorem 5.

Indeed, both Theorems 8 and 5 are consequences of the same basic difference

equation, namely (43) or (12), where the coefficients Ni and Li are bounded

and lim Mi, lim K are nonzero.

Equation (47) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).

'4



25.

5. NUMERICAL EXAMPLES

The purpose of this section is to illustrate that the theoretical rate of

convergence predicted by the preceding theorems, is well reflected in the actual

) behavior of the various direct and inverse algorithms. Ten algorithms (without

safeguards) are applied to minimizing two functions:

1 6 3

f(x) = ;x -x +2x

and

f(x) = x + X-l
e -1

The first function, although nonsingular, behaves very much like a singular

one in the interval [0,2], due to rapid changes of f and its derivatives in

the interval. This in particular caused the cubic fit method to diverge.

The second function is highly singlar at x= 1. For this function, three

of the methods based on polynomial interpolation diverged. In contrast, all four

methods based on rational interpolation worked well.

The results are summarized in Tables 5.1, and 5.2. The Rational and Conic

functions referred to in these tables are M +bx+c and ax2+bx+c respectively.
dx-l (dx+l) 2

Initial values used in Table 5.1 are (2), (2,2.1), (2,2.1,2.2), and (2,2.1,2.3,2.3

according to the number of interpolation points. Initial values used in Table 5.2

are (1.75), (1.7,1.8), (1.7,1.75,1.8), and (1.7,1.73,1.77,1.8).

As can be seen from these tables, there is an excellent agreement between the

predicted rate of convergence, and the actual behavior of the error sequence x -x

6I
:1
S,1
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TABLE 5.1: Solution of f'(x) = 0, f(x) = x -x + 2x 26.

Algorithm Iterations

Polynomial N x f'(x) x -

(Quadratic Fit)
0I 2, 1 000000001::0 1 2961:1.01000E I I 9.792U73'887F-.I
11 1.67365314 I'.0 1 6.7 8,.469!,5 I "0. I 5.52910 W)296IH- I

Data: f at 3 points :, L.60712903.1r0 4.9 /Y2863 92. ::'0 I 4,863864193r-I
,31 1 .10233685'5lI *,, 8820.381.63 V:0 1 3 8.15942 440E-I

4 .i. 3815:44388:) J .. ,1 4 9', I. ,346 '.221 I 2, 647? 1.876 F:-1
I :J . 31 936 ?301 F 0 7.684644291 'FI" I 1 .976246894'---1

Rate: 1.3 6 1 .2'j/24 L5 I 0. 1 ,.99216/6691'; 1 1 ,L364989189E'A

7 I 1 )* 093 1043'2V:.0 1I * 997,53 0860' 1: 1 8. 876782049F2
8 . I /6099919I:: I 1 .00: ,668:36/1: '" 1 I 5.,5:3, 30723 -2
9 LI. ' 1 .I 78331. 2I:O I 4 .'/.i 86:3',448-.": 1 3 1. 04070026E-2

I 0 . . 1.,5973 I.1',,':0 I 2 0 4, .041 2 ::-2 I :1. * 523 4 5 :1.9 7i:-)
1 I. 1 . I 269:1 0 1 ; . 6'.3347,509' 3 I 6. :J 7'0962'50E -3
.'.! I I ,1:226003 161' 0 I 2# ' 0 . 03/3360 r  3 I 1 * 8 6 /.O7050'/3:.'3

01 2. ,300000000'0 5. 0493430001' 1I 1 J 79257389E0
Rational I I 1 .:14846 1I7810 I 3. /0909.1 2691:!:0 I 4.2771.8,.56661--1

2 1 * 46303721491': 0 .2.I 168484 1 %.0 i 3. 422.946381 '- -1
A I 1 I I3.0784381'"0 I 4 040,389 540:10 I 2.320417710--I

Data: f at 4 points 41 I 2'6.14652'. 0 I 3, 366 1.,1400r"'"l 1I .337204 1 1
D I.. 1 87086666r.0 1 . 20 /6096 631' I 6, 634405477r:-2

. 61 '1 * 154. 79761!0 5.030661 /51:'1 3. 26753642 0',t2
I I . 3 1 i68/57i:: 0 1 t 550631.U11 :''? l.' JI .:194496.1 :17'-2

Rate: 1.4 0 1 L'L235943091&.0 I 3. 40(8304Z,"'-.3 I 2 +85 169 / 7 I. 3"
9I t I 21.09 / ,,' : I." 4 t 46//360,",r:''4 I 3 .5504 .23t.) 0 ''-4

.10 1 .L, 120/60,3071 0 I .060 97 .:'. I 1 769571.,.)41,
1II .1 1.2 742. 1 /1-0 1 2 394566 /9O:" 1 2. 05 6.19 3661-

,'N I 1")I0/426 12 0 I 3. 6 1 , '10 2. 1. 6502() /H r

01 2 1 0000I I:' : 200000000:4 1 8 + 79257388/." .1Polynomial I. I I. 67647W5f3'18:.0 I 6,8HI 11, .28. 1' o I 5. 557279769R'1
(Newton) '1I 1 , 14,:15o9::?0 613, 0 I 2. 037L 18' ?0:"0 , .24349751 .1 C -1

,31 1 .12f99912y'),.3 0 I .)+799609462'- -1 I o 692-) 014681" - 141 1 . L9,')008698i.() I . 52F6.1 ,1 87 .' I 7. 4266017019'-
J 11. 114450 13691-0 I 3 # 40; 9 ?0kO2 I1 . 375875747 .... 2

Data: f, f', f" at 6 'I I 2459500'/' 0 1I 4 6494. 13?9tL":3 1 3 . 852395469F--31 point /I 1 1 201752Ffr 0 I 1 * '633 z 4 4 1 1 * 32e 7609.3sF?"4
Rate: 2 'I 1. 1 20/427/f 0 I 1 + 94,5,99880'. 7 I1 670493971 r?' 791 !L 120 4 1 K. I i +09 4,162 95 8 71'" 1:3 "9 " 3777 M4,41: I1

Rational 0 I 2. 100000 001- 0 I 2* 96 I I 0 100I I 9 /00V" I388"V i-
L I I , 49/9864')0 I 2 .8 I 0902G9)IEO 3. 77 23 60334rVI"

3I I 1 3 4,L8I L0 IzI, 39 0 I 8169 1 /1 L18;11 ".4? .I I I ll 29271: 1

Data: f, V at 2 points 4I I . .1412'4'1 0 I # ,64 14C)85 1 2 + 088 4 9VC'?11 , I I * 1:? !79 ,#~6J- t0 i ,2 *;I,3,),./9'1I2' 3 I 2 O* 0520,347:?21 ,4 '  :'

R ate : 2 '1 I , t ' )/ 6 ,' 0,, I ,4, 4, I ' o sv,4 '0 sF  I,, "). 6, , . -'a'b / , ("( 0 :(',

- i l ii i _ m i ll . . . . T , '



TABLE 5.1 Continued 27.

ANgorit.m Iterations

Inverse Polynomial No. x f'(x) x -x

01 2,1000000001=:0 I 2.961.1.0 1000'.1 I " • 100()0000E"
Data: f, f' at 2 points 1I 1.6280848881 0 I ,.486944138E0 I 6.2808488781':-1

2 I 1. .1 90508735.F:0 I I. 3952,j8096F.-1. I .L.90[5087348131.
31 7#014376:L42':-I. I 6,93750/7961-'1 I "2,985623858I?--1

Rate: 2 41 9.1 067 49253.1. I .1. .:I., 8 5756,774 1" I 7. 932507474'E-2

I 9.(,80,81.301.48 :1 I 2. 169400'/Y5 ';)  I -1. . 9'1.8698,5.1.6:-2
61 9.991.1121 09H:-.1 I 8.94,1 5I .14',"-:"4 I 88878905"121-- 4
7 9, .999982 .. Ij,... I I :1 .74'1.90906H6 6 . .1 741 8878.'2.8I:." 6
O I .• 0000000000) I 6 # 8904 0 .'' ;1I "6 + 88904'554 1 12

Conic 01 2 . 00000000V0 I 2. 96 I. I 0 1. 10():,: I I 9 2.-79 'j73887L-":L
.1 I 1 # 4 58,:3!)I.28F0 2 2.16090916i'0 I 3 1 376086170E-1
21 1 .296 L:3036 1.F 0 I 6. :1 f8H.3 ',*,".i1 ' 2 " I :1. .753J3877493E-:1

Data: f, f' at 2 points i 1 1. 1./293697510 I 9.276089320 ' 2 I 5 21943*6386r."2
41 .L 13 61'. 2278k-.O I 11 * 39 /,806,5.2 1 I. .0.6966669E
RI 2 .1 2'1 2630 0()7'0 I 6. 00*P56462.1 '"4 I ,*. 203952432.-'
IRate: 61I . L2(07440',.;60 I I .681 4946"0'2".6 I 1 .4444341.08-"6

11 'L. . 12074,26.. . 0 I I J 267996081-"'.t 1. 1 8.436336612R 1 1

0 I '21. 00000000::0 I 2 .96 11. 0t0 F.J. I 9 .792573887.'-. 1Inverse Polynomil l 1. 49749600 6 L,) I 2. 803096043. I 3. 767533944' - 1

Data: f,f',f" I .21624 348(0' ,) I 2.. 2 3609 .26 /0.'- I 9* "5'50086866E--2
at 2 points I ., 't.2864"32)- 1 9. 8?4209U?31 3 1 7 '9006. 723 3

41 I 1 , 1 2)0/44.139 t-0 I 1 7'8 /81 8961 0 I .. ,,5.80098,.2'-6Rate: 32 9S 6
Re : .1 [20 4261 .I 0 I 8 -6/3 6 1. /:3A0"" IP 1 -9. 404354075-1 1

01 2 000000000F ,) I 2 ",) 00000000E" t I 0 79 257388 7 E

Inverse Polynomial I . 9, 745 /6 F.0 I 3. S9e702'16? 4'0 I 4.3Y2031 44 :-1

..I .2Y29 .1 50/28 F0 I 6. 3/4 .996:1. 6F.:" .1 I I .I 84081 162'.'-'L
Data: ff' ,f",f"' at31 I. 171 6.1 424 '4 0 I 8 , , 0 : 0 L 0 "-2 I 5 ('87. 635 38' " -2

1 point 4 I 1. ,1.,264,690 I 7. 0)'276/68'. I ',.7434407871 '-3
I~ 1 81 1.,0/6/s 0 1 3 .04 /10 I ~y I26.1 7 6 -2 Q 78 J3

Rate: 3 61 1. 'I 20/ 26.[ l-O I .4.1., I 66'.I 21 I 9 .09 91508 1 6'' 1

%0 I ' . 000()00000r'0( I 2,* ,0000000t 1 I 8 .792573887 1
Rational .1 I , 4 /2') 42 ) 67'q)I 2.41 67 463FO I 3 , 1.79968.' F " I 1.1 [ .1 ' 7 .'.l 4 ,/ ,3 t, : I 2 , , 1, 1 6 , , 9 Y :L

,22, / ,.6299,' I I t . 01 9,?2'373 / F'.1.
Data: f, f' , ', f' at I I . L34799/ 1. 0'0 I I .'. t .. . .1. 40"0098661: 2

I point 4 1 .1 o884(30/f 0 I 1. 6,5 1 999Y4,'):4 I 1 .4169,5402 /IT'4
I * .t120/ ?126.1 L'"0 I .300 /22 ti, ... 0 I 1 0:3 6082452H- 10

Rate: 3

!



TABLE 5.2: Solution of f'(x) = 0, f(x) x +1/(e X-1l) 28.

Algorithm Iterations

Polynomial No. x f'(x) x-x
(Quadratic Fit) 0 i 1 . 8000000001:0 I -4,8J 7670946F 1 I-. * 62423650 It.E1

'H 1 8981680/'1 .. I --. 1 *,j3 24,1-54 " *. 1 -6. 42555 . 7, irr -2
Data: f at 3 points 21 1 9331:i1307/5::0 I "6.867413860'."2 1-2,93:10574671F.'-2

S3 1 . 95 3618 8313i'":0 I . , 9803 1446/::: 12 -8, 7h3*.[ 368001--3"
4 1 * 9610.2420.0 I "-3 . 136116'J 2:I"3 1-1. 399442 557-'-3Rate: 1.3 I I I . 62 ..J. :1 F'0  I 3. 604098014 -4 .... l 61. 39:, 09H"-4
6I1 1..962416421'.O I L . 616 482'71" 4 H7 .7 ..... 789794r -6
7 :1 . 9 24.2, "2i:.0. .I -2.76230627.1H' 7 1 -:1 235376437.."7
8 1. 962423649"0 1 2. 8083 370 ';9' 9 -:1 . 255 926511 i-9

R 01 1 * 800000000110 I 4 .* 81. 7670946::-1 I -1.6.4. 3 6 ,. 0" ' E-1
1 I l• 962343468r:0 1 . 7931.6 1 898i.-4 1 8,01. 8 25 7 3 5 0 '
21 .t .9624053441:: 0 1 4.0 Y3437 L 44F:." ", . 8.30,588290i':-'5Data: f at 4 points .- 9. : 6 4 ,364 .0 :1. * 06 ()9 : 2 ' l-8 8.0771.0926E-9

Rate: 1.4 41 L• 9624236 0i: L . 46J48/ i: I ..... 6 " '  13

Polynomial 0 I . * 7',.0000000::'0 -6.96,73,68901E-1. 1-2 2"3650 L K - I
(Newton) 11 +, 89715352.8() I -. 623 1 3 0'303 7E-I '-6, ,o527:?o , .24':2S I . 9. ,,91 22 8:1..*- ".1. * 4 7 096. 49F..2 I -6 5 1:1 3922 8 i 3

Data: f,f' ,f" at 6ne 31 :1 -97623,;7443r:0 "1. 48059498,8:'-4 1 -6, 6 207 3.[;904F--
point 4 . 96242364 3 0 1 534 I. 2)8 87 8 I 6. 860964333.9

Rate: 2 ,5 1 4 96.4 '3,,,,0I:: 1 -1 # 647987.302r:'" 1 *? 7.. 7•3 ,7477 3r:- 17

Rational
0 I .1+ 81000000001":0 I 4.1 Y6709 4 6 IF- I ".1 * 624 2,365 0 '. 1-IData: f,f' at 2 points ' 1 1. 96 2,34'':/?031i-:0 .... I .,4,313, '2Y41 4 1 -7 844698287:-5

Rate: 2 21 J .96)2423639'r"o I -2 +441.7 89574F"':.I : '1 .092001"476:--"8f
31 .1 .962423650:0 I - 1 + 864U77 7r I 71 -8+ 23993651.1 ' 1. .

Conic 0 1 800000000'.0 I -4 o8 */6/0946'" 1 -. 1 61.t I I . 969/423831:' 0  I L.61 7959.[93K. I 7.318732/"9 L k3Data: f,' at2.points 21 ..962364402 :-0  I '1 .32495J. 426-:'-4 I 5 9248134.13411:

Rate: 2 3 1 1 * 962.42 36,.'1_0 I I. , 8627L29471:"9 I 8 33)03 05,j,,5:6 1(

Inverse Polynomial 01 I 7,* ) 0000oo0iO I '6 .96/368901 ". 1. 2 + . .2 4236501 R -
Data: f, fff' . I I 1 940t33' 64 0 I ' + 06Y7.H 6'30 9 2 I - 2 . 18904 L'<n93.

at one point - I 9 6' ' '239-493' 0 1 6. 2963( '1 .1 r-- 1 I 2 . U 15 7034341 5Rate: 3 3 1 962 ,42365 -0 I '"1 36435!-;6/7'--".,I 31 6# .0.I 5862.0L':-1

Rational 01 I j . /'50000000F. o I 6, 96 /36890 1 '9 1 1-2. .12 4 2 36501 L
Data: f,f,, f,, f,, . I 1 .9623410991-0 I "t .8,61. 46248 F"- 1 8 25', .502.14iF-5at one point I 1..962423b'O0 I "J.397,f',799681:'141 6 * 2bO::)<8684- 1
Rate: 3

I
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6. CONCLUDING REMARKS

Our analysis (and limited numerical experience) suggest that rational interp-

olating functions should be preferred over polynomials; the rate of convergence is

the same, and for both rational functions and polynomials the system (9) is linear.

However, rational functions can better cope with singularities and perform equally

well for regular functions.

The analysis also points to the inefficiency of interpolation algorithms based

on more than two interpolation points (Or more than three points if function values

only are used). Two-point algorithms are significantly faster than one-point algor-

ithms, the latter are therefore useful only if computation of the derivatives of f

are relatively very cheap.

Use of inverse interpolation is recommended if equation (10) is difficult to

solve. Note that even in the Cubic Fit case where the interpolating function is a

cubic, solution of equation (10) involves computation of square roots (see [10, p.

142]), in itself a relatively costly operation on the computer (cf. equations (41)).

Finally, note that any modifications made in the algorithms in order to ensure

convergence (see e.g. [10 section 7.3]), may severely affect the rate of convergence,

since the basic difference equations may be fundamentally changed by such modifications.

Assume, for example, that we modify the Quadratic Fit algorithm so that one of

the points x i+1 , x, x xi. 1 , x1 -2  (not necessarily x .2) is dropped, in such a manner

that the remaining points bracket the' solution a. Then we may choose

e3 < 0 < e2 < e1 and small enough L, such that equat.oit (15) of Theorem 4 would

imply that, for M > 0, we have eli I > 0 for all i. Hence, in the bracketing

algorithm, one of the three interpolation points is fixed as x3 , and in the

difference relation (15) one of the indexes should be replaced by 3, leading to

difference equation with an indicial equation different than (11).
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Thus the statement in Tamir [17], that bracketing algorithms do not lend

themselves to the difference equation approach, and the conjecture made there

that the interpolation and the bracketing algorithms have the same rates of

convergence, are both false.

A bracketing procedure that aims at maintaining the rate of convergence of

the underlying interpolation, should coincide with it near the solution.
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