INFORMATION ON THE STRUCTURE OF INTERACTION IN TWO-WAY CLASSIFICATION

P R KRISHNAIAH, M G YOCHNOWITZ

UNCLASSIFIED TR-80-6

AFOSR-TR-80-0986

NL
INFEERENCE ON THE STRUCTURE OF INTERACTION
IN TWO-WAY CLASSIFICATION MODEL

P. R. Krishnaiah*
University of Pittsburgh

M. G. Yochmowitz
USAF School of Aerospace Medicine
Brooks Air Force Base, Texas

July 1980

Technical Report No. 80-8
Institute for Statistics and Applications
Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA. 15260

*The work of this author is sponsored by the Air Force
Office of Scientific Research, Air Force Systems
Command under Contract F49620-79-C-0161. Reproduction
in whole or in part is permitted for any purpose of
the United States Government.
1. INTRODUCTION

Under the classical two-way classification model with one observation per cell, the hypotheses of no main effects are tested in practice by using the ratios of the mean squares associated with the main effects to the error mean square. But when the interaction between the main effects is present, these tests are no longer valid. So, there is quite a bit of interest in studying the structure of interaction term and the effect of interaction on the usual tests for main effects. In Section 2 of this chapter, we review Tukey’s test for non-additivity (see Tukey (1949)) and certain generalizations of this test by Scheffé (1959, p. 144) and Graybill and Milliken (1970). Some other interesting early developments like the work of Fisher and Mackenzie (1923) and Williams (1952) are also discussed in this section. In Section 3, we discuss the model when the interaction matrix is decomposed by singular value decomposition of a matrix. The work of Gollob (1968), Mandel (1969) as well as the likelihood ratio tests (see Corsten and van Eijnsbergen (1972), Johnson and Graybill (1972), and Yochmowitz and Cornell (1978)) for testing the hypotheses on the structures of interaction term are also reviewed. Krishnaiah and Waikar (1971, 1972) proposed simultaneous test procedures for testing the equality of the eigenvalues of the covariance matrix against certain alternatives. Applications of the above procedures in studying the structure of interaction term are emphasized in Section 3. In Section 4, we discuss the effect of the presence
of interaction on the usual tests for the hypotheses of no main effects. Finally, the applications of certain tests for the hypotheses of no interaction are illustrated with some data on monkeys on animal models.
2. SOME EARLY DEVELOPMENTS ON TESTS FOR ADDITIVITY

Consider the model

\[y_{ij} = u + \alpha_i + \beta_j + \eta_{ij} + \epsilon_{ij} \quad (2.1) \]

where \(y_{ij} (i=1, \ldots, r; j=1, \ldots, s) \) denotes the observation in \(i \)-th row and \(j \)-th column and \(\epsilon_{ij} \)'s are distributed independently as normal with mean 0 and variance \(\sigma^2 \). Also \(u, \alpha_i, \beta_j \), and \(\eta_{ij} \) respectively denote the general mean, \(i \)-th row effect, \(j \)-th column effect, and interaction between \(i \)-th row and \(j \)-th column. In addition, let \(\sum \alpha_i = \sum \beta_j = \sum \eta_{ij} = \sum \eta_{ij} = 0 \). Tukey (1949) proposed the following procedure for testing the hypothesis \(H: \eta = 0 \) where \(\eta = (\eta_{ij}) \). The hypothesis \(H \) is accepted or rejected according as

\[F_1 < F_\alpha \quad (2.2) \]

where

\[F_1 = \frac{s_1^2 (r-1)(s-1)-1}{s_e^2 - s_1^2} \quad (2.4) \]

\[s_1^2 = \frac{\left(\sum_{i=1}^{r} \sum_{j=1}^{s} (\bar{y}_{ij} - \bar{y}_.) (\bar{y}_j - \bar{y}_.) y_{ij} \right)^2}{\sum_{i=1}^{r} (\bar{y}_{ij} - \bar{y}_.)^2 \sum_{j=1}^{s} (\bar{y}_j - \bar{y}_.)^2} \]

\[s_e^2 = \sum_{i=1}^{r} \sum_{j=1}^{s} (y_{ij} - \bar{y}_{ij} - \bar{y}_j + \bar{y}_.)^2 \]

\[s_{\bar{y}_1} = \sum_{i=1}^{r} y_{ij}, r \bar{y}_j = \sum_{i=1}^{r} y_{ij} \quad \text{and} \quad r s \bar{y}_. = \sum_{i=1}^{r} y_{ij} \]}
When H is true, the statistic F_1 is distributed as the central F distribution with $(1, rs-r-s)$ degrees of freedom. In examining the model (2.1) with $\eta_{ij} = \lambda a_i b_j$, Ward and Dick (1952) solved the normal equations and arrived at s_1^2 as the sum of squares associated with testing the hypothesis of no interaction. Ghosh and Sharma (1963) showed that the power of Tukey's test for H against the alternative hypothesis $\eta_{ij} = \lambda a_i b_j$ is high.

Tukey (1955) showed as to how his test can be extended to test for no interaction in the Latin Square. The model equation in this case is given by

$$y_{ijk} = \mu + a_1^i + b_1^j + c_1^k + \eta_{ijk} + \varepsilon_{ijk} \tag{2.5}$$

where a_1^i, b_1^j, c_1^k (i=1,2,...,r; j=1,2,...,r; k=1,2,...,r) respectively denote the effects of i-th level of A, j-th level of B and k-th level of C. Also, η_{ijk} denotes the interaction of i-th level of A with j-th level of B and k-th level of C. In addition, the errors ε_{ijk} are distributed independently and normally with mean 0 and variance σ^2. If we apply Tukey's test, we accept or reject the hypothesis H of no interaction under the model (2.5) when

$$F_2 \leq F_\alpha \tag{2.6}$$

where

$$P \left[F_2 \leq F_\alpha \mid H \right] = (1-\alpha), \tag{2.7}$$
\[F_2 = \frac{s_2^2 \left(r^2 - 3r + 1 \right)}{s_3^2 - s_2^2} \]

(2.8)

\[s_2^2 = \left[\sum_{i} \sum_{j} e_{ijk} u_{ijk} \right]^2 \quad s_0^2 = \sum_{i} \sum_{j} e_{ijk} \]

\[s_0^2 = \sum_{i} \sum_{j} (u_{ijk} - \bar{u}_1 - \bar{u}_j - \bar{u}_k + 2 \bar{u} \ldots)^2, \]

\[u_{ijk} = (\bar{y}_1 + \bar{y}_j + \bar{y}_k - 3\bar{y} \ldots)^2. \]

When \(H \) is true, \(F_2 \) is distributed as the central \(F \) distribution with \((1, r^2 - 3r + 1)\) degrees of freedom.
Thus interaction can be tested with only 1 cell replicate in the Latin Square. Mandel (1969) also considered the problem of testing the hypothesis of no interaction under the model (2.5) when \(\eta_{ijk} = \lambda u_i v_j \) where \(u_i \) and \(v_j \) are specified a priori and \(\lambda \) is an unknown constant.

Mandel (1969) has identified many models as special cases of the Factor Analysis of Variance (FANOVA) model given by (3.1) in the next section. These special cases are obtained by assuming very special structures of the interaction term \(\eta_{ij} \) in (2.1) and they are given in the following table:

Special Cases of the FANOVA Model

<table>
<thead>
<tr>
<th>Structure of (\eta_{ij})</th>
<th>Type of the Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Additive</td>
</tr>
<tr>
<td>(\lambda a_i b_j)</td>
<td>Concurrent</td>
</tr>
<tr>
<td>(R_1 b_j)</td>
<td>Bundle of Lines - Rows Linear</td>
</tr>
<tr>
<td>(C_j a_1)</td>
<td>Bundle of Lines - Columns Linear</td>
</tr>
<tr>
<td>(R_1 b_j + \lambda a_1 b_j)</td>
<td>Combination of Concurrent and Bundle of Lines</td>
</tr>
<tr>
<td>(R_1 b_j + a_1 c_j + \lambda a_1 b_j)</td>
<td>First Sweep of Tukey's Vacuum Cleaner</td>
</tr>
</tbody>
</table>
The additive model has no interaction. The concurrent model can be tested effectively by using Tukey's test for non-additivity. Mandel (1961) proposed the bundle of lines model with one replication per cell in the fixed two-way layout. The test for no interaction under this model is described below. If we have $n_{ij} = R_i \theta_j$, the total sum of squares (s.s) is partitioned as follows.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>s.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>rs</td>
<td>$\sum_{i} \sum_{j} y_{ij}^2$</td>
</tr>
<tr>
<td>Mean</td>
<td>1</td>
<td>$rs \bar{y}^2$</td>
</tr>
<tr>
<td>Rows</td>
<td>$r-1$</td>
<td>$r \sum_{i} (\bar{y}_{i.} - \bar{y}.)^2$</td>
</tr>
<tr>
<td>Columns</td>
<td>$s-1$</td>
<td>$s \sum_{j} (\bar{y}_{.j} - \bar{y}.)^2$</td>
</tr>
<tr>
<td>Slopes</td>
<td>$r-1$</td>
<td>$\sum_{i} (b_{1i} - 1)^2 {\sum (\bar{y}{i.j} - \bar{y}{.j} - \bar{y}.)^2 }$</td>
</tr>
<tr>
<td>Residual</td>
<td>$(r-1)(s-2)$</td>
<td>$\sum_{i} \sum_{j} {(y_{ij} - \bar{y}{i.} - b{1i} (\bar{y}_{.j} - \bar{y}.)}^2$</td>
</tr>
</tbody>
</table>

where

$$b_{1i} = \frac{\sum_{j} y_{1j} (\bar{y}_{.j} - \bar{y}.)}{\sum_{j} (\bar{y}_{.j} - \bar{y}.)^2} \quad (2.9)$$
The hypothesis $R_1=0$ is accepted or rejected according as

$$F_3 \leq F_\alpha$$

(2.10)

where

$$P \left[F_3 \leq F_\alpha \mid H \right] = (1-\alpha),$$

(2.11)

and

$$F_3 = \frac{(s-2) s_2^2}{s_3^2}.$$

(2.12)

In Eq. (2.12), s_2^2 and s_3^2 are respectively the sums of squares associated with slopes and residual in the preceding table. Also, F_3 has F distribution with $r-1$ and $(r-1)(s-2)$ degrees of freedom when H is true. When H is rejected, Mandel indicated that the data is represented by a bundle of non-parallel lines with scatter about the lines being measured by the residual mean square. In order to examine whether the multiplicative structure R_1^2j is an appropriate descriptor for r_{ij} he partitioned the s.s. (slopes) as follows:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slopes</td>
<td>$r-1$</td>
<td>$\sum (b_{1j}-1)^2 \sum (\bar{y}{.j} - \bar{y}{.})^2$</td>
</tr>
<tr>
<td>Concurrence</td>
<td>1</td>
<td>$\frac{\left[\sum (\bar{y}{1j} - \bar{y}{.j} - \bar{y}{..}) \right]^2}{\sum (\bar{y}{1j} - \bar{y}{.j})^2 \sum (\bar{y}{.j} - \bar{y}_{..})^2}$</td>
</tr>
<tr>
<td>Non-concurrence</td>
<td>$r-2$</td>
<td>Remainder</td>
</tr>
</tbody>
</table>

The S.S. for concurrence is identical to Tukey's s.s. for 1 df. In the presence of interaction, significant con-
currence indicates that the multiplicative model $R_i \beta_j$ will account for most of the interaction. He tests this hypothesis by using F_4 as test statistic where

$$F_4 = \frac{s.s.(concurrence)(r-2)}{s.s.(non-concurrence)}$$

When there is no concurrence F_4 has F distribution with 1 and $r-2$ degrees of freedom. Testing for interaction in the bundle of line models is thus a two step procedure. Step 1 involves testing for no interaction. The second step is to test for the appropriate structure of the interaction if the interaction is present. We can use simultaneous tests to test both hypotheses simultaneously.

The combination of the concurrent and bundle of lines models can be reparametrized by expressing n_{ij} as $n_{ij} = (a_i + R_i) \beta_j$, and therefore becomes a FANOVA model (see (3.1) below) with a single multiplicative component. The first sweep of Tukey's vacuum cleaner can be reduced to a two component FANOVA model by a similar reparametrization. Future sweeps of Tukey's vacuum cleaner differ from the FANOVA model in that new terms of the vacuum cleaner are functions of the residuals and the preceding sweep. In the FANOVA model, they are functions of the residuals only.

Milliken and Graybill (1970) considered the model

$$y = X\beta + Z\lambda + e$$

(2.13)
where \(\varepsilon : n \times 1 \) is distributed as a multivariate normal with mean vector \(0 \) and covariance matrix \(\sigma^2 I_n \), \(X : n \times p \) is a known matrix of rank \(q \), \(Z(z_{ij}(x_i)) : n \times k \) is unknown but its elements are known functions of \(XZ_i \), \(\lambda : k \times 1 \) and \(\beta : p \times 1 \) are unknown. If \(Z \) is known, the usual test statistic used for testing the hypothesis \(\lambda = 0 \) is given by \(F \) where

\[
F = \frac{Q_1(n-r)}{Q_0(r-q)},
\]

\[
Q_1 = y' [(I-XX')Z] [(I-XX')Z]^\top y
\]

\[
Q_0 = y' [I-XX] y - Q_1,
\]

and \(r \) is the rank of \([X,Z] \). Also, \(q < r < n \) and \(A^- \) denotes the Moore-Penrose generalized inverse of \(A \). Since \(Z \) is unknown, we replace \(Z \) with \(\hat{Z} \) in (2.10) where \(\hat{Z} \) is obtained from \(Z \) by replacing \(XZ_i \) with \(\hat{X}Z_i \); here \(\hat{X} \) is the least square estimate of \(\beta \) under the model when \(\lambda = 0 \).

Now let,

\[
F^* = \frac{(n-r)\hat{Q}_1}{(r-q)\hat{Q}_0},
\]

where

\[
\hat{Q}_1 = y' [(I-XX')\hat{Z}] [(I-XX')\hat{Z}]^\top y
\]

\[
\hat{Q}_0 = y' [I-XX] y - \hat{Q}_1.
\]
The hypothesis $\lambda = 0$ is accepted or rejected according as

$$ F^* \lesssim F_\alpha \quad (2.20) $$

where

$$ P[F^* \leq F_\alpha | \lambda = 0] = (1-\alpha). \quad (2.21) $$

When $\lambda = 0$, the statistic F^* is distributed as central F distribution with $(r-q)$ and $(n-r)$ degrees of freedom.

When $\lambda \neq 0$, the distribution of F^* is not known. The distribution theory given above is essentially contained in Scheffé [(1959); problem 4.9] and the model (2.13) is a slight generalization of the model considered by Scheffé.

When $k=1$, we obtain

$$ Q_1 = \frac{(y'(I-XX')Z)^2}{\hat{Z}'(I-XX')\hat{Z}} \quad (2.22) $$

$$ Q_0 = y'(I-XX')y - Q_1 \quad (2.23) $$

$$ F^* = \frac{Q_1(n-r)}{Q_0(r-q)} \quad (2.24) $$

Graybill and Milliken (1970) discussed some useful special cases of the model (2.13). One of the special cases discussed was the concurrent model.
where \(\lambda \) is unknown and other notations are the same as used in the model (2.1). The hypothesis \(\lambda = 0 \) can be tested by using the test statistic (2.24). In this special case, the test discussed in Graybill and Milliken (1970) is equivalent to Tukey's test for non-additivity.

Fisher and Mackenzie (1923) considered the model when the expected effect is the product of the constants representing the effects of two factors. Williams (1952) considered the following model:

\[
y_{1j} = \lambda a_1 v_j + \beta_j + \varepsilon_{1j}
\]

(2.26)

where \(\sum a_1 = \sum \beta_j = 0 \) and \(\sum a_1^2 = \sum v_j^2 = 1 \). He showed that the least square estimate of \(\lambda \) is the largest root of the matrix \(T = (t_{jk}) \) where

\[
t_{jk} = \frac{\sum (y_{1j} - \bar{y}_j)(y_{1k} - \bar{y}_k)}{\sum \sum (y_{1ij} - \bar{y}_j)(y_{1ik} - \bar{y}_k)}
\]

Williams (1952) also considered the following model:

\[
y_{1j} = c_1 d_j \lambda + \alpha_1 + \beta_j + \varepsilon_{1j}
\]

(2.27)

where \(\sum c_1 = \sum \beta_j = \sum c_1 = \sum d_j = 0 \) and \(\sum c_1^2 = \sum d_j^2 = 1 \). He showed that the least square estimate of \(\lambda \) is the largest root of the matrix \(V = (v_{jk}) \) where

\[
v_{jk} = \frac{\sum (y_{1j} - \bar{y}_j)(y_{1k} - \bar{y}_k)}{\sum \sum (y_{1ij} - \bar{y}_j)(y_{1ik} - \bar{y}_k)}
\]
3. TESTS FOR THE STRUCTURE OF INTERACTION USING EIGENVALUES OF A RANDOM MATRIX

In the model (2.1), we assume that the rank of \(\eta = (\eta_{ij}) \) is \(c \). Using the singular value decomposition of a matrix, we know that

\[
\eta = \theta_1 u_1 v_1' + \ldots + \theta_c u_c v_c'
\]

where \(\theta_1^2 \geq \ldots \geq \theta_c^2 \) are the eigenvalues of \(\eta \eta' \), \(u_1 \) is the eigenvector of \(\eta \eta' \) corresponding to \(\theta_1^2 \) and \(v_1 \) is the eigenvector of \(\eta' \eta \) corresponding to \(\theta_1^2 \). Gollob (1968) and Mandel (1969) considered the problem of testing the hypothesis \(H_1 \) where \(H_1: \theta_1 = 0 \). Their tests as well as the likelihood ratio tests for testing \(H_1 \) will be discussed in the later part of this section. We will first discuss as to how the simultaneous tests of Krishnaiah and Walkar (1971, 1972) for sphericity can be applied in the area of testing for the structure of interaction term \(\eta_{ij} \). Some discussions along these lines were made by Schuurmann, Krishnaiah and Chattopadhyay (1973b) and Krishnaiah and Schuurmann (1974).

It is known (see Gollob (1968)) from a result of Eckert and Young (1936) that the least square estimates of \(\theta_1, u_1, \) and \(v_1 \) are respectively \(\hat{\theta}_1, \hat{u}_1, \) and \(\hat{v}_1 \) where \(\hat{\theta}_1^2 \geq \ldots \geq \hat{\theta}_{r-1}^2 \) are the non-zero roots of \(DD' \), \(\hat{u}_1 \) is the eigenvector of \(DD' \) corresponding to \(\hat{\theta}_1^2 \), \(\hat{v}_1 \) is the eigenvector of \(D'D \) corresponding to \(\hat{\theta}_1^2 \), \(D = (d_{ij}) \) and \(d_{ij} = y_{ij} - \bar{y}_1 - \bar{y}_j + \bar{y} \). Now, let \(I_r: r \times r \) denote the identity matrix and \(J_r: r \times r \) denote the matrix whose elements are equal to unity.
But
\[DD' = (I_r - \frac{1}{r} J_r)Y(I_s - \frac{1}{s} J_s)Y'(I_r - \frac{1}{r} J_r). \] (3.2)

We can choose \(C_r \) such that \(C_r C_r = I_{r-1} \) and \(I_r - \frac{1}{r} J_r = C_r C_r' \). So, it is easily seen (e.g., see Johnson and Graybill (1972a)) that the nonzero roots of \(DD' \) are the same as the nonzero eigenvalues of \(W \) where \(W = C_r' Y C_r C_r' Y' C_r \).

But the columns of \(C_r Y \) are distributed independently as \((r-1)\)-variate normal with mean vector \(C_r M \) and covariance matrix \(C_r C_r \sigma^2 \). So, \(W \) is distributed as noncentral Wishart matrix with \((s-1)\) degrees of freedom and noncentrality parameter \(\Omega \) where \(\Omega = C_r' M C_r' M C_r, \ M = (m_{ij}) \) and \(m_{ij} = \mu^{\prime} + \alpha_i + \beta_j + \eta_{ij} \). Also, \(E(W/(s-1)) = \Sigma^* \) where \(\Sigma^* = \sigma^2 I + (\Omega/(s-1)) \). We can express \(\Omega \) as
\[\Omega = \sum_{k=1}^{c} \theta_k^2 C_k' u_k u_k' C_k. \] (3.3)

Let \(\lambda_1 \geq \ldots \geq \lambda_{r-1} \) be the nonzero roots of \(\Sigma^* \). Then
\[\lambda_i = \sigma^2 + (\theta_i^2/(s-1)), \ (i=1,2,\ldots,c), \ \lambda_{c+1} = \ldots = \lambda_{r-1} = \sigma^2. \]

It is of interest to test the hypothesis \(H: \theta_1 = \ldots = \theta_c = 0 \) and its subhypotheses simultaneously. The hypothesis \(H \) is equivalent to testing the hypothesis \(H^* \) where \(H^*: \lambda_1 = \ldots = \lambda_{c+1} \). So, the problem of testing the hypothesis of no interaction is equivalent to the problem of testing the equality of the eigenvalues of \(\Sigma^* \). Motivated by this equivalence, we consider the following procedures for testing the hypothesis of no interaction and its subhypotheses in the spirit of the simultaneous tests of Krishnaiah and Waikar (1971).
To fix the ideas, we will first consider the case when
\(c = r - 2\).

The hypothesis \(H^*\) can be expressed as
\[H^* = \bigcap_{i=1}^{r-2} H_{1,i}^{1,1},\]
\[H = \bigcap_{i=1}^{r-1} H_{1,1}^{i,1},\]
and \((r-1) X = \lambda_1 + \ldots + \lambda_{r-1}\). Also, let
\[A_1 = \bigcup_{i=1}^{r-2} A_{1,i}^{r-1},\]
\[A_2 = \bigcup_{i=1}^{r-1} A_{1,i}^{1,1}\]
\[A_3 = \bigcup_{i=1}^{r-2} A_{1,i}^{1,1}\]
where \(A_{i,j}: \lambda_i > \lambda_j, (i < j)\), \(A_1: \lambda_i > \lambda_i\), and \((r-1) X = (\lambda_1 + \ldots + \lambda_{r-1})\). The hypothesis \(H^*\) when tested against \(A_1^*\) is accepted or rejected according as

\[\frac{\varepsilon_1}{\varepsilon_{r-1}} \leq c_{1\alpha}\] (3.4)

where

\[P\left[\frac{\varepsilon_1}{\varepsilon_{r-1}} < c_{1\alpha} | H^*\right] = (1-\alpha).\] (3.5)

If \(H^*\) is rejected, we accept or reject \(H_{1,r-1}^*\) against \(A_{1,r-1}^*\) according as

\[\frac{\varepsilon_1}{\varepsilon_{r-1}} \leq c_{1\alpha}^*\] (3.6)

Here we note that \(H_{1,r-1}^*\) is equivalent to the hypothesis that \(\theta_1 = 0\).

Next, consider the problem of testing \(H^*\) against \(A_2^*\). In this case, we accept \(H^*\) if

\[\frac{\varepsilon_1}{\varepsilon_{1+1}} \leq c_{2\alpha}\] (3.7)
for $i = 1, 2, \ldots, r-1$ and reject it otherwise where

$$P \left[\frac{\ell_i}{\ell_{i+1}} \leq c_{2\alpha}; i = 1, 2, \ldots, r-2 \mid H^* \right] = (1-\alpha). \hspace{1cm} (3.8)$$

If H^* is rejected, we accept or reject $H^*_{1,i+1}$ according as

$$\frac{\ell_i}{\ell_{i+1}} \leq c_{2\alpha} \hspace{1cm} (3.9)$$

The hypothesis $H^*_{1,i+1}$ is equivalent to the hypothesis that

$\theta_i = \theta_{i+1}$.

If we test H^* against A_3^*, we accept or reject H^* according as

$$\frac{\ell_i}{\ell_{i+1} + \ldots + \ell_{r-1}} \leq c_{3\alpha} \hspace{1cm} (3.10)$$

where $c_{3\alpha}$ is chosen such that

$$P \left[\frac{\ell_i}{\ell_{i+1} + \ldots + \ell_{r-1}} \leq c_{3\alpha} \mid H^* \right] = (1-\alpha). \hspace{1cm} (3.11)$$

If H^* is rejected, we accept or reject H^*_{1} against A_1^* according as

$$\frac{\ell_i}{\ell_{i+1} + \ldots + \ell_{r-1}} \leq c_{3\alpha} \hspace{1cm} (3.12)$$

Here we note that H^*_{1} is equivalent to the hypothesis that

$\theta_i = \theta$ where $(r-1) \theta = \theta_1 + \ldots + \theta_{r-1}$.

It is known that W is distributed as the central Wishart matrix with $(s-1)$ degrees of freedom and $E(W/(s-1)) = \sigma^2 I$.

When H^* is true, Schuurmann, Krishnalah and Chattopadhyay (1973a,b) investigated the exact distribution of $\ell_i/(\ell_{i+1} + \ldots + \ell_{r-1})$ whereas Krishnalah and Schuurmann (1974) investigated the dis-
tribution of \(t_1/l_{r-1} \). Percentage points of the above statistics are reproduced in Chapter 24 of Krishnaiah in this volume for some values of the parameters. The exact distribution of \(\max(t_1/l_2, t_2/l_3, \ldots, t_{r-2}/l_{r-1}) \) is not known. But, we know that

\[
P \left[\frac{t_1}{t_p} \leq c_{2\alpha} \left| H^* \right. \right] \leq P \left[\max_{i} \left(\frac{t_i}{l_i+1} \right) \leq c_{2\alpha} \left| H^* \right. \right].
\] (3.13)

Using the inequality (3.13) and the results on the distribution of \(t_1/l_p \), we can obtain upper bounds on the values of \(c_{2\alpha} \) where \(c_{2\alpha} \) is given by (3.8). Computer programs are also available for computing percentage points of various ratios like \(l_1/l_p \), \(l_1/(l_1+\ldots+l_p) \) and \(\max(l_1/l_{i+1}) \) by using Monte Carlo methods.

We will now discuss simultaneous test procedures to test \(H^* \) when \(c \leq r-2 \). In this case, we can express \(H^* \) as

\[
H^* = \bigcap_{i=1}^{c} H^*_{i-1, c+1}.
\]

Motivated by this decomposition, we propose the following procedure. We accept or reject \(H^* \) against \(\cup \{ \lambda > c_{c+1} \} \) when

\[
\frac{l_1}{l_{c+1}} \leq c_{4\alpha}
\] (3.14)

where

\[
P \left[\frac{l_1}{l_{c+1}} \leq c_{4\alpha} \left| H^* \right. \right] = (1-\alpha).
\] (3.15)
When H is rejected, we accept or reject $H_{1,c+1}$ according as

$$\frac{\lambda_1}{\xi_{c+1}} \leq c_{4\alpha}$$

(3.18)

where

$$P\left[\frac{\lambda_1}{\xi_{c+1}} \leq c_{4\alpha} \mid H^* \right] = (1-\alpha).$$

(3.19)

The above test for H is equivalent to testing $H_{1,c+1}, \ldots, H_{c,c+1}$ simultaneously against appropriate alternatives and accepting H if and only if all the subhypotheses $H_{i,c+1} (i=1, \ldots, c)$ are accepted. The hypothesis $H_{1,c+1}$ is equivalent to the hypothesis that $\theta_1 = 0$. In proposing the test discussed above, $\xi_{c+1}/(s-1)$ is used as an estimate of λ_{c+1}. One may use any of the eigenvalues $\xi_{c+2}/(s-1), \ldots, \xi_{r-1}/(s-1)$ also as estimates of λ_{c+1}. Alternatively, one may use $(\xi_{c+1} + \ldots + \xi_{r-1})/(r-c-1)$ as an estimate of λ_{c+1}. So, procedures can be proposed to test H and $H_{1,c+1} (i=1, \ldots, c)$ simultaneously by replacing ξ_{c+1} with $\xi_{c+1} (i=2, 3, \ldots, r-1)$ or $(\xi_{c+1} + \ldots + \xi_{r-1})/(r-c-1)$.

Computer programs are available for computing the percentage points of the test statistics $\frac{\lambda_1}{\xi_{c+1}}$, $(i=1, 2, \ldots, r-c-1)$, and $\frac{\lambda_1 + \ldots + \lambda_{r-1}}{r-1}$. Also,

$$P\left[\frac{\lambda_1}{\xi_{c+1}} \leq c_{4\alpha} \mid H^* \right] \geq P\left[\frac{\lambda_1}{\xi_{r-1}} \leq c_{4\alpha} \mid H^* \right],$$

(3.19)

$$P\left[\frac{\lambda_1 + \ldots + \lambda_{r-1}}{\xi_{c+1} + \ldots + \xi_{r-1}} \leq c_{4\alpha} \mid H^* \right] \geq P\left[\frac{\lambda_1 + \ldots + \lambda_{r-1}}{\xi_{r-1}} \leq c_{4\alpha} \mid H^* \right].$$

(3.19')

When H is true, we can use inequalities (3.18) and (3.19) and the known results on the distributions of $\frac{\lambda_1}{\xi_{r-1}}$ and $\frac{\lambda_1 + \ldots + \lambda_{r-1}}{\xi_{r-1}}$.
to obtain bounds on the critical values associated with the procedures discussed above for testing H_1^* and $H_{i,c+1}^*(i=1,2,...,c)$.

We will now consider the problem of testing H_1^* against the alternatives $\cup_{i=1}^{c} [\lambda_i > \lambda_{i+1}]$. In this case, the hypothesis H_1^* is decomposed as $H_1^* = \cap_{i=1}^{c} H_{i,1+i}^*$ and the following procedure may be used. We accept H_1^* if

$$\frac{\ell_i}{\ell_{i+1}} \leq c_5\alpha \quad \text{for } i = 1,2,...,c$$

and reject it otherwise where

$$P\left[\frac{\ell_i}{\ell_{i+1}} \leq c_5\alpha; i = 1,2,...,c \left| H_1^* \right. \right] = (1-\alpha) \quad (3.21)$$

When H_1^* is rejected, $H_{i,1+i}^*(i=1,2,...,c)$ is accepted or rejected according as $(\ell_i/\ell_{i+1}) \leq c_5\alpha$. As before we can replace ℓ_{c+1} with $\ell_{c+1}(i=2,...,r-c-1)$ or $(\ell_{c+1}+...+\ell_{r-1})/(r-c-1)$ in the above procedure.

Next, consider the problem of testing H_1^* against $\cup_{i=1}^{c} [\lambda_i > \lambda]$. In this case, we accept or reject H_1^* according as

$$\frac{\ell_1}{\ell_1+...+\ell_{r-1}} \leq c_6\alpha \quad (3.22)$$

where

$$P\left[\frac{\ell_1}{\ell_1+...+\ell_{r-1}} \leq c_6\alpha \mid H_1^* \right] = (1-\alpha). \quad (3.23)$$

When H_1^* is rejected, we accept or reject the hypothesis $\lambda_i = \bar{\lambda} \ (i=1,...,c)$ against $\cup_{i=1}^{c} [\lambda_i > \bar{\lambda}]$ according as
Here we note that the hypothesis \(\lambda_1 = \lambda \) is equivalent to the hypothesis that \(\theta_1^2 = (\theta_1^2 + \ldots + \theta_c^2)/(r-1) \). We may decompose \(H^* \) as \(H^* = \bigcap_{i=1}^{c} \{ \lambda_1 = \lambda^* \} \) where \((c+1) \lambda^* = \lambda_1 + \ldots + \lambda_{c+1} \). In view of this decomposition, we propose the following procedure for testing \(H^* \) against \(\bigcup_{i=1}^{c} [\lambda_1 > \lambda^*] \). We accept or reject \(H^* \) according as

\[
\frac{\ell_1}{\ell_1 + \ldots + \ell_{c+1}} \leq c_7 \alpha.
\]

(3.25)

where

\[
P \left[\frac{\ell_1}{\ell_1 + \ldots + \ell_{c+1}} \leq c_7 \alpha \mid H^* \right] = (1-\alpha).
\]

(3.26)

When \(H^* \) is rejected, the hypothesis \(\lambda_1 = \lambda^* \) is accepted or rejected according as

\[
\frac{\ell_1}{\ell_1 + \ldots + \ell_{c+1}} \leq c_7 \alpha.
\]

(3.27)

In the above procedure, we may replace \(\ell_{c+1} \) with \((\ell_{c+1} + \ldots + \ell_{r-1})/(r-c-1) \) and apply the test.

Next, consider the problem of testing the hypothesis \((r-c-1)(\lambda_1 + \ldots + \lambda_c) = c(\lambda_{c+1} + \ldots + \lambda_{r-1}) \) against the alternative
that \((r-c-1)(\lambda_1+...+\lambda_c) > c(\lambda_{c+1}+...+\lambda_{r-1})\). In this case, the hypothesis is accepted if

\[
\frac{l_1+...+l_c}{l_{c+1}+...+l_{r-1}} \leq c \theta_a
\]

(3.28)

and rejected otherwise where

\[
P\left[\frac{l_1+...+l_c}{l_{c+1}+...+l_{r-1}} \leq c \theta_a | \theta^*\right] = (1-\alpha).
\]

(3.29)

Here, we note that the hypothesis \((r-c-1)(\lambda_1+...+\lambda_c) = c(\lambda_{c+1}+...+\lambda_{r-1})\) is equivalent to the hypothesis that \(\theta_1 = ... = \theta_c = 0\).

Next, consider the problem of testing the hypothesis \(H(a)\)

where \(H(a) : \lambda_a = \lambda_{a+1} = ... = \lambda_c = \lambda_{c+1}\). We can express \(H(a)\) as

\[
\bigcap_{i=1}^{c} H(a)_i
\]

where \(H(a)_i : (r-a) \lambda_i = (\lambda_a+...+\lambda_{r-1})\). Also, let \(A(a)_i : (r-a) \lambda_i > (\lambda_a+...+\lambda_{r-1})\). Then, the hypothesis \(H(a)\) is accepted if

\[
\frac{l_a}{l_a+...+l_{r-1}} \leq c \theta_a
\]

(3.30)

and rejected otherwise where

\[
P\left[\frac{l_a}{l_a+...+l_{r-1}} \leq c \theta_a | H(a)\right] = (1-\alpha).
\]

(3.31)

But the distribution of \(l_a/(l_a+...+l_{r-1})\) involves \(\theta_1, ..., \theta_{a-1}\) as nuisance parameters even when \(H(a)\) is true. So, the above test
cannot be applied unless bounds (free from nuisance parameters) are obtained on the distribution of the above test statistics. Here, we note that the hypothesis \(H^* \) is equivalent to the hypothesis that \(\theta_a = \ldots = \theta_c = 0 \), and \(\Lambda_{(a)}^* \) is equivalent to the hypothesis that \(\theta_1^2 > (\theta_a^2 + \ldots + \theta_c^2)/(r-a) \). Procedures similar to the above can be proposed for testing \(H^* \) against alternatives \(\gamma \) and \(\alpha \) \([\lambda_i > \lambda_{c+1}] \) and \(\gamma \) \(\sum_{i=a}^{c} [\lambda_i > \lambda_{i+1}] \).

Next, consider the problem of testing the hypothesis \(H_{oab}(r-a-b)(\lambda_a + \ldots + \lambda_c) = (c-a+1)(\lambda_{a+b} + \ldots + \lambda_{r-1}) \) against the alternative that \((r-a-b)(\lambda_a + \ldots + \lambda_c) > (c-a+1)(\lambda_{a+b} + \ldots + \lambda_{r-1}) \). In this case we accept or reject the null hypothesis according as

\[
\frac{\sum_{i=a}^{c} \theta_i^2}{\sum_{i=a+b}^{r-1} \theta_i^2} \leq c_{10\alpha} \tag{3.32}
\]

where

\[
P \left[\frac{\sum_{i=a}^{c} \theta_i^2}{\sum_{i=a+b}^{r-1} \theta_i^2} \leq c_{10\alpha} \mid H_{oab} \right] = (1-\alpha). \tag{3.33}
\]

The distribution of the test statistics in (3.32) involves nuisance parameters even when \(H_{oab} \) is true and so bounds free from nuisance parameters should be obtained to apply this procedure. Here we note that \(H_{oab} \) is equivalent to the hypothesis that \((r-a-b) \sum_{i=1}^{c} \theta_i^2 = (c-a+1) \sum_{i=a+b}^{c} \theta_i^2 \), that is \(\sum_{i=a+b}^{c} \theta_i^2 (r-b-c-1) + (r-b-c-1) \sum_{i=a+b}^{c} \theta_i^2 + (r-a-b) \sum_{i=a}^{a+b-1} \theta_i^2 = 0 \) and so \(\theta_1 \ldots = \theta_c = 0 \).
We now will discuss the likelihood ratio test statistics for testing the hypotheses $\theta_1 = 0$ and observe the relationship of these procedures with the procedures discussed above. Cornel and van Eijnbergen (1972) derived the likelihood ratio test statistics for testing the hypothesis that $H: \theta_1 = \cdots = \theta_c = 0$. The test procedure in this case is to accept or reject H according as

$$L_1 \leq c_{11a}$$

(3.34)

where c_{11a} is chosen such that

$$P[L_1 \leq c_{11a} | H] = (1-\alpha)$$

(3.35)

where $L_1 = (l_1 + \cdots + l_c)/(l_1 + l_2 + \cdots + l_{r-1})$.

When $c=1$, Johnson and Graybill (1972) derived the likelihood ratio test independently. The distribution of L_1 for $c > 1$ is not known but a program is available to compute the percentage points of L_1, by using Monte Carlo methods. Here we note that the likelihood ratio test statistic described above is equivalent to the test statistic for testing the hypothesis that $(r-c-1) \sum_{i=1}^{r-1} \lambda_i = c \sum_{i=c+1}^{r-1} \lambda_i$ against the alternative $(r-c-1) \sum_{i=1}^{r-1} \lambda_i > \sum_{i=c+1}^{r-1} \lambda_i$.

When $c=1$, the likelihood ratio statistic L_1, is equivalent to the test statistic given in (3.22) for testing H^* against $\lambda_1 > 1$. Yochmowitz (1974a,b)and Yochmowitz and Cornell (1978) discussed the likelihood ratio statistic for testing the
hypothesis $\theta_j = 0$ against the alternative $\theta_j \neq 0$ and $\theta_{j+1} = 0$. The test procedure in this case is to accept or reject the null hypothesis according as

$$T_j \leq c_{12a} \quad (3.36)$$

where

$$P[T_j \leq c_{12a} | \theta_j = 0] = (1-a) \quad (3.37)$$

and

$$T_j = \ell_j / (\ell_j + \ell_{j+1} + \cdots + \ell_{r-1}) \quad (3.38)$$

But the distribution of T_j even in the null case involves $\theta_1, \ldots, \theta_{j-1}$ as nuisance parameters. When $c=2$, Hegemann and Johnson (1976) have independently discussed the likelihood ratio test for $\theta_2 = 0$. Krishnaiah (1978) discussed the likelihood ratio test for $\theta_j = 0$ against the alternative that $\theta_j \neq 0, \theta_{j+1} \neq 0, \ldots, \theta_{j+a} \neq 0, \theta_{j+a+1} = 0$.

Yochmowitz and Cornell (1978) discussed a step-wise procedure to test θ_j's by making use of the distribution of $\ell_1 / (\ell_1 + \cdots + \ell_{r-1})$ considered by Schuurmann, Krishnaiah and Chattopadhyay (1973). At the first stage, the hypothesis $\theta_1 = 0$ is accepted or rejected according as

$$T_1 \leq c_{13a} \quad (3.39)$$
where

\[P[T_1 \leq c_{13\alpha} | \theta_1 = 0] = (1-\alpha). \] (3.40)

If the hypothesis of \(\theta_1 = 0 \) is accepted and \(T_j \) was defined by (3.41), we do not proceed further. If \(\theta_1 = 0 \) is rejected, we proceed further and accept or reject \(\theta_2 = 0 \) according as

\[T_2 \leq c_{14\alpha} \] (3.41)

where

\[P[T_2 \leq c_{14\alpha} | \theta_2 = 0] = (1-\alpha). \] (3.42)

If the hypothesis of \(\theta_2 = 0 \) is accepted, we do not proceed further. Otherwise, we proceed and test the hypothesis of \(\theta_3 = 0 \) by using \(T_3 \) as test statistic. This procedure is continued until \(\theta_j = 0 \) is accepted for any \(j \) or \(\theta_c = 0 \) is rejected. At the first stage, the test can be implemented since the null distribution of \(T_1 \) is free from nuisance parameters. But the distribution of \(T_j \) (\(j=2, \ldots, c \)) involves \(\theta_1, \ldots, \theta_{j-1} \) as nuisance parameters. As an ad hoc procedure, Yochmowitz and Cornell assumed that the joint distribution of \(\ell_j \geq \ldots \geq \ell_{r-1} \) is approximately equivalent to the joint density of the roots of the central Wishart matrix \(W_j \) of order \((r-j) \times (r-j) \) with \((s-1) \) degrees of freedom and \(E(s_j / s-1) = \sigma^2 \text{I}_{r-j} \). Johnson and Graybill (1972) and
Yochmowitz and Cornell (1978) suggested approximations of T_1 with central F distribution.

Gollob (1968) and Mandel (1969) considered the problem of testing the hypotheses on θ_j's. The tests of Gollob were motivated by the assumption that the eigenvalues λ_j are distributed independently as chi-square variables. But these eigenvalues are neither distributed independently nor as chi-square variables. Mandel (1969) computed $\nu_j = E(\lambda_j)$ by using Monte Carlo methods. Using these values of ν_j, he suggested heuristically to examine the magnitude of $\lambda_j/\nu_j \hat{\sigma}^2$ to determine as to which of the θ_j's are significant; here $\hat{\sigma}^2 = (\sum_{c+1}^{r-1} \lambda_j)/((c+1)^+ + \sum_{r-1}^{r-1})$. But Mandel did not consider the evaluation of the distribution of $\lambda_j/\nu_j \hat{\sigma}^2$.

For discussions on tests for the structure of interaction term in two-way classification with replications, the reader is referred to Gollob (1968) and Krishnaiyah (1979).
4. TESTS FOR THE MAIN EFFECTS

In this section, we discuss the problem of testing the main effects in presence of interaction. Let \(H_{01} \) denote the hypothesis of no block effect and let \(H_{02} \) denote the hypothesis of no treatment effect. The sum of squares associated with variation between blocks is given by \(s_3^2 \) where \(s_3^2 = s \sum_{i=1}^{r} (x_{i*} - \bar{x}_{**})^2 \). Similarly, the sum of squares associated with variation between treatments is denoted by \(s_4^2 \) where \(s_4^2 = r \sum_{j=1}^{s} (x_{*j} - \bar{x}_{**})^2 \). We know that

\[
E(s_3^2/r-1) = \sigma^2 + \left(\sum \alpha_i^2/b-1 \right)
\]

\[
E(s_4^2/s-1) = \sigma^2 + \left(\sum \beta_j^2/t-1 \right)
\]

Now let,

\[
F_{01} = \frac{s_3^2}{\sigma^2 (r-1)}
\]

\[
F_{02} = \frac{s_4^2}{(s-1) \sigma^2}
\]

where \(\sigma^2 \) is an estimate of \(\sigma^2 \). We may divide the data into two sets and use one set to estimate \(\sigma^2 \) and the other set to test \(H_{01} \) and \(H_{02} \). Another possibility is to use some previous set of data to estimate \(\sigma^2 \). Of course, we can use the maximum likelihood estimate of \(\sigma^2 \). Also the maximum likelihood estimate of \(\sigma^2 \) is known.
(e.g., see Johnson and Graybill (1972)) to be

\(\frac{\ell_{c+1} + \cdots + \ell_{b-1}}{bt} \). If we are testing \(H_{0i} \) individually, we accept or reject \(H_{0i} \) according as

\[F_{0i} \leq F_{1\alpha} \] \hspace{1cm} (4.5)

where

\[P[F_{0i} \leq F_{1\alpha} | H_{0i}] = (1-\alpha), \] \hspace{1cm} (4.6)

and

\[F_{01} = \frac{s_3^2}{(b-1) \hat{\sigma}^2}, \] \hspace{1cm} (4.7)

\[F_{02} = \frac{s_4^2}{(t-1) \hat{\sigma}^2}. \] \hspace{1cm} (4.8)

When the interaction is present, the distribution of \(\ell_{c+1} + \cdots + \ell_{r-1} \) is not only complicated but also involves nuisance parameters. If we are testing \(H_{01} \) and \(H_{02} \) simultaneously, we accept or reject \(H_{0i} \) according as

\[F_{0i} \leq F_{\alpha} \] \hspace{1cm} (4.9)

where

\[P[F_{0i} \leq F_{\alpha} ; i=1,2 | H_{01} \cap H_{02}] = (1-\alpha) \] \hspace{1cm} (4.10)

The critical values \(F_\alpha \) can be obtained by using Monte Carlo methods. The statistics \(F_{01} \) and \(F_{02} \) are the like-
likelihood ratio statistics (see Yochmowitz (1974)) for testing H_{01} and H_{02} respectively, if σ^2 is the maximum likelihood estimate of σ^2. When $c=1$, this was pointed out in Johnson and Graybill (1972).

Next, let

$$F_1 = (b-1)(t-1) \frac{s_e^2}{(b-1) s_3^2}, \quad F_2 = (b-1)(t-1) \frac{s_h^2}{(t-1) s_e^2}$$

where s_e^2 was defined by (2.5). The statistics F_1 and F_2 have been used extensively to test the hypotheses of no block effect and no treatment effect respectively, under two-way classification additive model with one observation per cell. But if the true model is (2.1), then the statistics F_1 and F_2 are distributed as doubly noncentral F distribution with nuisance parameters even in the null cases. So, the usual F tests are no longer valid. Approximations to doubly noncentral F distribution were discussed in Mudholkar, Chaubey and Lin (1976).
5. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the methods described before with real data sets. Table 1 gives data from an experiment* involving the effects of doses A, B, C, D of benactyzine upon the performance of trained rhesus monkeys where \(A = 0.54 \text{ mg/kg}, \quad B = 0.17 \text{ mg/kg}, \quad C = 0.054 \text{ mg/kg} \)
and \(D = 1.7 \text{ mg/kg} \).

The subjects were trained to control the position of a primate equilibrium platform (see Yochmowitz, Patrick, Jaeger and Barnes (1977a)) and to press fire and alert buttons on an instrument panel upon their illumination. The platform was perturbed by a random signal and the alert light was triggered at random. The alert light caused one of four fire buttons to light at random. Data were collected at three minute intervals and included the adjusted RMS (i.e., the root mean square position of the platform adjusted about its mean position (see Yochmowitz, Patrick, Jaeger and Barnes (1977b)) and the reaction times necessary to extinguish the alert and fire lights. Animal training costs prevented extensive testing and the experiment was limited to 4 subjects. The treatments were administered in the following counter-balanced design:

*The animals involved in this study were procured, maintained, and used in accordance with the Animal Welfare Act of 1970 and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources - National Research Council.
Trials were preceded by a diluent run which served as a standard against which succeeding treatments were compared. For a detailed description of the experiment, the reader is referred to Farrer et al (1979). Z-scores were computed for each variable as follows:

\[Z = \frac{X - Y_p}{s} \]

X is the mean 3 minute score over a 30 minute test period. \(Y_p \) is the corresponding predicted level of performance from a linear least squares fit to the preceding diluent run and s is the root mean square error from the linear fit. Z-scores less than -3 represent unusually good performance relative to the preceding diluent run. Conversely, z-scores in excess of 3 represent unusually poor performance relative to the preceding diluent run.
TABLE 1
Mean Adjusted RMS Z-Scores

Trial

<table>
<thead>
<tr>
<th>Trial</th>
<th>Subject</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7.26</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>-0.61</td>
<td>C</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.65</td>
<td>D</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1.99</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

ANOVA table for the data in TABLE 1 is given below:

<table>
<thead>
<tr>
<th>Source</th>
<th>S.S.</th>
<th>D.F.</th>
<th>M.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>18.539</td>
<td>3</td>
<td>6.180</td>
</tr>
<tr>
<td>Trials</td>
<td>19.156</td>
<td>3</td>
<td>6.385</td>
</tr>
<tr>
<td>Doses</td>
<td>11.769</td>
<td>3</td>
<td>3.923</td>
</tr>
<tr>
<td>Residual</td>
<td>24.002</td>
<td>6</td>
<td>4.000</td>
</tr>
</tbody>
</table>

The sum of squares due to non-additivity is 19.76. The test statistic associated with Tukey's test for non-additivity is 23.35. The critical value from F tables with (1,5) degrees of freedom at 5% level is 6.61. So, we reject the hypothesis of additivity.
In other studies (see Boster (1978)), biochemical measurements are taken on male and female rhesus monkeys in a long term chronic study. Cholesterol measurements in milligrams per deciliter (MG/DL) on 19 males serving as controls are provided in the following table. 771, 772 and 773 respectively represent the first, second and third test periods in 1977. Similarly, 781, 782 and 783 are the first, second and third test periods in 1978.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>771</th>
<th>772</th>
<th>773</th>
<th>781</th>
<th>782</th>
<th>783</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>130</td>
<td>158</td>
</tr>
<tr>
<td>2</td>
<td>122</td>
<td>106</td>
<td>93</td>
<td>97</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>3</td>
<td>116</td>
<td>84</td>
<td>89</td>
<td>118</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>111</td>
<td>149</td>
<td>73</td>
<td>101</td>
<td>130</td>
<td>148</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>88</td>
<td>104</td>
<td>116</td>
<td>124</td>
<td>173</td>
</tr>
<tr>
<td>6</td>
<td>127</td>
<td>231</td>
<td>139</td>
<td>109</td>
<td>138</td>
<td>164</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>94</td>
<td>142</td>
<td>98</td>
<td>119</td>
<td>148</td>
</tr>
<tr>
<td>8</td>
<td>130</td>
<td>103</td>
<td>127</td>
<td>124</td>
<td>132</td>
<td>149</td>
</tr>
<tr>
<td>9</td>
<td>170</td>
<td>120</td>
<td>125</td>
<td>173</td>
<td>160</td>
<td>196</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>105</td>
<td>132</td>
<td>117</td>
<td>136</td>
<td>158</td>
</tr>
<tr>
<td>11</td>
<td>121</td>
<td>149</td>
<td>104</td>
<td>107</td>
<td>94</td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>108</td>
<td>76</td>
<td>108</td>
<td>112</td>
<td>116</td>
<td>132</td>
</tr>
<tr>
<td>13</td>
<td>134</td>
<td>75</td>
<td>112</td>
<td>107</td>
<td>113</td>
<td>148</td>
</tr>
<tr>
<td>14</td>
<td>105</td>
<td>128</td>
<td>141</td>
<td>108</td>
<td>135</td>
<td>143</td>
</tr>
<tr>
<td>15</td>
<td>143</td>
<td>119</td>
<td>114</td>
<td>118</td>
<td>153</td>
<td>145</td>
</tr>
<tr>
<td>16</td>
<td>110</td>
<td>86</td>
<td>99</td>
<td>102</td>
<td>100</td>
<td>117</td>
</tr>
<tr>
<td>17</td>
<td>119</td>
<td>91</td>
<td>105</td>
<td>123</td>
<td>121</td>
<td>149</td>
</tr>
<tr>
<td>18</td>
<td>124</td>
<td>98</td>
<td>118</td>
<td>103</td>
<td>102</td>
<td>127</td>
</tr>
<tr>
<td>19</td>
<td>107</td>
<td>99</td>
<td>98</td>
<td>77</td>
<td>110</td>
<td>125</td>
</tr>
</tbody>
</table>

*The animals involved in this study were procured, maintained, and used in accordance with the Animal Welfare Act of 1970 and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources - National Research Council.
We assume the model (2.1) with interaction term given by (3.1). We assume that \(y_{ij} \) represents the observation made on \(j \)-th subject (male monkey) at \(i \)-th time period. In the notation of the model (2.1), we have \(r = 6 \) and \(s = 19 \). We also assume that \(c = 1 \). The non-zero eigenvalues of \(DD' \) in this case are \(\lambda_1 = 19,519.2, \lambda_2 = 5263.3, \lambda_3 = 2184.8, \lambda_4 = 1,667.7 \) and \(\lambda_5 = 1255.7 \). In this case, we have \(\frac{\lambda_1}{\text{tr}(DD')} = 0.653 \). We apply the procedure given by (3.10) - (3.12) to test \(\theta_1 = 0 \). Upper 5% point of the distribution of \(\frac{\lambda_1}{\text{tr}(DD')} \) is given by the entry corresponding to \(\alpha = 0.05, j = 1, p = 5, r = 6 \) in Table 19 of Chapter 24 in this volume; this percentage point is 0.4531. But \(\frac{\lambda_1}{\text{tr}(DD')} \) calculated from the data is greater than 0.4531 and so the hypothesis \(\theta_1 = 0 \) is rejected. Here \(\theta_1 = 0 \) is the hypothesis of no interaction between subjects and time periods.
REFERENCES

Inference on the Structure of Interaction in Two-Way Classification Model

P. R. Krishnaiah
M. G. Yochowitz

University of Pittsburgh
Dept of Mathematics & Statistics
Pittsburgh, PA 15260

Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332

Approved for public release; distribution unlimited.

Two-way classification interaction, simultaneous tests, Wishart matrix, eigenvalues

In this report, the authors give a review of the literature on tests for studying the structure of interaction in two-way classification with one observation per cell. Special emphasis is made on simultaneous test procedures.