Simulation of Complex Shock Reflections from Wedges in Inert and Reactive Gaseous Mixtures

D. BOOK, J. BORIS, E. ORAN, and M. PICONE

Laboratory for Computational Physics

S. ZALESAK

Geophysical and Plasma Dynamics
Plasma Physics Division

and

A. KUHL

R&D Associates
P.O. Box 9685
4640 Admiralty Way
Marina del Ray, California 90291

September 30, 1980

This work was supported by the Defense Nuclear Agency under subtask Y9QAXSG601 work unit 22, and work unit title, "Bl1 Flux Corrective Transport Code."

Approved for public release; distribution unlimited.
Abstract

The Flux-Corrected Transport (FCT) technique for solving fluid equations reduces numerical diffusion, permitting calculations with Reynolds numbers considerably in excess of the cell Reynolds number. Recent advances in FCT, including a multidimensional flux limiter and a dynamic adaptive rezoning, are illustrated in the problem of transient reflections of planar shocks from wedges in inert and reactive media. Abstract (continues)
18. Supplementary Notes (Continued)

***Geophysical and Plasma Dynamics Plasma Physics Division

This work was supported by the Defense Nuclear Agency under subtask Y99QAXSG601, work unit 22, and work unit title, "BI1 Flux Corrective Transport Code."

20. Abstract (Continued)

Results are obtained with high resolution which are in quantitative agreement with experiments.
CONTENTS

1. ADVANCES IN FCT TECHNIQUES .. 1
2. SHOCK REFLECTIONS IN AIR ... 2
3. DETONATIONS .. 3
4. CONCLUSIONS ... 4

REFERENCES ... 4
SIMULATION OF COMPLEX SHOCK REFLECTIONS
FROM WEDGES IN INERT AND REACTIVE GASEOUS MIXTURES

1. Advances in FCT Techniques

In this paper we describe new adaptations of the Flux-Corrected Transport (FCT) algorithms developed by Boris and Book (1973, 1976) for solving fluid equations, and discuss their application to multidimensional shock reflections in inert and reacting gaseous mixtures. In particular, we consider planar constant-velocity shocks reflecting from wedges. Under certain circumstances double Mach stems are formed. Historically these have proven to be difficult to calculate with high accuracy, although many schemes have been available to analyze compressible flow on a computationally discretized mesh: the method of characteristics, spline techniques, Glimm-type random choice schemes, and finite element, finite difference, and spectral methods. We believe that the computational difficulties experienced on this problem were the result of excessive numerical diffusion, especially in the region of the contact surface.

In any Eulerian calculation, numerical diffusion arises because material which has just entered a computational cell, and is still near one boundary, becomes smeared over the whole cell. FCT minimizes this effect. FCT algorithms can be constructed as a weighted average of a low-order and a high-order finite-difference scheme. If the fluid equations are written in conservative form, both schemes are implemented using transportive fluxes. Each flux describes the transfer of mass (or some other extensive quantity) from one point to a neighboring point. The procedure for assigning weights involves limiting or "correcting" the fluxes at certain points. The higher-order scheme is used to the greatest possible extent, consistent with avoiding the introduction of dispersive ripples (undershoots and overshoots). The weights for the low-order scheme are chosen to be just sufficient to eliminate these ripples, thus assuring the property of "monotonicity" or "positivity." The result is an algorithm which effectively reduces to the higher-order scheme wherever the fluid properties change gradually. Near sharp discontinuities, however, enough diffusion is supplied to retain monotonicity. At shock fronts this procedure automatically produces the correct local viscous heating.

The prototype second-order finite-difference formula

\[\rho_j^n = \rho_j^0 - \frac{4}{3} \epsilon_j v_j \left(\rho_j^{n+1} - \rho_j^n \right) + \frac{4}{3} \epsilon_j v_j \left(\rho_j^n - \rho_j^{n-1} \right) + v_j \left(\rho_j^{n+1} - \rho_j^{n-1} \right) - v_j \left(\rho_j^n - \rho_j^{n-1} \right) \]

illustrates the procedure. Here \(j \) labels grid position, \(n \) denotes time level and \(\epsilon_j \) and \(v_j \) are dimensionless advection and diffusion coefficients, respectively. We write \(\epsilon_j = \epsilon_j \left(\frac{c}{c^*} \right) \), where \(c \) is a "clipping factor" measuring the extra diffusion added to achieve positivity. When \(c = 0 \), the above scheme is second-order; in the vicinity of shocks \(c \sim 1 \) and it effectively reduces to first order.

A numerical diffusion Reynolds number \(\frac{2L}{c^* \Delta x} \) can be defined, where \(L \) is the characteristic size of a structure in the flow. Even the most accurate spectral simulations require setting \(c = 1 \) to guarantee positivity linearly. This gives rise to the usual definition of the numerical Reynolds number, \(2L/\Delta x \). Algorithms such as FCT which
guarantee monotonicity nonlinearly can have average values $c' \sim 10^{-1} - 10^{-2}$, introducing much less overall dissipation and permitting calculations with effective Reynolds numbers such that \(\text{Re} \approx \text{(Re)}_{\text{ND}} > 2L/5x \).

Four advances in FCT techniques have enabled us to perform a series of shock and detonation calculations with high accuracy. These techniques are easy to program, and they have wide applicability to general quasi-linear hyperbolic equations (i.e., equations describing continuum conservation laws).

The first of these, a generalization of FCT due to Zalesak (1979), removes the necessity of timestep splitting in multidimensional hydrodynamics. This reduces errors associated with time splitting in regions of the flow which are nearly incompressible. The second refers to the development of FCT algorithms in which the spatial derivatives can be approximated to arbitrarily high order (fourth, sixth, eighth, etc., or pseudo-spectral). These innovations, which relate to the transport algorithm itself, have been implemented in a two-dimensional hydrocode which utilizes the leapfrog-trapezoidal (L-T) algorithm and is therefore dissipationless. Both complex and double Mach stem structures are obtained (cf. Ben-Dor, 1978; Ben-Dor and Glass, 1978, 1979).

The third new technique, adaptive rezoning, is an extension to two dimensions of the dynamic rezoning employed in detailed one-dimensional reactive flow simulations by Oran, et al. (1979). This concentrates needed spatial resolution in the vicinity of moving shocks, contact discontinuities and reactive surfaces. The technique is illustrated with shock calculations using a time-split code (FAST2D). In air for $M=5$ and $\theta = 45^\circ$, the results fall very close to the boundary between regular and Mach reflection. The calculated wall pressures are in detailed agreement with the results of Bertrand (1972). The fourth technique is a generalization of the induction time approximation used in earlier flame, ignition and shock work (Oran et al., 1980a, b). This provides a simple, efficient, yet reasonably accurate global chemical kinetics package to be used in connection with these comprehensive two-dimensional hydrodynamics calculations.

Section 2 describes the results of calculations in which a planar shock is reflected from a wedge in an inert gas. In Section 3 we present the results of calculations of detonations initiated by shock reflections in stoichiometric mixtures of H$_2$ in air at low pressure. Section 4 summarizes our conclusions.

2. Shock Reflections in Air

The utility of these advanced FCT methods has been demonstrated by applying them to transient reflections of planar shocks from wedges for various shock strengths M and wedge angles θ. For nonreacting flows at Mach numbers greater than about 2.5 and wedge angles between 20 and 50 degrees, double Mach stems can develop. Numerical schemes previously used for this problem reproduce qualitatively the wave structure and shape, but have difficulty making accurate predictions of flow details such as density contours (a conclusion drawn by Ben-Dor and Glass, 1978) even in the single Mach stem case. To our knowledge, successful calculations of the double Mach stem case have not yet been published. In this paper we discuss the series of calculations summarized in Table 1.

Open boundary conditions are used on the left, right, and top edges of the mesh, i.e., density, pressure and velocity are set equal to their pre-shock or post-shock values, depending on whether the incident shock front has passed that point. Reflecting conditions are imposed on the bottom of the mesh, which corresponds to the wedge surface. Examples of the calculated density contours and wave structure for the double and complex Mach reflection cases are shown in Fig. 1. The incident shock, I, the contact surface, Σ, and the first and second Mach stems, M_1 and M_2, are indicated in Fig. 1a. Note in particular the forward cusp of the contact surface near the wall and the small region (4 by 7 mesh points) of high-density gas just to the left of the point where the contact surface impacts the wall. The latter causes a second peak in the pressure and density distribution on the wall, as shown in Fig. 1c. The accuracy of the calculations has been verified by comparison with experimental density distributions along the wall, as shown in Fig. 2, and with experimental pressure measurements (Bertrand, 1972). Note that FCT provides adequate resolution of the key surfaces (contact surface and second Mach stem) in regions as small as 3 by 5 cells.
Two additional cases were calculated with larger values of \(\theta \) (Fig. 3). As the wedge angle increases, the Mach stem develops more slowly, being separated from the wedge by a triple-point angle of only one or two degrees. [The triple-point angle \(\alpha \) is the angle subtended by the Mach stem as viewed from the end of the wedge at which the shock was first incident (Fig. 4.) To reduce the size of the mesh needed, it is necessary to calculate in the frame of the Mach stem and to rezone. For these calculations we employed the time-split code FAST2D (with a 150 x 50 mesh), which incorporates an automatic continuous ("sliding zone") regridding procedure (Oran et al., 1979). For the small \(\theta \) cases discussed above, where regridding is necessary, FAST2D yielded results very similar to those obtained with the L-T code. The cases with wedge angles of 44° and 46.5° constitute a severe test of the numerical algorithm because of the small triple-point angle. Because \(\alpha \) is approximately equal to 2.8° and 1.5°, respectively, considerable spatial resolution and a large amount of running time are usually necessary to get accurate flow fields. Figure 4 illustrates our adaptive rezone technique on a grid of 60 x 40 cells with varying cell dimensions, \(\delta x \), \(\delta y \). This method requires one-fifth the number of cells required in a uniform grid calculation. A uniform region consisting of the smallest cells covers part of the incident shock front, the Mach stems, and the reflected shock structure. Outside this finely gridded region, we have transition zones in which the cell dimensions increase smoothly to their maximum values, \(106 x \) min and \(105 y \) min.}

We have investigated the accuracy of the numerical simulation by comparing the results with experimental data (Bertrand et al., 1972). Because the cases \(\theta = 44° \) and 46.5° are so similar, we will discuss only the latter. The computed value of \(\alpha \) for \(\theta = 46.5° \) is approximately 2.5° for a real-air equation of state and approximately 3.2° for an ideal gas with \(\gamma = 1.35 \). Both agree with the measurements to within the experimental errors, \(\pm 2° \). In Fig. 5, we compare the calculated (using a real-air equation of state) and experimental values of the pressure at the surface of the wedge for \(\theta = 46.5° \). The agreement in the shapes of the pressure curve is striking—the values of the lower pressure peak, corresponding to the Mach stem, are nearly identical. The calculated value of the second pressure peak is 11% lower than the experimental value and is thus within experimental uncertainty. Figure 6 shows the history of the pressure on the wedge calculated for an ideal gas with \(\gamma = 1.35 \). We note that the curves have much the same shape as for the real-air simulations; however, the first pressure peak is again 11% lower than the experimental value. Figure 7 shows that the double Mach reflection shock structure is well resolved in the simulation.

3. Detonations

We have also considered analogous shock reflections in reactive gases (stoichiometric mixtures of \(\text{H}_2 \) in air) at low pressure (0.1 atm). The induction time hypothesis (e.g., Oran et al., 1980) represents the chemistry through a composite process, in which reactants begin to combine into combustion products only after a finite time has elapsed. The rate at which the energy-releasing reactions proceed depends upon a single parameter, the induction time. This in turn is a function of the local thermodynamic variables.

Figure 8 shows the time development of a detonation initiated by a weak reflecting shock. The incident shock was chosen so that the pressure behind it is too low to cause detonation to take place within the time of the calculation. As with the calculations of Section 2, we have used open boundary conditions at the sides and top of the system. The sequence of six pressure contour plots traces the evolution of a detonation wave initiated by complex Mach reflection at the surface of the wedge. Figure 8a shows the pressure contours corresponding to an incident shock with \(\theta = 25° \) and \(M = 4.0 \), which has just begun to reflect. The Mach stem is initially too small to be resolved. In Fig. 8b the Mach stem becomes discernible, but as yet no apparent reaction has occurred. By frame (c) the material has begun to ignite at a position well behind the current location of the Mach stem. When the Mach stem passed that position the pressure increase heated the mixture sufficiently to cause ignition after a short induction time characteristic of the \(\text{H}_2 \)–air mixture. In frames (d) and (e), at later times, the pressure at the Mach stem continues to grow, leading to shorter characteristic induction times for material between the Mach stem and the original ignition point. Thus we see the ignited region accelerate along the wedge surface toward the Mach stem. Because more energy is being released as the burning continues, the boundary of the
Ignited region also accelerates in the direction of the reflected shock front, compressing and heating the material into which the burned gases expand. In the last frame the burn front has overtaken the reflected shock and Mach stem, as we see from the decrease in the separation of the pressure contours near both locations. A stable detonation pattern has not yet emerged, however. This is evident from the bending out of the Mach stem and the lower density of contours between the Mach stem and the reflected shock/detonation front.

We anticipate that shock tube experiments will confirm this wave structure and that such reactive flow calculations will be extremely useful in quantitatively explaining the experimentally observed multicell structure of detonations (Oppenheimer 1970).

4. Conclusions

Our calculations of complex and double Mach reflection are in close agreement with measurements for shocks reflecting in air from wedges. Because of the accuracy and speed of FCT algorithms and the effectiveness of adaptive rezoning, the calculations are accurate and economical even when the Mach stem develops very slowly. All of the important features (location of surfaces of discontinuity, pressure loading on the wedge surface, density contours) are correctly predicted. The results do not depend sensitively on whether the I-T or FAST2D code is used. Of the advances discussed in Section 1, multidimensional flux limiting and the adaptive rezoning technique seem to be the most efficacious for reflections in nonreactive media. We conclude that FCT algorithms reduce numerical diffusion dramatically, assuring qualitative improvements in accuracy. We believe that to achieve comparable accuracy and efficiency, other hydrocodes must employ similar nonlinear algorithms and rezoning techniques.

Our calculations in reactive gas mixtures show that detonations tend to begin where a secondary pressure peak arises at the slip surface approaches the wedge. Because of the finite induction time in our kinetics model, the detonation begins somewhat behind this pressure peak. The high resolution our calculations achieve enables us to follow multiple reflections and is capable of providing quantitative predictions of detonation phenomena.

References

Table 1 - Shock Reflection Simulations

<table>
<thead>
<tr>
<th>CODE</th>
<th>MACH NO.</th>
<th>WEDGE ANGLE</th>
<th>TYPE OF SHOCK</th>
<th>E.O.S. γ</th>
<th>REZONE</th>
<th># STEPS</th>
<th>EXPERIMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-T</td>
<td>6.9</td>
<td>20°</td>
<td>CMR(A)</td>
<td>1.35</td>
<td>NO</td>
<td>1,000</td>
<td>BEN-DOR</td>
</tr>
<tr>
<td>L-T</td>
<td>8.06</td>
<td>26.56°</td>
<td>DMR(A)</td>
<td>1.35</td>
<td>NO</td>
<td>800</td>
<td>BEN-DOR</td>
</tr>
<tr>
<td>FAST2D</td>
<td>8.06</td>
<td>26.56°</td>
<td>DMR(A)</td>
<td>1.35</td>
<td>NO</td>
<td>800</td>
<td>BEN-DOR</td>
</tr>
<tr>
<td>FAST2D</td>
<td>5.173</td>
<td>44°</td>
<td>DMR(D)</td>
<td>1.35</td>
<td>YES</td>
<td>600</td>
<td>BRL</td>
</tr>
<tr>
<td>FAST2D</td>
<td>5.074</td>
<td>44°</td>
<td>DMR(D)</td>
<td>REAL AIR</td>
<td>YES</td>
<td>1,000</td>
<td>BRL</td>
</tr>
<tr>
<td>FAST2D</td>
<td>5.148</td>
<td>46.5°</td>
<td>DMR(D)</td>
<td>1.35</td>
<td>YES</td>
<td>1,000</td>
<td>BRL</td>
</tr>
<tr>
<td>FAST2D</td>
<td>5.046</td>
<td>46.5°</td>
<td>DMR(D)</td>
<td>REAL AIR</td>
<td>YES</td>
<td>1,500</td>
<td>BRL</td>
</tr>
</tbody>
</table>
Fig. 1 - (a) Wave structure and density contours for double Mach reflection from a wedge; (b) reduced density contours (ρ/ρ_0) for complex Mach reflection with levels chosen to agree with those of Ben-Dor and Glass (1978); (c) corresponding pressure and density profiles on the wedge, plotted against cell number.
Fig. 2 - Comparison of the calculated density profile on the wedge (Fig. 1(b)) with measured values (Ben-Dor and Glass, 1978).
Fig. 3 - Types of shock reflections: RR, CMR, SMR, and DMR denote regular reflection and single, complex, and double Mach reflection, respectively. The D and A refer to detached and attached shocks.
Fig. 4 - Gridding for complex shock reflection problems with FAST2D code. Shown are incident, reflected and Mach shocks (solid lines) and slip surfaces (dotted lines) for incident shock coming from the left.
Fig. 5 - Upper and lower diagrams show pressure in PSIA on the wedge as a function of position for $\theta_w = 46.5^\circ$ (real air equation of state) at two times in the simulation and as a function of time at two stations in the experiment, respectively.
Fig. 6 - Structure of the calculated shock \(\theta_w = 46.5^\circ, M = 5.15, \gamma = 1.35 \) as a function of position for several times.
Fig. 7 - Plot of pressure vs distance along the trajectory 1-2-3-4 shown in the inset, which intersects all surfaces of discontinuity normally.
Fig. 8 - Sequence of six pressure contour plots tracing the development of detonation in a stoichiometric H₂ -- air mixture at 0.1 atm due to complex Mach reflection from wedge.
DISTRIBUTION LIST

Assistant to the Secretary of Defense
Atomic Energy
Washington, DC 20301
Olcy Attn Executive Assistant

Director
Defense Advanced Research Proj Agency
1400 Wilson Blvd
Arlington, VA 22209
(Desires only one copy to library)
Olcy Attn TIO

Director
Defense Communications Agency
Washington, DC 20305
(ADR CNWCI: Attn Code 240 for)
Olcy Attn Code 670 R LIPP

Director
Defense Intelligence Agency
Washington, DC 20301
Olcy Attn DB-4C E OFARREL
Olcy Attn DB-4N
Olcy Attn DT-1C
Olcy Attn DT-2
Olcy Attn RDS-3A (TECH LIB)

Director
Defense Nuclear Agency
Washington, DC 20305
Olcy Attn SPSS
Olcy Attn TITL
Olcy Attn DODS

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314
(12 if open pub, otherwise 2 - no WNINTEL)
12cy Attn DD

Chairman
Department of Defense Explo Safety Board
Rm 856-C
Hoffman Building 1
2461 Eisenhower Avenue
Alexandria, VA 22331
Olcy Attn Chairman

Commander
Field Command
Defense Nuclear Agency
Kirtland AFB, NM 87115
Olcy Attn FCNUM
Olcy Attn FCT
Olcy Attn FCPF

Chief
Field Command
Defense Nuclear Agency
Livermore Division
P O Box 808 L-317
Livermore, CA 94550
Olcy Attn FCPRL

Director
Joint Strat TCT Planning Staff
Offutt AFB
Omaha, NB 68113
Olcy Attn DOKT
Olcy Attn JLA
Olcy Attn JLW-2
Olcy Attn NRI-STINFO Library
Olcy Attn XPFS

Commandant
Nato School (Shape)
APO New York, NY 09172
Olcy Attn U.S. Documents Officer

Under Secy of Def for R & Engrg
Department of Defense
Washington, DC 20301
Olcy Attn Strategic & Space Systems (OS)

Director
BMD Advanced Technology Center
Department of the Army
P O Box 1500
Huntsville, AL 35807
Olcy Attn 1CRDABH-X
Olcy Attn ATC-T

Commander
BMD Systems Command
Department of the Army
P O Box 1500
Huntsville, AL 35807
Olcy Attn BNSC-H N HURST

Chief of Engineers
Department of the Army
Forrestal Building
Washington, DC 20314
Olcy Attn DAEH-RDM
Olcy Attn DAEH-HCE-D

15

PROCEEDING PAGE BLANK-NOT FILLED
Commandant
U.S. Army War College
Carlisle Barracks, PA 17013
Olcy Attn Library

Commander
David Taylor Naval Ship
R&D CTR
Bethesda, MD 20084
(CNWDI only Attn
Mrs. M. Birkhead
Code 5815.61)
Olcy Attn Code L42-3
(Library)

Officer-in-Charge.
Naval Construction Battalion Center
Civil Engineering Laboratory
Port Hueneme, CA 93041
Olcy Attn Code L51 S Takahashi
Olcy Attn Code L51 R Odello
Olcy Attn Code L08A (Library)

Commander
Naval Electronic Systems Command
Washington, DC 20360
Olcy Attn FME 117-21

Commander
Naval Facilities Engineering Command
Washington, DC 20390
Olcy Attn Code 09H22C (Tech Lib)
Olcy Attn Code 03T
Olcy Attn Code 04B

Headquarters
Naval Material Command
Washington, DC 20360
Olcy Attn NAT 08T-22

Commander
Naval Ocean Systems Center
San Diego, CA 92152
Olcy Attn Code 4471 (Tech Lib)
Olcy Attn Code 013 E Cooper

Superintendent
Naval Postgraduate School
Monterey, CA 93940
(designs no CNWDI Documents)
Olcy Attn Code 0142 Library

Commanding Officer
Naval Research Laboratory
Washington, DC 20375
(RD & RD/N Attn Code 1221 for
& FRD Attn Code 2628 for)
Olcy Attn Code 2627 (Tech Lib)
Olcy Attn Code Boris/Book

Commander
Naval Sea Systems Command
Washington, DC 20362
Olcy Attn Sea-09G53 (Lib)
Olcy Attn Sea-0351

Officer In Charge
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910
Olcy Attn Code F31
Olcy Attn H. Giaz

Commander
Naval Surface Weapons Center
Dahlgren, VA 22448
Olcy Attn Tech Library &
Infor Services Brnc

President
Naval War College
Newport, RI 02840
Olcy Attn Code E-11
(Tech Service)

Commander
Naval Weapons Center
China Lake, CA 93555
Olcy Attn Code 266 C Austin
Olcy Attn Code 3201 F Cordle
Olcy Attn Code 233 (Tech Lib)

Commanding Officer
Naval Weapons Evaluation Facility
Kirtland Air Force Base
Albuquerque, NM 87117
Olcy Attn R Hughes
Olcy Attn Code 10 (Tech Lib)

Office of Naval Research
Arlington, VA 22217
Olcy Attn Code 474 N Perron
Olcy Attn Code 715 (Tech Lib)
(Uncl only)

Office of the Chief of Naval
Operations
Washington, DC 20350
Olcy Attn OP 981
Olcy Attn OP 03EG

Director
Strategic Systems Project Office
Department of the Navy
Washington, DC 20376
Olcy Attn NSF-43 (Tech Lib)
Olcy Attn NSF-272
Teledyne Brown Engineering
Cummings Research Park
Huntsville, AL 35807
Olcy Attn J Ravenscraft

Terra Tek, Inc.
420 Wakara Way
Salt Lake City, UT 84108
Olcy Attn Library
Olcy Attn S Green
Olcy Attn A Jones

Tetra Tech, Inc.
630 N Rosemead Blvd.
Pasadena, CA 91107
Olcy Attn L Hwang
Olcy Attn Library

TRW Defense & Space Sys Group
One Space Park
Redondo Beach, CA 90278
Olcy Attn I Alber
Olcy Attn Tech Infor Ctr
Olcy Attn N Lipner
Olcy Attn P Shutta
Olcy Attn D Baer
Olcy Attn R Plebuch

TRW Defense & Space Sys Group
P O Box 1310
San Bernardino, CA 92402
Olcy Attn E Wong
Olcy Attn P Dai

Universal Analytics, Inc.
7740 W Manchester Blvd
Playa Del Rey, CA 90291
Olcy Attn E Field

Weidlinger Assoc., Consulting Eng
110 E 59th Street
New York, NY 10022
Olcy Attn M Baron

Weidlinger Assoc., Consulting Eng
3000 Sand Hill Road
Menlo Park, CA 94025
Olcy Attn J Isenberg

Westinghouse Electric Corp.
Marine Division
Hendy Avenue
Sunnyvale, CA 94088
Olcy Attn W Volz