SURFACE CURRENTS IN OCEAN INCLUDING THE BAY OF BENGAL,IAN SEA AND SOUTH CHINA SEA

OCTOBER 1977
Reprinted 1980

LEVEL II

DTIC ELECTED JAN 22 1981

DEPARTMENT OF THE NAVY
STL STATION, MISSISSIPPI 39522

1 811 21 042
Best Available Copy
ABSTRACT

This atlas, and the series of which it is a part, is computer generated and automatically plotted. It makes available to the user the most recent surface current data collected and will be updated whenever sufficient amounts of data are added to the data file. This and the other atlases are based on a vast quantity of data as compared to the previous manually-compiled editions printed in the mid-thirties.

The surface current information is based mainly on ship drift, which is the difference between the dead reckoning position and the position determined by any type of navigational fix. This difference describes the direction and speed of the current.
SURFACE CURRENTS
NORTHEAST INDIAN OCEAN INCLUDING THE BAY ANDAMAN SEA AND SOUTH CHINA S

OCTOBER 1977
Reprinted 1980

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

NAVAL OCEANOGRAPHIC OFFICE
NSTL STATION, MISSISSIPPI 39522
SURFACE CURRENTS
OF AN OCEAN INCLUDING THE BAY OF BENGAL,
MAN SEA AND SOUTH CHINA SEA.

OCTOBER 1977
Reprinted 1980

NOO-SP-1494-IN 2

NAVAL OCEANOGRAPHIC OFFICE
NSTL STATION, MISSISSIPPI 39522
ACKNOWLEDGMENTS

Messrs. Raymond J. Beauchesne* and William E. Boisvert made major contributions to this atlas.

*Mr. Beauchesne presently is employed by the Bureau of Naval Personnel.
FOREWORD

THIS ATLAS, ONE IN A SERIES OF 43 REGIONAL SURFACE CURRENT ATLASES, IS PRODUCED TO FULFILL A NEED OF NAVY PLANNING STAFFS AND THE SCIENTIFIC AND INDUSTRIAL COMMUNITIES FOR THE LATEST AVAILABLE OCEAN SURFACE CURRENT DATA. THESE ATLASES ADD TO THE WEALTH OF NAUTICAL INFORMATION UPON WHICH OPERATIONAL PLANNING, NAVIGATIONAL SAFETY, AND SHIPPIING ECONOMY DEPEND. RAPID PRODUCTION AND WIDE DISSEMINATION OF THIS ATLAS ARE MADE POSSIBLE BY THE LATEST COMPUTER TECHNIQUES.

THE CONSTANT IMPROVEMENT IN THE QUALITY OF SURFACE CURRENT DATA RECEIVED OVER THE YEARS IS MADE POSSIBLE LARGELY BY THE MORE THOROUGH REPORTS OF VOLUNTARY OBSERVERS IN RECENT YEARS. THE DEFENSE MAPPING AGENCY, THE OCEANOGRAPHIC OFFICE, AND THE USER OF THE ATLASES RELY ON THE PERSONAL OBSERVATIONS OF THE MAN WHO HAS "BEEN THERE." MARINERS, IN REPORTING THEIR OBSERVATIONS, RENDER A SERVICE NOT ONLY TO THEMSELVES BUT ALSO TO ALL "WHO GO DOWN TO THE SEA IN SHIPS." WITH THE ADVENT OF NUCLEAR POWER, ELECTRONIC NAVIGATION AIDS, AND 300,000-TON SHIPS, UP-TO-DATE, RAPIDLY DISSEMINATED ENVIRONMENTAL AND NAVIGATIONAL INFORMATION HAS BECOME INCREASINGLY IMPORTANT.

JOHN R. McDONNELL
Captain, U.S. Navy
Commander
FOREWORD

TLAS, ONE IN A SERIES OF 43 REGIONAL SURFACE CURRENT ATLASES, FILL A NEED OF NAVY PLANNING STAFFS AND THE SCIENTIFIC AND INDUSTRIES FOR THE LATEST AVAILABLE OCEAN SURFACE CURRENT DATA. TO THE WEALTH OF NAUTICAL INFORMATION UPON WHICH OPERATIONAL SAFETY, AND SHIPPING ECONOMY DEPEND. RAPID DISSEMINATION OF THIS ATLAS ARE MADE POSSIBLE BY THE TECHNIQUES.

INSTANT IMPROVEMENT IN THE QUALITY OF SURFACE CURRENT DATA YEARS IS MADE POSSIBLE LARGELY BY THE MORE THOROUGH REPORTS SUBMITTED IN RECENT YEARS. THE DEFENSE MAPPING AGENCY, THE NAVAL OPERATIONS, AND THE USER OF THE ATLASES RELY ON THE PERSONAL OBSERVATIONS OF THE MARINER WHO HAS "BEEN THERE." MARINERS, IN REPORTING THEIR OBSERVATIONS TO THE NAVY, TO THEMSELVES, AND TO ALL "WHO WILL VIEW IN SHIPS." WITH THE ADVENT OF NUCLEAR POWER, ELECTRONIC NAVIGATION, AND SHIPS, UP-TO-DATE, RAPIDLY DISSEMINATED NAVIGATIONAL INFORMATION HAS BECOME INCREASINGLY IMPORTANT.

JOHN R. McDoNELL
Captain, U.S. Navy
Commander

Accession For
MTIS GRAAL
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Dist
Avail and/or
Special
THIS SERIES OF COMPUTERIZED ATLASES REPLACES THE OLD HYDROGRAPHIC OFFICE
ATLASES OF SURFACE CURRENTS (HOP 566, 568, 569, 570) WHICH WERE MANUALLY
COMPILED FROM DATA OBTAINED DURING THE PERIOD 1903 - 1934. THESE NEW ATLASES
CONFORM TO THE STANDARD NAVY OCEAN AREA AND REGION INDEX LIMITS SHOWN BELOW:
e.g., NOO SP 1402-NP 10 COVERS NORTH PACIFIC REGION 10 EAST OF THE PHILIPPINES.

RECENT IMPROVEMENTS IN THE DATA FILE ASSURE THE INCLUSION OF THE LATEST,
HIGH QUALITY SURFACE CURRENT DATA AVAILABLE. THE FILE NOW CONTAINS MORE
THAN 4,200,000 OBSERVATIONS AND A GENERAL UPDATE OF THE FILE WILL BE MADE

INDEX

OCEAN AREA SURFACE CURRENT ATLASES
SP 1400 NORTH ATLANTIC OCEAN
SP 1401 SOUTH ATLANTIC OCEAN
SP 1402 NORTH PACIFIC OCEAN
SP 1403 SOUTH PACIFIC OCEAN
SP 1404 INDIAN OCEAN
SURFACE CURRENT ATLASES

As amounts of new data warrant, most likely every 12 - 18 months.

These graphics may not be truly representative of the actual flow in such areas as the North Sea, Persian Gulf, Gulf of Thailand, and Yellow Sea where currents are strongly tidal. For such areas, other sources describing predictable hourly changes of tidal currents should be consulted.

INDEX

OCEAN AREA SURFACE CURRENT ATLASES

SP 1400 NORTH ATLANTIC OCEAN
SP 1401 SOUTH ATLANTIC OCEAN
SP 1402 NORTH PACIFIC OCEAN
SP 1403 SOUTH PACIFIC OCEAN
SP 1404 INDIAN OCEAN
Introduction

The Surface Current Data File, from which these atlas are derived, consists primarily of over four million ship and drift observations. These data were collected by the Netherlands, Japan, Britain, France, and the United States. The file is supplemented by several thousand Geomagnetic Electrokinetograph (GEX) observations, mostly Japanese. The file spans the period from the early 1850’s to the present. The earliest observations were collected by the Netherlands and Great Britain; those of the 1960’s through the present are primarily United States data.

General Quality

The quality of this data file is considered high for this type of derived value. The data have been carefully screened for duplication; obviously, the total under adverse conditions (i.e., high winds and waves, time between observations greater than 12 hours) have been eliminated when warranted. Consideration was given to the reliability of the observer; doubtful shipboard computations of set and drift were edited; and observations with erroneous locations (mostly observations on land) have been eliminated. The accepted data are considered most useful when used collectively as in summaries where a number of observations show trends.

General Observation Technique

The set (direction) and drift (speed) are computed by the navigator from the difference between the dead reckoning (DR) position and the position determined by any type of navigational fix. The drift can be determined along any straight line track and includes all factors which cause changes in the DR position. When a fix is obtained, the current set (direction) is from the DR position to the fix; the drift (speed) is equal to the distance in nautical miles between the DR and the fix, divided by the number of hours since the last fix. For successive observations, the TO POSITION of one observation becomes the FROM POSITION of the next observation.

Because the influence of current may vary along a ship's track, the MEAN POSITION of the track is assigned as the geographic location of the current observation. An example of a current computation is shown in the figure below.

Data Presentation

The following legend shows two types of surface current presentations by 1° quadrangle. Type 1 with 12 or more observations and type 2 with fewer than 12 observations. Where there are 11 or fewer observations within a 1° quadrangle, the total number of observations is shown within the 90° quadrant containing the observations.

LEGEND

<table>
<thead>
<tr>
<th>TYPE 1</th>
<th>TYPE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>25°57’</td>
<td>10°45’</td>
</tr>
<tr>
<td>23°6’</td>
<td>8°23’</td>
</tr>
<tr>
<td>4°44’</td>
<td>2°13’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>0°10’</td>
<td>0°10’</td>
</tr>
<tr>
<td>1°1’</td>
<td>1°1’</td>
</tr>
</tbody>
</table>
If there are 12 or more observations in a 1° quadrangle, the surface current is depicted by vector resultant as follows:

1. Persistent Current - 60 percent or more of all observations fall within a 45° sector of the 5-point compass.
2. Prevailing Current - 70 percent or more of all observations fall within two adjacent 45° sectors.
3. Primary Current with Secondary Direction - (a) Primary Current - 50 percent or more of all observations fall within three adjacent 45° sectors.
 (b) Secondary Direction - 20 percent or more of all observations fall within a 15° sector, and the two resultant vector directions are separated by more than 90° of arc.

4. Bifurcal Flow - Practically all observations are concentrated in opposite pairs of 45° sectors, and one pair contains at least 80 percent as many observations as the opposite pair. This generally indicates variability that occurs in zones of entrainment between opposing currents (see examples A and B, quadrangles 1, 2, and 3).
5. Variable Current - The 45° sector with most observations has less than 25 percent of all observations; direction is indeterminate.
DISTRIBUTION LIST

NAVY

CINCPACFLT (02M)
CONTHIRDFLT
CONSEVENTHFLT
CONSUBPAC
COMNAVAIRPAC
COMPATWINGSPAC
PATWINGSPAC DET ADAO
PATWING 1
COMNAVSURFPAC
DIRNAVOCEANMET
FLENUMEACEN
FLENEACEN GUAM
FLENEACEN PEARL
NAVWEASERVFAC SAN DIEGO
NAVWEASERVFAC YOKOSUKA
NUSD ASHEVILLE
NWSED ADAO
NWSED AGANA
NWSED ATSUGI
NWSED KADENA
NWSED MISAWA

OTHER GOVT.

NOAA/NODC
NOAA/NCC

PRIVATE & UNIVERSITIES

FLORIDA ST. UNIV.
LOUISIANA ST. UNIV.
MASS. INST. OF TECH.
ORE. ST. UNIV.
TEXAS A&M. UNIV.
UNIV. OF MIAMI
UNIV. OF R.I.
UNIV. OF WASH.
SCRIPPS INST OF OCEANOGRAPHY
WOODS HOLE OCEANOGRAPHIC INST.

FOREIGN

HYDROGRAPHER/R.A.M.
DEPT. TRANSPORTATION/AUSTRALIA
Title: Surface Currents Northeast Indian Ocean including the Bay of Bengal and Andaman Sea South China Sea

Abstract: This atlas, and the series of which it is a part, is computer generated and automatically plotted. It makes available to user the most recent surface current data collected and will be updated whenever sufficient amounts of data are added to the data file. This and the other atlases are based on a vast quantity of data as compared to the previous manually-compiled editions printed in the mid-thirties.
The surface current information is based mainly on ship drift, which is the difference between the dead reckoning position and the position determined by any type of navigational fix. This difference describes the direction and speed of the current.