QUADRATIC AND CUBIC TRANSITION ELEMENTS

M. A. Hussain
J. D. Vasilakis
S. L. Pu

November 1980

AMCMS No. 611102H600011
DA Project No. 1L161102AH60
PRON No. 1A0215601A1A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
Based on the investigations of Barsoum, Henshell and Shaw, quadratic elements have been successfully used as crack tip elements in fracture mechanics. This concept of singular element was extended to cubic isoparametric elements. Recently it was discovered by Lynn and Ingraffea that under special configuration, transitional elements improve the accuracy of stress intensity factor computations. In this report, we have obtained...
the location of mid-side nodes of these transitional elements for the quadratic as well as cubic elements. The cubic transitional elements were used for the double-edge crack problem, and it was found that there was improvement in accuracy for a configuration which consisted only of singular and transitional elements. However, for a well laid out grid, the improvement was only marginal.
TABLE OF CONTENTS

INTRODUCTION .. 1
SECTION I .. 2
SECTION II .. 5
SECTION III .. 8
SECTION IV .. 9
CONCLUSIONS .. 12
REFERENCES .. 14
APPENDIX A .. A-1

TABLES

I. STRESS INTENSITY FACTOR AND PERCENTAGE ERROR FOR A DOUBLE-
 EDGE CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELEMENTS
 WITH AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT
 IDEALIZATION OF FIGURE 3. 11

II. STRESS INTENSITY FACTOR AND PERCENTAGE ERROR FOR A DOUBLE-
 EDGE CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELEMENTS
 WITH AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT
 IDEALIZATION OF FIGURE 4. 11

LIST OF ILLUSTRATIONS

1. Quadratic quadrilateral isoparametric element as transition
 element. .. 3

2. Cubic quadrilateral isoparametric element as transition
 element. .. 7

3. An idealization for a quarter of a double-edge cracked
 plate. .. 10

4. A similar idealization used in Reference 4 for a quarter
 of a double-edge cracked plate. 13

1
INTRODUCTION

Based on the investigations of Barsoum, Henshell and Shaw, quarter-point quadratic elements have been successfully used as crack tip elements in fracture mechanics. This concept of singular element was extended to cubic isoparametric elements. Recently it was discovered by Lynn and Ingraffea that under special configuration, transitional elements improve the accuracy of stress intensity factor computations. These transitional elements are located in the immediate vicinity of the singular elements with the mid-side nodes adjusted as to reflect or extrapolate the square root singularity on the stresses and strains at the tip of the crack.

In this report, we have obtained the locations of mid-side nodes of these transitional elements for the quadratic as well as cubic elements. Explicit computations for a typical element are symbolically carried out using MACSYMA. These computations reveal that in addition to the desired square root singularities, the crack tip senses a stronger singularity, i.e., of order one. Further, the strength of this singularity cannot be controlled, as was possible for the cubic and quadratic collapsed elements, where, by tying the collapsed nodes together, we could easily abolish this strong singularity.

These cubic elements also have Hibbit-type6 singularities. The locations of mid-side nodes for these singularities have also been determined.

References are listed at the end of this report.

MACSYMA is a large program for symbolic manipulation at MIT.
The cubic transitional elements were used for a double-edge crack problem, and it was found that there was improvement in accuracy for a configuration which consisted only of singular and transitional elements. However, for a well laid out grid, the improvement was only marginal. MACSYMA has proved to be an indispensable tool for the present investigation.

SECTION I

Consider a quadratic quadrilateral isoparametric element,

\[x = \sum_{i=1}^{8} N_i X_i, \quad y = \sum_{i=1}^{8} N_i Y_i \] \hspace{1cm} (1)

\[u = \sum_{i=1}^{8} N_i U_i, \quad v = \sum_{i=1}^{8} N_i V_i \] \hspace{1cm} (2)

where \(N_i \) are the shape functions of 'Serendipity' family, and are given by,

CORNER NODES: \(N_1 = \frac{1}{4} (1-\xi)(1-\eta)(-\xi-\eta-1) \), etc. \hspace{1cm} (3)

MID-SIDE NODES: \(N_5 = \frac{1}{2} (1-\xi^2)(1-\eta) \), etc. \hspace{1cm} (4)

Without loss of generality consider the sectorial element, together with the mapped unit element in the transformed plane, shown in Figure 1. For simplicity, considering the one-dimensional case along line 1-2 in Figure 1 (i.e., \(\eta = -1 \)) we have from (1)

\[x = \frac{1}{2} \xi(\xi-1) + \frac{1}{2} \xi(1+\xi)L + (1-\xi^2)\beta L \] \hspace{1cm} (5)
FIGURE 1. QUADRATIC QUADRILATERAL ISOPARAMETRIC ELEMENT AS TRANSITION ELEMENT
The condition for the coalescence of roots of (5) at $x = 0$, together with the condition that $BL > 1$ gives

$$BL = \frac{L+2\sqrt{L}+1}{4}$$ \hspace{1cm} (6)

This is the result, in a slightly different form, obtained by Lynn and Ingraffea.4 With this location of mid-side nodes, the mapping of the general element of Figure 1 becomes, from (1) and (2),

$$x = \frac{1}{8} \left\{ (n+1) \cos \alpha + (1-n) \right\} \left[\xi(\sqrt{L}-1) + (\sqrt{L}+1) \right]^2$$ \hspace{1cm} (7)

$$y = \frac{1}{8} \left\{ (n+1) \right\} \left[\xi(\sqrt{L}-1) + (\sqrt{L}+1) \right]^2 \sin \alpha$$ \hspace{1cm} (8)

The Jacobian of the transformation (1) and (2) is then given by

$$J = \frac{\partial(x,y)}{\partial(\xi,n)} = \frac{1}{16} (\sqrt{L}-1) \left[\xi(\sqrt{L}-1) + (\sqrt{L}+1) \right]^3 \sin \alpha$$ \hspace{1cm} (9)

As can be seen from (7), (8), and (9), the Jacobian has a third order zero while x and y have second order zeroes at

$$\xi = -\frac{\sqrt{L}+1}{\sqrt{L}-1}$$ \hspace{1cm} (10)

Using the inverse of the Jacobian matrix, the strain component can be written as

$$\frac{\partial u}{\partial x} = \frac{1}{J} \left\{ \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial n} - \frac{\partial u}{\partial n} \frac{\partial \xi}{\partial \xi} \right\}$$ \hspace{1cm} (11)
Substituting the various derivatives and collecting terms we get

\[
\frac{\partial u}{\partial x} = \frac{A_1}{(\xi(\sqrt{L}-1) + \sqrt{L}+1)^2} + \frac{A_2}{(\xi(\sqrt{L}-1) + \sqrt{L}+1)} + A_3 \tag{12}
\]

where \(A_1, A_2,\) and \(A_3\) are given in Appendix A.

Comparing (12) with (7) and (8) it is seen that the strain component not only has singularity of order one half but also of order one. Similarly we have

\[
\frac{\partial u}{\partial y} = \frac{1}{J} \left\{ - \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y} \right\} = \frac{A_4}{(\xi(\sqrt{L}-1) + \sqrt{L}+1)^2} + \frac{A_5}{(\xi(\sqrt{L}-1) + \sqrt{L}+1)} + A_6 \tag{13}
\]

where \(A_4, A_5, A_6\) are given in Appendix A.

SECTION II

Consider now the cubic, 12-node, quadrilateral isoparametric element,

\[
x = \sum_{i=1}^{12} N_i X_i , \quad y = \sum_{i=1}^{12} N_i Y_i \tag{14}
\]

and displacements

\[
u = \sum_{i=1}^{12} N_i U_i , \quad v = \sum_{i=1}^{12} N_i V_i \tag{15}
\]

where the shape functions are given by

CORNER NODES : \(N_1 = \frac{1}{32} (1-\xi)(1-\eta)\left[9(\xi^2+\eta^2)-10\right], \quad\text{etc.} \tag{16}\)

MID-SIDE NODES : \(N_2 = \frac{9}{32} (1-3\xi)(1-\xi^2)(1-\eta), \quad\text{etc.} \tag{17}\)
The general transitional element together with its map in \(\xi - \eta \) plane is given in Figure 2. For simplicity consider the one-dimensional case along line 1-2-3-4 (i.e., \(\eta = -1 \)),

\[
x = \frac{1}{16} \left(\xi^3 (-9 + 27\beta_1 L - 27\beta_2 L + 9L) + \xi^2 (9 - 9\beta_1 L - 9\beta_2 L + 9L) \\
+ (1 - 27\beta_1 L + 27\beta_2 L - L) + (-1 + 9\beta_1 L + 9\beta_2 L - L) \right)
\]

The requirement that (18) be quadratic in \(\xi \), together with the condition of coalescence of roots gives the following, physically possible solution for locations of mid-side nodes for all \(L \),

\[
\beta_1 L = \frac{L + 4\sqrt{L} + 4}{9}, \\
\beta_2 L = \frac{4L + 4\sqrt{L} + 1}{9}
\]

With the above values the general mapping of the element shown in Figure 2 then becomes

\[
x = \frac{1}{8} \left[(\eta + 1) \cos \alpha - (\eta - 1) \right] \left[\xi (\sqrt{L} - 1) + (\sqrt{L} + 1) \right]^2
\]

\[
y = \frac{1}{8} \left(\eta + 1 \right) \left[\xi (\sqrt{L} - 1) + (\sqrt{L} + 1) \right]^2 \sin \alpha
\]

and the Jacobian of the transformation becomes

\[
J = \frac{\partial (x, y)}{\partial (\xi, \eta)} = \frac{1}{16} \left(\sqrt{L} - 1 \right) \left(\xi (\sqrt{L} - 1) + (\sqrt{L} + 1) \right)^3 \sin \alpha
\]

These expressions are the same as for quadratic elements (compare eqs. (7), (8), and (9)), and hence the Jacobian has third order zeroes and \(x, y \) have second order zeroes, at

\[
\xi = -\frac{\sqrt{L} + 1}{\sqrt{L} - 1}
\]
FIGURE 2. CUBIC QUADRILATERAL ISOPARAMETRIC ELEMENT AS TRANSITION ELEMENT
Following the procedure outlined before, the strain components can be obtained from the following

\[
\begin{align*}
\frac{\partial u}{\partial x} &= \frac{B_1}{(\xi(\sqrt{L} - 1) + \sqrt{L} + 1)^2} + \frac{B_2}{(\xi(\sqrt{L} - 1) + \sqrt{L} + 1)} + B_3, \\
\frac{\partial u}{\partial y} &= \frac{B_4}{(\xi(\sqrt{L} - 1) + \sqrt{L} + 1)^2} + \frac{B_5}{(\xi(\sqrt{L} - 1) + \sqrt{L} + 1)} + B_6,
\end{align*}
\]

where \(B_1\) through \(B_6\) are given in Appendix A. Similar expressions hold for derivatives of \(v\). Equations (24) and (25) again reveal the same kinds of singularities as (12) and (13).

SECTION III

In the cubic elements there is an additional set of locations of mid-side nodes which give Hibbit-type\(^6\) singularity. This is obtained from the condition that all the three roots of (18) coalesce. The location of nodes is given by

\[
\begin{align*}
\beta_1 L &= \frac{L^{1/3} + 2}{3} \\
\beta_2 L &= \frac{2L^{1/3} + 1}{3},
\end{align*}
\]

and the transformations become

\[
\begin{align*}
x &= \frac{1}{16} \left\{ (n+1)\cos \alpha - (n-1) \right\} \left[\xi(L^{1/3} - 1) + L^{1/3+1} \right]^3 \\
y &= \frac{1}{16} \left\{ (n+1)\sin \alpha \right\} \left[\xi(L^{1/3} - 1) + L^{1/3+1} \right]^3
\end{align*}
\]
and the Jacobian becomes

\[J = \frac{\partial(x,y)}{\partial(\xi,\eta)} = \frac{3\sin(\alpha)}{128} (L^{1/3-1}) \left((L^{1/3-1}) + L^{1/3+1} \right)^5 \] (28)

Following the procedure outlined before, it can be shown that

\[\frac{\partial u}{\partial x} = \frac{C_1}{(\xi(L^{1/3-1}) + L^{1/3+1})^3} + \frac{C_2}{(\xi(L^{1/3-1}) + L^{1/3+1})^2} + \frac{C_3}{(\xi(L^{1/3-1}) + L^{1/3+1})} + C_4 \] (29)

The above equation indicates that in this case the singularities are of order 1, 2/3, and 1/3. This combination is of no immediate interest in linear fracture in homogeneous media.

SECTION IV

The sample problem of a double-edge cracked plate of Ref. 4 was selected for numerical assessment of transition elements when used with 12-node collapsed singular elements. Figure 3 is an idealization we usually take for such a mode I crack problem. The distance \(p \) between the crack tip and the nearest node in a collapsed element is often taken in the range of 0.5% to 3% of the crack length \(a \). The ratios \(a/b \) and \(b/c \) are usually in the range of 2 to 10. Stress intensity factors for several values of \(p \), \(b/c \), and \(a/b \) with and without the use of transition elements are tabulated in Table I. Comparing to the reference value, \(K_I = \sigma \sqrt{a} F(a/2a) \), where \(F(1/2) = 1.184 \), the percentage errors \(\Delta \% \) are also shown in the table. The result with the use of transition elements is better only when a very large ratio of \(b/c \) (=20) is used.
FIGURE 3. AN IDEALIZATION FOR A QUARTER OF A DOUBLE-EDGE CRACKED PLATE
TABLE I. STRESS INTENSITY FACTOR AND PERCENTAGE ERROR FOR A DOUBLE-EDGE CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELEMENTS WITH AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT IDEALIZATION OF FIGURE 3.

<table>
<thead>
<tr>
<th>ρ</th>
<th>b/c</th>
<th>a/b</th>
<th>SIF</th>
<th>$\Delta%$</th>
<th>SIF</th>
<th>$\Delta%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>4</td>
<td>10</td>
<td>2.8808</td>
<td>2.31</td>
<td>2.8736</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4</td>
<td>2.8376</td>
<td>0.78</td>
<td>2.7831</td>
<td>-1.16</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2</td>
<td>2.9863</td>
<td>6.06</td>
<td>2.7851</td>
<td>-1.09</td>
</tr>
<tr>
<td>0.01</td>
<td>4</td>
<td>5</td>
<td>2.7986</td>
<td>-0.61</td>
<td>2.7926</td>
<td>-0.82</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2</td>
<td>2.8334</td>
<td>0.63</td>
<td>2.7813</td>
<td>-1.22</td>
</tr>
</tbody>
</table>

TABLE II. STRESS INTENSITY FACTOR AND PERCENTAGE ERROR FOR A DOUBLE-EDGE CRACKED PLATE USING 12-NODE COLLAPSED SINGULAR ELEMENTS WITH AND WITHOUT TRANSITION ELEMENTS. FINITE ELEMENT IDEALIZATION OF FIGURE 4.

<table>
<thead>
<tr>
<th>ρ</th>
<th>s/c</th>
<th>SIF</th>
<th>$\Delta%$</th>
<th>SIF</th>
<th>$\Delta%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>40</td>
<td>3.325</td>
<td>18.09</td>
<td>2.7658</td>
<td>-1.77</td>
</tr>
<tr>
<td>0.01</td>
<td>20</td>
<td>2.963</td>
<td>5.23</td>
<td>2.7654</td>
<td>-1.79</td>
</tr>
<tr>
<td>0.02</td>
<td>10</td>
<td>2.8115</td>
<td>-0.15</td>
<td>2.7650</td>
<td>-1.80</td>
</tr>
<tr>
<td>0.04</td>
<td>5</td>
<td>2.7632</td>
<td>-1.86</td>
<td>2.655</td>
<td>-5.71</td>
</tr>
</tbody>
</table>
Another idealization, Figure 4, similar to the one used by Lynn and Ingraffea4 was used to recompute stress intensity factors for various values of a/c to see whether the transition elements in cubic isoparametric elements can give as good improvement in accuracy as reported in Ref. 4 in the quadratic isoparametric case. These results are tabulated in Table II. It shows again the result obtained from the use of transition elements is better only when a very large ratio of a/c is used.

In this report the stress intensity factors were calculated from the normal component of displacement of the node on the crack surface and nearest to the crack tip. It usually gives better results than the average value computed from nodal displacements along the rays from the crack tip at various angles.8

For elastic crack problems, the correct order of singularity at the crack tip is taken care of by the collapsed singular elements. The use of transition elements does not practically improve the accuracy.

CONCLUSIONS

In this report we have been able to obtain explicit expressions for singularities the crack tip senses from a transitional element. The application of these elements for a few practical problems of fracture mechanics as well as stress concentration factors has been partially successful. It is believed this is because the crack tip senses not only the square root singularity, but also a stronger singularity. The strength of this singularity cannot be controlled as was possible for collapsed singular elements, where the strong singularity was essentially eliminated by tying the nodes together.
REFERENCES

APPENDIX A

In this appendix we give the explicit expressions for the coefficients of the various terms in the strain components given in the text.

\[R = \sqrt{L} \]

\[A_1 = \frac{2(n+1)}{(R-1)^2} \left[4n(R-1)(Ru_8-u_6) + 4(Ru_7-u_5) \right. \]

\[+ (2nR+R-2n+1)(u_2-Ru_4) + (2nR-2n-1)(u_3-Ru_1) \]

\[A_2 = -\frac{1}{2(R-1)^2} \left\{ 2(3n^2+4n+1)(R-1)(u_8-u_6) + 4(n+1)(R+1)u_7 \right. \]

\[- 4(n+3)(R+1)u_5 + (R(3n^2+7n+4) - 3n(n+1))u_4 \]

\[+ (3Rn(n+1) - (3n^2+7n+4))u_3 + (R(3n^2+5n+4) - (3n^2+n-8))u_2 \]

\[- (R(3n^2+n-8) - (3n^2+5n+4))u_1 \]

\[A_3 = -\frac{2}{(R-1)^2} (2u_5-u_2-u_1) \]

\[A_4 = -\frac{2((n+1)\cos \alpha - (n-1))}{(R-1)^2 \sin \alpha} \left\{ 4Rn(R-1)u_8 + 4R(u_7-u_5) - 4n(R-1)u_6 \right. \]

\[- (R(2n+1) - (2n-1))(Ru_4-u_2) + (R(2n-1) - (2n+1))(u_3-Ru_1) \]

\[A_5 = -\frac{1}{2(R-1)^2 \sin \alpha} \left\{ 2(R-1)[\cos \alpha(3n^2+4n+1) - (3n^2-4n+1)](u_8-u_6) \right. \]

\[+ 4(R+1)(\cos \alpha(n+1) - (n-3))u_7 - 4(R+1)(\cos \alpha(n+3) - (n-1))u_5 \]

\[- (\cos \alpha[R(3n^2+7n+4) - 3n(n+1)] - [R(3n^2-n-8) - (3n^2-5n+4))]u_4 \]

\[+ (\cos \alpha[3Rn(n+1) - (3n^2+7n+4)] - [R(3n^2-5n+4) - (3n^2-n-8))]u_3 \]

\[+ (\cos \alpha[R(3n^2+5n+4) - (3n^2+n-8)] + [-3Rn(n-1) + (3n^2-7n+4))]u_2 \]

\[- (\cos \alpha[R(3n^2+n-8) - (3n^2+5n+4)] + [-R(3n^2-7n+4) + 3n(n-1))]u_1 \]
\[A_6 = -\frac{2}{(R-1)^2 \sin \alpha} \{ \cos \alpha (-2u_5+u_7+u_1) + (2u_7-u_4-u_3) \} \]

\[B_1 = \frac{n+1}{(R-1)^3} \left\{ \frac{1}{4} \left[R^2(27n^2-18n-1) - R(54n^2-36n-38) + 27n^2-18n-1 \right] (Ru_1-u_4) \right. \]

\[+ \frac{9}{4} (R-1)^2(9n^2-2n-3)(u_5-Ru_{12}) - \frac{9}{4} (R-1)^2(9n^2+2n-3)(u_6-Ru_{11}) \]

\[+ \frac{1}{4} \left[R^2(27n^2+18n-1) - R(54n^2+36n-38) + 27n^2+18n-1 \right] (u_7-Ru_{10}) \} \]

\[B_2 = \frac{1}{(R-1)^3} \left\{ -\frac{1}{16} \left[R^2(45n^3+27n^2-n+105) - R(90n^3+54n^2-146n-222) \right] \right. \]

\[+ 45n^3+27n^2-37n-3u_1 + \frac{9}{4} (2R^2+6R+1)[(n+3)u_2 - (n+1)u_9] \]

\[- \frac{9}{4} (R^2+6R+2)[(n+3)u_3 - (n+1)u_8] + \]

\[+ \frac{1}{16} \left[R^2(45n^3+27n^2-37n-3) - R(90n^3+54n^2-146n-222) + \right. \]

\[+ 45n^3+27n^2-n+105]u_4 \]

\[- \frac{9}{16} (R-1)^2(n+1)[(15n^2-7)u_5 + (15n^2+6n-5)u_{11}] \]

\[+ \frac{9}{16} (R-1)^2(n+1)[(15n^2+6n-5)u_6 + (15n^2-7)u_{12}] \]

\[- \frac{1}{16} (n+1)[R^2(45n^2+36n-1) - 2R(45n^2+36n-37) + 45n^2+36n+35]u_7 \]

\[+ \frac{n+1}{16} \left[R^2(45n^2+36n+35) - 2R(45n^2+36n-37) + 45n^2+36n-1]u_{10} \right] \]
\[B_3 = \frac{9}{2} \frac{1}{(R-1)^3} \{ (2R+1)u_1 - (5R+4)u_2 + (4R+5)u_3 - (R+2)u_4 \} \]

\[B_4 = \frac{\{(n+1)\cos \alpha - n + 1\}}{\sin \alpha (R-1)^3} \left[\frac{1}{4} \left[R^2(27n^2-18n-1) - R(54n^2-36n-38) +
+ 27n^2-18n-1)(-Ru_1+u_4) + 9R(2R+1)(u_2-u_9) +
+ 9R(R+2)(u_3-u_8) + \frac{9}{4} (R-1)^2(9n^2-2n-3)(u_5-Ru_1)
+ \frac{9}{4} (R-1)^2(9n^2+2n-3)(u_6-Ru_11) +
+ \frac{1}{4} [R^2(27n^2+18n-1) - R(54n^2+36n-38) + 27n^2+18n-1)(u_7+Ru_{10}) \right] \right] \]

\[B_5 = \frac{1}{\sin \alpha (R-1)^3} \left[\frac{1}{16} \left[R^2(45n^3(\cos \alpha-1) + 27n^2(\cos \alpha+3) - n(\cos \alpha+71)
+ 35(3 \cos \alpha+1)) + R(90n^3(-\cos \alpha+1) + 54n^2(\cos \alpha+3) +
+ 2n(73 \cos \alpha-1) + 74(3 \cos \alpha+1)) + 45 n^3(\cos \alpha-1) +
+ 27n^2(\cos \alpha+3) - n(37 \cos \alpha+35) - 3 \cos \alpha+1\}]u_1
- \frac{9}{4} ((n+3)\cos \alpha-n+1)[(2R^2+6R+1)u_2 - (R^2+6R+2)u_3] \right] \]

\[- \frac{1}{16} \left[R^2(45n^3(\cos \alpha-1) + 27n^2(\cos \alpha+3) - n(37 \cos \alpha-35)
- (3 \cos \alpha+1)) + R(90n^3(-\cos \alpha+1) + 54n^2(\cos \alpha+3) +
+ 2n(73 \cos \alpha-1) + 74(3 \cos \alpha+1)) + 45 n^3(\cos \alpha-1) +
+ 27n^2(\cos \alpha+3) - n(\cos \alpha+71) + 35(3 \cos \alpha+1\}]u_4 \right] \]

\[+ \frac{9}{16} (R-1)^2(15n^3(\cos \alpha-1) + 3n^2(5 \cos \alpha+7) - n(7 \cos \alpha+1)
- 7 \cos \alpha-5)u_5 - \frac{9}{16} (15n^3(\cos \alpha-1) + 3n^2(7 \cos \alpha+5) \right) \]
\[
+ n(\cos \alpha +7) - 5 \cos \alpha -7)(R-1)^2u_6 + \\
+ \frac{1}{16} [R^2(45n^3(\cos \alpha -1) + 27n^2(3 \cos \alpha +1) + n(35 \cos \alpha +37) \\
- (\cos \alpha +3)) + R(90n^3(-\cos \alpha +1) - 54n^2(3 \cos \alpha +1) \\
+ 2n(\cos \alpha -73) + 74(\cos \alpha +3)) + 45n^3(\cos \alpha -1) + \\
+ 27n^2(3 \cos \alpha +1) + n(71 \cos \alpha +1) + 35(\cos \alpha +3)]u_7 \\
+ \frac{9}{4} ((n+1)\cos \alpha-n+3)[-((R^2+6R+2)u_8 + (2R^2+6R+1)u_9) - \\
- \frac{1}{16} [R^2(45n^3(\cos \alpha -1) + 27n^2(3 \cos \alpha +1) + (71 \cos \alpha +1) + \\
+ 35(\cos \alpha +3)) + R(90n^3(-\cos \alpha +1) - 54n^2(3 \cos \alpha +1) \\
+ 2n(\cos \alpha -73) + 74(\cos \alpha +3)) + 45n^3(\cos \alpha -1) + \\
+ 27n^2(3 \cos \alpha +1) + n(35 \cos \alpha +37) - (\cos \alpha +3)]u_{10} + \\
+ \frac{9}{16} (R-1)^2[15n^3(\cos \alpha -1) + 3n^2(7 \cos \alpha +5) + n(\cos \alpha +7) \\
- (5 \cos \alpha +7)]u_{11} - \\
- \frac{9}{16} (R-1)^2[15n^3(\cos \alpha -1) + 3n^2(5 \cos \alpha +7) - n(7 \cos \alpha +1) \\
- (7 \cos \alpha +5)]u_{12}
\]

\[B_6 = \frac{9}{2 \sin \alpha (R-1)^3} \{ (2R+1)[-\cos au_1 + u_10] + (5R+4)[\cos au_2 - u_9] \\
- (4R+5)[\cos au_3 - u_8] + (R+2)[\cos au_4 - u_7] \} \]
TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Role</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Development Engineering Branch</td>
<td>1</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-DA</td>
<td>1</td>
</tr>
<tr>
<td>-DM</td>
<td>1</td>
</tr>
<tr>
<td>-DP</td>
<td>1</td>
</tr>
<tr>
<td>-DR</td>
<td>1</td>
</tr>
<tr>
<td>-DS</td>
<td>1</td>
</tr>
<tr>
<td>-DC</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Engineering Support Branch</td>
<td>1</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-SE</td>
<td>1</td>
</tr>
<tr>
<td>-SA</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Research Branch</td>
<td>2</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-RA</td>
<td>1</td>
</tr>
<tr>
<td>-RC</td>
<td>1</td>
</tr>
<tr>
<td>-RM</td>
<td>1</td>
</tr>
<tr>
<td>-RP</td>
<td>1</td>
</tr>
<tr>
<td>Chief, LWC Mortar Sys. Ofc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-M</td>
<td></td>
</tr>
<tr>
<td>Chief, Imp. 81mm Mortar Ofc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-I</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td>5</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>Technical Publications & Editing Unit</td>
<td>2</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>Director, Operations Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Procurement Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Product Assurance Directorate</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Please notify Assoc. Director, Benet Weapons Laboratory, Attn: DRDAR-LCB-TL, of any required changes.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT</td>
<td>COMMANDER US ARMY TANK-AUTMV R&D CMD</td>
</tr>
<tr>
<td>ATTN: DEP FOR SCI & TECH THE PENTAGON</td>
<td>ATTN: TECH LIB - DRDTA-UL</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20315</td>
<td>MAT LAB - DRDTA-RK</td>
</tr>
<tr>
<td>COMMANDER US ARMY MAT DEV & READ. COMD</td>
<td>COMMANDER US MILITARY ACADEMY</td>
</tr>
<tr>
<td>ATTN: DRCDE 5001 EISENHOWER AVE ALEXANDRIA, VA 22333</td>
<td>ATTN: CHMN, MECN ENGR DEPT</td>
</tr>
<tr>
<td>COMMANDER US ARMY ARRADCOM</td>
<td>COMMANDER REDSTONE ARSENAL</td>
</tr>
<tr>
<td>ATTN: DRDAR-LC</td>
<td>ATTN: DRSMI-RB</td>
</tr>
<tr>
<td>-ICA (PIASTICS TECH EVL CEN)</td>
<td>-RRS</td>
</tr>
<tr>
<td>-LCE</td>
<td>-RSM</td>
</tr>
<tr>
<td>-LCM</td>
<td>ALABAMA 35809</td>
</tr>
<tr>
<td>-LCS</td>
<td></td>
</tr>
<tr>
<td>-LCW</td>
<td></td>
</tr>
<tr>
<td>-TSS(STINFO)</td>
<td></td>
</tr>
<tr>
<td>DOVER, NJ 07801</td>
<td>ROCK ISLAND ARSENAL</td>
</tr>
<tr>
<td>COMMANDER US ARMY ARRADCOM</td>
<td>ATTN: SARRI-ENM (MAT SCI DIV)</td>
</tr>
<tr>
<td>ATTN: DRDAR-LP-L ROCK ISLAND ARSENAL</td>
<td>ROCK ISLAND, IL 61202</td>
</tr>
<tr>
<td>ROCK ISLAND, IL 61299</td>
<td>COMMANDER HQ, US ARMY AVN SCH</td>
</tr>
<tr>
<td>DIRECTOR US Army Ballistic Research Laboratory</td>
<td>ATTN: OFC OF THE LIBRARIAN</td>
</tr>
<tr>
<td>ATTN: DRDAR-TSB-S (STINFO) ABERDEEN PROVING GROUND, MD 21005.</td>
<td>FT RUCKER, ALABAMA 36362</td>
</tr>
<tr>
<td>COMMANDER US ARMY ELECTRONICS COMD</td>
<td>COMMANDER US ARMY FGN SCIENCE & TECH CEN</td>
</tr>
<tr>
<td>ATTN: TECH LIB FT MONMOUTH, NJ 07703</td>
<td>ATTN: DRXST-SD</td>
</tr>
<tr>
<td>COMMANDER US ARMY MOBILITY EQUIP R&D COMD</td>
<td>220 7TH STREET, N.E.</td>
</tr>
<tr>
<td>ATTN: TECH LIB FT BELVOIR, VA 22060</td>
<td>CHARLOTTESVILLE, VA 22901</td>
</tr>
<tr>
<td>NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.</td>
<td>COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER</td>
</tr>
<tr>
<td></td>
<td>ATTN: TECH LIB - DRXMR-PL</td>
</tr>
<tr>
<td></td>
<td>WATERTOWN, MASS 02172</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>COMMANDER</td>
</tr>
<tr>
<td></td>
<td>US ARMY RESEARCH OFFICE</td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 12311</td>
</tr>
<tr>
<td></td>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>COMMANDER</td>
</tr>
<tr>
<td></td>
<td>US ARMY HARFY DIAMOND LAB</td>
</tr>
<tr>
<td></td>
<td>ATTN: TECH LIB</td>
</tr>
<tr>
<td></td>
<td>2800 POWDER MILL ROAD</td>
</tr>
<tr>
<td></td>
<td>ADELPHIA, ME 20783</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td></td>
<td>US ARMY INDUSTRIAL BASE ENG ACT</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRXPE-MT</td>
</tr>
<tr>
<td></td>
<td>ROCK ISLAND, IL 61201</td>
</tr>
<tr>
<td>1</td>
<td>CHIEF, MATERIALS BRANCH</td>
</tr>
<tr>
<td></td>
<td>US ARMY RES GROUP, EUR</td>
</tr>
<tr>
<td></td>
<td>BOX 65, FPO N.Y. 09510</td>
</tr>
<tr>
<td>1</td>
<td>COMMANDER</td>
</tr>
<tr>
<td></td>
<td>NAVAL SURFACE WEAPONS CEN</td>
</tr>
<tr>
<td></td>
<td>ATTN: CHIEF, MAT SCIENCE DIV</td>
</tr>
<tr>
<td></td>
<td>DAHLGREN, VA 22448</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td></td>
<td>US NAVAL RESEARCH LAB</td>
</tr>
<tr>
<td></td>
<td>ATTN: DIR, MECH DIV</td>
</tr>
<tr>
<td></td>
<td>CODE 26-27 (DOC LIB)</td>
</tr>
<tr>
<td></td>
<td>WASHINGTON, D.C. 20375</td>
</tr>
<tr>
<td>1</td>
<td>NASA SCIENTIFIC & TECH INFO FAC.</td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 8757, ATTN: ACQ BR</td>
</tr>
<tr>
<td></td>
<td>BALTIMORE/WASHINGTON INTL AIRPORT</td>
</tr>
<tr>
<td></td>
<td>MARYLAND 21240</td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARPADCOM, ATTN: BENET WEAPONS LABORATORY, DRAF-LCB-TL, WATERVERLIET ARSENAL, WATERVERLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.