DEVELOPMENT OF GENERAL FORM-FUNCTIONS
FOR MULTIPERFORATED CYLINDRICAL
PROPELLANT GRAINS

Franz R. Lynn

April 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
A method of constructing form-functions, algorithms yielding surface area and volume during burning, for arbitrary cylindrical multiperforated propellant grains is developed. Two FORTRAN subroutines embodying these procedures are provided for general use.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>7</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>II. OUTLINE OF THE METHOD</td>
<td>9</td>
</tr>
<tr>
<td>A. SUBDIVISION OF THE GRAIN AREA</td>
<td>9</td>
</tr>
<tr>
<td>B. OUTER SLIVERS</td>
<td>11</td>
</tr>
<tr>
<td>C. INNER SLIVERS</td>
<td>17</td>
</tr>
<tr>
<td>III. SUBROUTINES "GENIS" AND "GENOS"</td>
<td>24</td>
</tr>
<tr>
<td>IV. A SAMPLE CASE</td>
<td>25</td>
</tr>
<tr>
<td>V. ACKNOWLEDGEMENT</td>
<td>28</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>33</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>41</td>
</tr>
</tbody>
</table>
\textbf{LIST OF ILLUSTRATIONS}

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A Sample Grain Partitioned.</td>
<td>10</td>
</tr>
<tr>
<td>2. General Outer Sliver Before Burning</td>
<td>12</td>
</tr>
<tr>
<td>3. General Outer Sliver During Burning</td>
<td>13</td>
</tr>
<tr>
<td>4. General Inner Sliver Before Burning</td>
<td>18</td>
</tr>
<tr>
<td>5. General Inner Sliver During Burning</td>
<td>19</td>
</tr>
<tr>
<td>6. Critical Distances for the Inner Sliver</td>
<td>20</td>
</tr>
<tr>
<td>7. Geometric Dissection of Critical Triangle</td>
<td>21</td>
</tr>
<tr>
<td>8. One-Sixth of Sample Nineteen-Perforated Grain</td>
<td>26</td>
</tr>
<tr>
<td>9. Surface Area Plot - Grain with Equal Webs</td>
<td>29</td>
</tr>
<tr>
<td>10. Surface Area Plot - Grain with Unequal Webs</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Initial grain diameter</td>
</tr>
<tr>
<td>E</td>
<td>End-area of grain sliver</td>
</tr>
<tr>
<td>GL</td>
<td>Initial grain length</td>
</tr>
<tr>
<td>GRL</td>
<td>Instantaneous grain length</td>
</tr>
<tr>
<td>PD</td>
<td>Initial perforation diameter</td>
</tr>
<tr>
<td>PRFD</td>
<td>Instantaneous perforation diameter</td>
</tr>
<tr>
<td>RAD</td>
<td>Instantaneous grain radius</td>
</tr>
<tr>
<td>SURF</td>
<td>Total surface area of grain sliver</td>
</tr>
<tr>
<td>VOL</td>
<td>Volume of grain sliver</td>
</tr>
<tr>
<td>WI</td>
<td>Inner web of 19-perforated grain</td>
</tr>
<tr>
<td>WM</td>
<td>Middle web of 19-perforated grain</td>
</tr>
<tr>
<td>WO</td>
<td>Outer web of 19-perforated grain</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Interior ballistic calculations usually require a knowledge of the geometry of propellant grains at each phase of burning from ignition to burnout. Any calculational scheme for providing the surface area or volume of a grain at any instant is often referred to as a "form-function". Investigators have determined form functions for a wide variety of grain shapes\(^1\),\(^2\). This report concerns itself with providing a general method of constructing form-functions for one of the most popular classes of grains, namely, the multiperforated cylinders. The shape is that of a right circular cylinder pierced its entire length by some number of uniform cylindrical perforations.

Many approaches to analyzing particular members of this class, for example, the seven- or nineteen-perforated grains, have been taken in the past. Instead of examining many such special cases here, a general method is presented that leads to the construction of form-functions which can determine surface area and volume for virtually any cylindrical grain with any number \((n>2)\) of arbitrarily placed perforations; the special excluded cases are discussed as well. The method neither employs approximations in calculation nor does it assume equal rates of regression for the inner and outer grain surfaces. Thus this approach supercedes several previous efforts and, moreover, provides the opportunity to analyze many novel cylindrical grain designs in a straightforward manner. Non-cylindrical grains as, for instance, hexagonal-surfaced ones, are barred, although similar methods could clearly be employed.

Finally, two FORTRAN subroutines which perform the required computations are provided and are used in connection with a sample exercise wherein a form-function for a nineteen-perforated grain with three independent webs is developed.

In what follows, all angle measurements are in radians.

II. OUTLINE OF THE METHOD

A. SUBDIVISION OF THE GRAIN END AREA

The circular cross-section of the grain in question is first geometrically decomposed by straight lines into classes of mutually congruent "slivers", defined below. At any point in burning, the

\(^2\) Stals, J., "Form-Functions for Multicomponent Propellant Charges Including Inhibited Grains and Sliver Burn", MRL Technical Note 371, Materials Research Laboratories, Maribyrnong, Victoria, Australia, September 1975.
individual contribution of each class to the remaining surface and volume is noted, the totals simply being the sums, over all classes, of the number of members in each class multiplied by that class's contributions.

There are two types of "slivers", hereafter referred to without quotes: inner and outer. An inner sliver is any region of cross-section bounded by a triangle with the center of a perforation at each vertex, but with no portion of any other perforation contained within the boundaries. An outer sliver is any region of cross-section bounded by an arc of the grain's outer surface, two radii enclosing an angle less than π, and a chord segment joining the centers of two perforations. No portion of

![Figure 1. A Sample Grain Partitioned](image-url)
any other perforation may be contained within its boundaries.

For example, the grain in Figure 1 has been divided into two classes of slivers, one class of six inner slivers and one class of six outer slivers.

A complete analysis of the general outer sliver and the general inner sliver follows.

B. OUTER SLIVERS

In addition to the above-mentioned assumptions about the grain and its dissection into slivers, we require that, throughout burning, the outer slivers remain within their original boundaries until extinction. Initially, an outer sliver appears as PQA_A in Figure 2 with A, the center of the grain and A_2 and A_3 the centers of the sliver's perforations. In what follows, we adhere to the convention that side S_1 of triangle $A_1A_2A_3$ is the segment connecting the centers of the sliver's perforations. Furthermore, the restriction that angle $PA_1Q<\pi$ forces the grain to have at least three perforations with not altogether arbitrary placement. We assume lengths $S_1, S_2,$ and S_3 to be known.

From the law of cosines we have the following angles

$$A_3A_1A_2 = \arccos \left(\frac{S_2^2 + S_3^2 - S_1^2}{2 \cdot S_2 \cdot S_3} \right)$$

$$A_3A_2A_1 = \arccos \left(\frac{S_1^2 + S_3^2 - S_2^2}{2 \cdot S_1 \cdot S_3} \right)$$

$$A_2A_3A_1 = \arccos \left(\frac{S_1^2 + S_2^2 - S_3^2}{2 \cdot S_1 \cdot S_2} \right)$$

Then, the area of triangle $A_1A_2A_3$ is

$$\frac{1}{2} S_1 \cdot S_3 \cdot \sin(A_3A_2A_1)$$

As burning progresses, the sliver erodes as shown in Figure 3 with, possibly, some degenerate angles. We require knowledge of the grain's instantaneous radius, RAD, grain length, GRL, and perforation diameter, PRFD. The surfaces of all perforations are assumed to erode at the same rate, but this need not be the same rate of regression as that of at the outer surface. Clearly, burnout of the sliver occurs when either
Figure 2. General Outer Sliver Before Burning
Figure 3. General Outer Sliver During Burning
An error condition occurs whenever either

\[\tau_3 < A_2A_3A_1 \]

or

\[\tau_4 < A_3A_2A_1 \]

at some step during burning and signals violation of our requirement that the sliver stay within its original boundaries. A grain exhibiting this error in one of its outer slivers cannot be analyzed beyond that point by the present method. Very thin outer slivers are likely to give rise to this error.

Using the familiar minimum and maximum functions we derive by law of cosines

\[
\tau_1 = \arccos \left[\min \left(1, \frac{S_2^2 + \text{RAD}^2 - 1/4 \cdot \text{PRFD}^2}{2 \cdot S_2 \cdot \text{RAD}} \right) \right]
\]

\[
\tau_2 = \arccos \left[\min \left(1, \frac{S_3^2 + \text{RAD}^2 - 1/4 \cdot \text{PRFD}^2}{2 \cdot S_3 \cdot \text{RAD}} \right) \right]
\]

\[
\tau_3 = \arccos \left[\max \left(-1, \frac{S_2^2 \cdot \text{RAD}^2 + 1/4 \cdot \text{PRFD}^2}{S_2 \cdot \text{PRFD}} \right) \right]
\]
\[
\tau_4 = \arccos \left[\max \left(-1, \frac{S_3^2 - \text{RAD}^2 + 1/4 \cdot \text{PRFD}^2}{S_3 \cdot \text{PRFD}} \right) \right]
\]

where the maxima and minima are taken to ensure values of \(\pi \) and \(0 \), respectively, for \(\tau_i \) in degenerate triangles.

By definition of cosine we have

\[
\sigma = \arccos \left[\min \left(1, \frac{S_1}{\text{PRFD}} \right) \right]
\]

with the minimum taken to guarantee a value of zero should triangle \(RA_2A_3 \) be degenerate.

Should the burnout criteria fail, the sliver is not yet extinguished. Then we calculate

area triangle \(A_1A_3P = 1/2 \cdot \text{RAD} \cdot S_2 \cdot \sin (\tau_1) \)

area triangle \(A_1A_2Q = 1/2 \cdot \text{RAD} \cdot S_3 \cdot \sin (\tau_2) \)

area triangle \(A_2A_3R = 1/4 \cdot \text{PRFD} \cdot S_1 \cdot \sin (\sigma) \)

area sector \(A_1PQ = 1/2 \cdot (A_3A_1A_2 - \tau_1 - \tau_2) \cdot \text{RAD}^2 \)

area sector \(A_3PR = 1/8 \cdot (\tau_3 - \sigma - A_2A_3A_1) \cdot \text{PRFD}^2 \)

area sector \(A_2QR = 1/8 \cdot (\tau_4 - \sigma - A_3A_2A_1) \cdot \text{PRFD}^2 \)

Then the sliver's end area, \(PQR \), is given by
\[E = \text{area } A_1A_3P + \text{area } A_1PQ + \text{area } A_1A_2Q \]
\[\quad - \text{area } A_1A_2A_3 - \text{area } A_2A_3R - \text{area } A_3PR - \text{area } A_2QR \]

or, more simply,
\[E = \frac{1}{2} \text{RAD} \cdot \left\{ S_2 \cdot \sin(\tau_1) + \text{RAD} \cdot (A_3A_1A_2 - 0.1 - 0.2) + S_3 \cdot \sin(\tau_2) \right\} \]
\[\quad - \text{area } A_1A_2A_3 \]
\[\quad - \frac{1}{4} \cdot \text{PRFD} \cdot \left\{ S_1 \cdot \sin(\sigma) + \frac{1}{2} \cdot \text{PRFD} \cdot (0.3 + 0.4 - 2\sigma - A_1A_2A_3 - A_1A_3A_2) \right\} \]

and its contribution, VOL, to grain volume is
\[\text{VOL} = E \cdot \text{GRL} \]

Next, note that
\[\text{length arc } PQ = \text{RAD} \cdot (A_2A_1A_3 - \tau_1 - \tau_2) \]
\[\text{length arc } PR = \frac{1}{2} \cdot \text{PRFD} \cdot (0.3 - \sigma - A_1A_2A_3) \]
\[\text{length arc } QP = \frac{1}{2} \cdot \text{PRFD} \cdot (0.4 - \sigma - A_1A_2A_3) \]

Then the sliver's contribution, SURF, to grain surface area is twice its end area, E, plus its lateral surface area, or
\[\text{SURF} = 2 \cdot E + \]
\[\text{GRL} \cdot \left\{ \text{RAD} \cdot (A_2A_1A_3 - \tau_1 - \tau_2) + \frac{1}{2} \cdot \text{PRFD} \cdot (0.3 + 0.4 - 2\sigma - A_1A_2A_3 - A_1A_3A_2) \right\} \]
When extinction occurs, however, we have

\[\text{VOL} = \text{SURF} = 0 \]

C. INNER SLIVERS

As in the case of outer slivers, we require that every inner sliver remain within its original boundaries throughout burning until extinction. Initially, an inner sliver appears as \(A_1A_2A_3 \) in Figure 4 with \(A_1, A_2, \) and \(A_3 \) the centers of the sliver's three perforations.

We assume lengths \(S_1, S_2, \) and \(S_3 \) to be known and calculate angles \(\tau_{12}, \tau_{13}, \) and \(\tau_{23} \) and the area of triangle \(A_1A_2A_3 \) in the same way as in the case of the outer sliver.

As burning progresses, the sliver erodes as shown in Figure 5 with, possibly, some degenerate angles. We require knowledge of the grain's instantaneous length, GRL, and perforation diameter, PRFD. As before, the surfaces of all perforations are assumed to erode at the same rate. Burnout of the sliver occurs when either

\[\tau_{12} + \tau_{13} + \tau_{23} \geq \pi/2 \]

or

\[\text{GRL} \leq 0 \]

An error condition occurs when an expanding perforation crosses any portion of the line-of-centers of the two opposite perforations before either of them engulfs that point, signaling violation of our requirement that the sliver remain within its original boundaries.

The critical points are clearly the feet of altitudes which cut opposite sides internally, as in Figure 6. The error condition arises whenever

\[d_1 < \min (d_2, d_3) \]

This is equivalent to having the altitude be less than the smaller of the two segments into which its foot divides the opposite side. In Figure 7, suppose
Figure 4. General Inner Sliver Before Burning
Figure 5. General Inner Sliver During Burning
Figure 6. Critical Distances for the Inner Sliver
Figure 7. Geometric Dissection of Critical Triangle
\[h < \min (a, b) \]
\[\rightarrow h < a, h < b \]
\[\alpha < \gamma, \beta < \delta \]
\[\alpha < \pi/4, \beta < \pi/4 \]

and conversely. Thus, the error arises only in obtuse triangles where both acute angles are smaller than \(\pi/4 \). We note that the inner sliver error condition need only be checked once, based as it is on original grain dimensions alone.

Should the error arise due to a problem with an inner sliver, the grain may be repartitioned to attempt to cure the fault. A good policy is to try to avoid grossly obtuse slivers.

Referring once more to Figure 5, we have by definition of cosine

\[\tau_{12} = \arccos \left[\min \left(1, \frac{S_3}{PRFD}\right) \right] \]
\[\tau_{13} = \arccos \left[\min \left(1, \frac{S_2}{PRFD}\right) \right] \]
\[\tau_{23} = \arccos \left[\min \left(1, \frac{S_1}{PRFD}\right) \right] \]

where the minima are taken to ensure a value of zero for \(\tau_{ij} \) in degenerate triangles.

Should the burnout criteria fail, the sliver is not yet extinguished. Then we calculate

area triangle \(A_1A_2R = 1/4 \cdot PRFD \cdot S_3 \cdot \sin (\tau_{12}) \)
area triangle $A_1 A_3 Q = 1/4 \cdot PRFD \cdot S_2 \cdot \sin (\tau_{13})$

area triangle $A_2 A_3 P = 1/4 \cdot PRFD \cdot S_1 \cdot \sin (\tau_{23})$

area sector $A_1 QR = 1/8 \cdot PRFD^2 \cdot (A_2 A_1 A_3 - \tau_{13} - \tau_{12})$

area sector $A_2 PR = 1/8 \cdot PRFD^2 \cdot (A_1 A_2 A_3 - \tau_{12} - \tau_{23})$

area sector $A_3 PQ = 1/8 \cdot PRFD^2 \cdot (A_1 A_3 A_2 - \tau_{13} - \tau_{23})$

Then the sliver's end area, PQR, is given by

$$E = \text{area } A_1 A_2 A_3 - \text{area } A_1 A_2 R - \text{area } A_1 A_3 Q$

- $\text{area } A_2 A_3 P - \text{area } A_1 QR - \text{area } A_2 PR - \text{area } A_3 PQ$

or, more simply,

$$E = \text{area } A_1 A_2 A_3$

- $1/4 \cdot PRFD \cdot \left\{ S_3 \cdot \sin (\tau_{12}) + S_2 \cdot \sin (\tau_{13}) + S_1 \cdot \sin (\tau_{23})$

+ $PRFD \cdot (\pi/2 - \tau_{12} - \tau_{13} - \tau_{23}) \right\}$

and its contribution, VOL, to grain volume is

$$VOL = E \cdot \text{GRL}$$
Next, note that

\[
\text{length arc PQ} = \frac{1}{2} \cdot \text{PRFD} \cdot (A_1A_3A_2 - \tau_{13} - \tau_{23})
\]

\[
\text{length arc QR} = \frac{1}{2} \cdot \text{PRFD} \cdot (A_2A_1A_3 - \tau_{12} - \tau_{13})
\]

\[
\text{length arc PR} = \frac{1}{2} \cdot \text{PRFD} \cdot (A_1A_2A_3 - \tau_{12} - \tau_{23})
\]

Then the sliver's contribution, \(\text{SURF} \), to grain surface area is twice its end area, \(E \), plus its lateral surface area, or

\[
\text{SURF} = 2 \cdot E + \text{GRL} \cdot \text{PRFD} \cdot (\pi/2 - \tau_{12} - \tau_{13} - \tau_{23})
\]

When extinction occurs, however, we have

\[
\text{VOL} = \text{SURF} = 0
\]

III. SUBROUTINES "GENIS" AND "GENOS"

Subroutines GENIS (GENERAL INNER SLIVER) and GENOS (GENERAL OUTER SLIVER) employing the above calculational methods have been written in FORTRAN and are listed in the Appendix.

For each class of slivers, two arrays are necessary, \(S(3) \) and \(A(4) \). In array \(S \), the calling routine must store the three sides of triangle \(A_1A_2A_3 \) (Figures 2 and 4) taking care, in the case of the outer sliver, that \(S(1) \) contains the chord segment joining the centers of the two perforations bounding that sliver. Array \(A \) is a work array which will be used to store the angles of \(A_1A_2A_3 \) and its area for later use.

\(\text{PRFD} \) is the grain's instantaneous perforation diameter, \(\text{GRL} \) its instantaneous length and, for outer slivers, \(\text{RAD} \), the grain's radius. Units of measurement should, of course, be uniform.

The routine will return \(\text{SURF} \), the sliver's contribution to grain surface area, and \(\text{VOL} \), its volume contribution.

Branching within each routine is controlled by argument \(\text{IFLAG} \) which the calling routine should initialize to a negative number and not touch thereafter. Extinction of the sliver will be signaled by a value
of IFLAG = 1. Thus complete extinction of the grain occurs when the branch flag for each class of slivers is 1.

IV. A SAMPLE CASE

Suppose that a nineteen-perforated grain, one-sixth of which is shown in Figure 8, is characterized by three independent webs WI, WM, WO and some perforation diameter, PD, and length GL.

There are four classes of slivers:
(i) 6 inner slivers congruent to FBD
(ii) 6 inner slivers congruent to BED
(iii) 12 inner slivers congruent to BEC
(iv) 12 outer slivers congruent to CIHB.

We note that grain diameter, D, is given by

$$D = 5 \cdot PD + 2 \cdot (WI + WM + WO)$$

and we have segments

$$FE = WI + PD$$
$$EC = WM + PD$$
$$FC = FE + EC = WI + WM + 2 \cdot PD$$
$$AB = 1/2 \cdot FC = 1/2 \cdot (WI + WM) + PD$$
$$FB = AB \cdot \sqrt{3} = (1/2 \cdot (WI + WM) + PD) \cdot \sqrt{3}$$
$$BB = \sqrt{BJ^2 + EJ^2} = \sqrt{(FB - BJ^2 + (1/2 \cdot FE)^2}$$
$$= 1/2 \cdot \sqrt{3 \cdot (WM + PD)^2 + (WI + PD)^2}$$
Figure 8. One-Sixth of Sample Nineteen-Perforated Grain
Let arrays SIDE (3,4) and ANGL (4,4) be used for our side and work arrays, respectively. Then, considering each sliver class in turn, set:

(i) \[
SIDE (1,1) = SIDE (2,1) = SIDE (3,1) = \overline{FE} = WI + PD
\]

(ii) \[
SIDE (1,2) = SIDE (2,2) = \overline{EE} = 1/2 \cdot \sqrt{3(WM+PD)^2 + (WI+PD)^2}
\]

SIDEB (3,2) = \overline{ED} = WI + PD

(iii) \[
SIDE (1,3) = \overline{BC} = 1/2 \cdot (WI + WM) \cdot PD
\]

SIDE (2,3) = \overline{EE} = 1/2 \cdot \sqrt{3(WM+PD)^2 + (WI+PD)^2}

SIDE (3,3) = \overline{EC} = WM + PD

(iv) \[
SIDE (1,4) = \overline{BC} = 1/2 \cdot (WI + WM) + PD
\]

SIDE (2,4) = \overline{FC} = WI + WM + 2 \cdot PD

SIDE (3,4) = \overline{FB} = \{1/2 \cdot (WI+WM) + PD\} \cdot \sqrt{3}

where, as noted, SIDE (1,4) must be the indicated segment, \overline{BC}, for the outer slivers.

Let array NCHECK (4) be set aside for the branch flags.

Now, while the subroutines can be called throughout the burning of the grain, it is efficient to employ the more obvious method of subtracting the nineteen cylindrical perforations from the grain to deduce surface area and volume until at least one set of perforations touch. That is, until twice the depth burned is WEB, where

\[
WEB = \min \{WO, WM, WI, \overline{BC} - PD, \overline{FE} - PD, GL\}
\]

\[
= \min \{WO, WM, WI, 1/2 \cdot (WI+WM), \sqrt{3(WM+PD)^2 + (WI+PD)^2} - PD, GL\}
\]
Afterward, we employ GENIS and GENOS, remembering to sum the individual sliver contributions to produce SSUM and VSUM, the grain's surface area and volume, respectively, at any instant.

A rendering of a program which determines grain surface area and volume for our burning grain with a fixed depth-burned increment, DELTA, is in the Appendix. It solicits grain dimensions from the user and simply prints a table of the surface and volume for the grain at increasing depths burned through extinction. The ACOS function is included because the FORTRAN library of the minicomputer's operating system doesn't contain it. The outer grain surface is assumed to erode at the same rate as the perforation surfaces although this need not have been forced.

Further development is possible. By adding a third subscript to our SIDE and ANGL arrays, the program could be extended to handle several such grains. If the intermediate results were saved, it would be possible to present them in plotted form. This last has been done in Figures 9 and 10 which display the ratio of surface area to initial surface area plotted against fraction of grain burned for two hypothetical grains. The first has all three webs equal, while the second, Figure 10, has three unequal webs.

V. ACKNOWLEDGEMENT

Special acknowledgement is due Dr. Joseph J. Rocchio for his many helpful suggestions in the writing of this report.
Figure 9. Surface Area Plot - Grain with Equal Webs
SAMPLE 19-PF PROPELLANT WITH DIFFERENT WEBS

GEOMETRY: 19 PRF CHO WT: 0.000 GRAIN LEN: 2.000 GRAIN DIA: 1.100
PERF DIA: 0.100 INNER WEB: 0.050 MID WEB: 0.100 OUTER WEB: 0.150

Figure 10 Surface Area Plot - Grain with Unequal Webs
REFERENCES

APPENDIX

LISTING OF SAMPLE PROGRAM FOR NINETEEN-PERFORATED GRAIN PLUS LISTINGS
OF SUBROUTINES "GENOS" AND "GENIS".
C SAMPLE PROGRAM EMPLOYING *GENOS* AND *GENIS*
C TO PRODUCE SURFACE & VOLUME FOR 19-PERFORATED
C GRAIN WITH THREE INDEPENDENT WEBS.
C
DIMENSION SIDE(3,4), ANGL(4,4), NCHECK(4)
DATA NCHECK/4*1/, IDONE/0/, PI/3.14159265/

TYPE 1030
ACCEPT 1000, WI, UD, PD, GL, DELTA
D=5.*PD+2.*((WI+UD)*PD)

SIDE(1,1)=WI+PD
SIDE(2,1)=SIDE(1,1)
SIDE(3,1)=SIDE(1,1)

SIDE(1,2)=.5*SQRT(3.*((UD+PD)**2 + (WI+PD)**2)
SIDE(2,2)=SIDE(1,2)
SIDE(3,2)=SIDE(1,1)

SIDE(1,3)=.5*(WI+UD)+PD
SIDE(2,3)=SIDE(1,2)
SIDE(3,3)=UD+PD

SIDE(1,4)=SIDE(1,3)
SIDE(2,4)=2.*SIDE(1,3)
SIDE(3,4)=SIDE(1,3)*SQRT(3.)

WEB=AMIN1(WD, UD, WI, .5(WI+WD), SIDE(1,2)-PD, GL)

TYPE 1010, WI, UD, PD, GL, DELTA
JSTEP=0
DEPTH=JSTEP*DELTA
PRFD=PD+.5*DEPTH
GRL=GL-2.*DEPTH
RAD=.5*PD-DEPTH
IF(2.*DEPTH.GT.WE8) GOTO 2800

TA=PI*(RAD**2-4.*PRFD**2)
SSUM2=TA*GRL
VSUM=TA*GRL
GOTO 300

IDONE=0
SSUM=0.
VSUM=0.

DO 250 I=1,2
CALL GENIS(SIDE(1,1), ANGL(1,1), PRFD, GRL, NCHECK(I), TA, TV)
SSUM=SSUM+6.*TA
VSUM=VSUM+6.*TV
IDONE=IDONE+NCHECK(I)
GOTO 300
CONTINUE
CALL GENIS(SIDE(1,3), ANGL(1,3), PRFD, GRL, NCHECK(3), TA, TV)
SSUM=SSUM+12.*TA
VSUM=VSUM+12.*TV

CALL GENOS(SIDE(1,4), ANGL(1,4), PRFD, GRL, RAD, NCHECK(4), TA, TV)
SSUM=SSUM+12.*TA
VSUM=VSUM+12.*TV
IDONE=IDONE+NCHECK(3)+NCHECK(4)

TYPE 1020, DEPTH, SSUM, VSUM
IF(IDONE.EQ.4) GOTO 400
JSTEP=JSTEP+1
GOTO 100

STOP 'GRAIN EXTINGUISHED!'

FORMAT(10E12.0)
FORMAT(/ 'INNER WEB = ',F10.4)
MIDDLE WEB = ',F10.4
OUTER WEB = ',F10.4
PERF DIAM = ',F10.4
GRAIN LEN = ',F10.4
BURN INCR = ',F10.4
/ 'DEPTH BURNED SURFACE AREA VOLUME'/)
FORMAT(1X,F10.4,5X,F10.4,5X,F10.4)
FORMAT('INNER, MIDDLE, OUTER WEB, PERF DIAM',
'GRAIN LENGTH, DEPTH-BURNED INCREMENT?')

END
FUNCTION ACOS(U)
ACOS=ATAN2(SQRT(1.-U*U),U)
RETURN
END
SUBROUTINE GENOS(S, A, PRFD, GRL, RAD, IFLAG, SURF, VOl)

C
C SUBROUTINE *GENOS*1 CALCULATE SURFACE AREA AND VOLUME FOR A
C GENERAL OUTER SLIVER OF A BURNING GRAIN
C WITH LENGTH = GRL, RADIUS = RAD, AND
C PERF DIAM = PRFD.

DIMENSION S(3), A(4)

IF(FLAG) 10, 20, 30

INITIAL PASS: IFLAG WAS SET NEGATIVE BY CALLING ROUTINE.
STORE ANGLES A1, A2, A3 AND AREA OF TRIANGLE
WITH SIDES S(1), S(2), S(3) INTO A(1),..., A(4)

A(1) = ACOS((S(2)**2+S(3)**2-S(1)**2)/(2.*S(2)*S(3)))
A(2) = ACOS((S(1)**2+S(3)**2-S(2)**2)/(2.*S(1)*S(3)))
A(3) = ACOS((S(1)**2+S(2)**2-S(3)**2)/(2.*S(1)*S(2)))
A(4) = .5*S(1)*S(3)*SIN(A(2))

... AND SET FLAG TO ZERO TO BYPASS INITIALIZATION HEREAFTEr.

IFLAG = 0

SUCCEEDING PASSES UNTIL BURNOUT: FIRST DETERMINE AUXILIARY ANGLES

TAU1 = ACOS(AMIN1(1., (S(2)**2+RAD**2-.25*PRFD**2)/(2.*S(2)*RAD)))
TAU2 = ACOS(AMIN1(1., (S(3)**2+RAD**2-.25*PRFD**2)/(2.*S(3)*RAD)))
TAU3 = ACOS(AMAX1(-1., (S(2)**2-RAD**2+.25*PRFD**2)/(S(2)*PRFD)))
TAU4 = ACOS(AMAX1(-1., (S(3)**2-RAD**2+.25*PRFD**2)/(S(3)*PRFD)))
SIN = ACOS(AMIN1(1., S(1)/PRFD))

... THEN CHECK ERROR CONDITIONS...

IF(TAU3.LT.A(3), OR, TAU4.LT.A(2)) STOP "*GENOS* ERROR!"

... IF OK, BRANCH IF SLIVER FAILS BURNOUT CRITERIA.

IF(TAU1+TAU2.LT.A(1) .AND. GRL.GT.0.) GOTO 25

SLIVER JUST BURNED OUT: SET FLAG TO BYPASS AREA & VOLUME CALCULATIONS.

IFLAG = 1
GOTO 30

SLIVER NOT BURNED OUT: DETERMINE END AREA, VOLUME, AND SURFACE AREA

E = .5*RAD*S(2)*SIN(TAU1)+RAD*(A(1)-TAU1-TAU2)+S(3)*SIN(TAU2)
 -.5*SIN(TAU3+TAU4-2.*SIG

37
$ -A(2) - A(3))$

```fortran
C VOL = E*GRL
C SURF = 2.*E*GRL*(RAD*(A(1) - TAU1 - TAU2) + 5*PRFD*(TAU3 + TAU4 - 2.*SIG
  $ - A(2) - A(3)))$
C ...AND RETURN.
C RETURN
C SLIVER IS BURNED OUT: RETURN WITH ZERO VOLUME AND SURFACE AREA.
C
30 VOL = 0.
C SURF = 0.
C RETURN
C END
```
SUBROUTINE GENIS(S,A,PRFD,GRL,IFLAG,SURF,VOL)

SUBROUTINE *GENIS*; CALCULATE SURFACE AREA AND VOLUME FOR A GENERAL INNER SLIVER OF A BURNING GRAIN WITH LENGTH = GRL & PERF DIAM = PRFD.

DIMENSION S(3),A(4)

DATA P12/ 1.57087963 /

IF(IFLAG) 10,20,30

INITIAL PASS: IFLAG WAS SET NEGATIVE BY CALLING ROUTINE.
STORE ANGLES A1,A2,A3 AND AREA OF TRIANGLE WITH SIDES S(1),S(2),S(3) INTO A(1),...,A(4)

10 A(1) = ACOS((S(2)**2+S(3)**2-S(1)**2)/(2.*S(2)*S(3)))
A(2) = ACOS((S(1)**2+S(3)**2-S(2)**2)/(2.*S(1)*S(3)))
A(3) = ACOS((S(1)**2+S(2)**2-S(3)**2)/(2.*S(1)*S(2)))

A(4) = .5*S(1)*S(3)*SIN(A(2))

...CHECK FOR ERROR CONDITION: FIND IF TRIANGLE ACCEPTABLE...

J = 0
DO 15 I = 1,3
IF(A(I).LT.5*PI2) J = J+1
CONTINUE
IF(J.GT.1) STOP '*GENIS* ERROR!

IF OK, SET FLAG TO ZERO TO BYPASS INITIALIZATION HEREAFTER.

IFLAG = 0

SUCCEEDING PASSES UNTIL BURNOUT: FIND AUXILIARY ANGLES

15 CONTINUE

TAU12 = ACOS(AMIN1(1.,S(3)/PRFD))
TAU13 = ACOS(AMIN1(1.,S(2)/PRFD))
TAU23 = ACOS(AMIN1(1.,S(1)/PRFD))

...AND BRANCH IF SLIVER FAILS BURNOUT CRITERIA.

IF(TAU12+TAU13+TAU23.LT.P12 .AND. GRL.GT.0.) GOTO 25

SLIVER JUST BURNED OUT: SET FLAG TO BYPASS AREA & VOLUME CALCULATIONS.

IFLAG = 1
GOTO 30

SLIVER NOT BURNED OUT: DETERMINE END AREA, VOLUME, AND SURFACE AREA

E = A(4)-.25*PRFD*(S(1)*SIN(TAU23)+S(2)*SIN(TAU13))
S = S(3) * SIN(TAU12) + PRFD * (PI2 - TAU12 - TAU13 - TAU23)

VOL = E * GRL

SURF = 2. * E * GRL * PRFD * (PI2 - TAU12 - TAU13 - TAU23)

... AND RETURN.

RETURN

SLIVER IS BURNED OUT: RETURN WITH ZERO VOLUME AND SURFACE AREA.

VOL = 0.

SURF = 0.

RETURN

END
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Commander</td>
<td>Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314</td>
<td>1 Director</td>
<td>US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCO-TL Watervliet, NY 12189</td>
</tr>
<tr>
<td>3 Commander</td>
<td>US Army ARRADCOM ATTN: DRDAR-LCA-G, H.D. Fair E. Wurzel S. Bernstein Dover, NJ 07801</td>
<td>1 Commander</td>
<td>US Army Aviation Research & Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 63166</td>
</tr>
<tr>
<td>5 Commander</td>
<td>US Army Armament Research & Development Command ATTN: DRDAR-QAS F. Fitzsimmons J. Domen P. Sergo C. Allen J. Rutkowski Dover, NJ 07801</td>
<td>1 Director</td>
<td>US Army Air Mobility Research & Development Laboratory Ames Research Center Moffett Field, CA 94035</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Communications Research & Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Electronics Research & Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Rd Adelphi, MD 20783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile Command ATTN: DRDMI-R DRDMI-YDL Redstone Arsenal, AL 35809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Tank Automotive Rsch & Development Command ATTN: DRDTA-UL Warren, MI 48090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>Cannon Artillery Weapons Sys ATTN: DRCPM-CAWS US Army Armament Research & Development Command Dover, NJ 07801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>M110E2 Weapon Systems ATTN: S. Smith Rock Island, IL 61299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Research Office P.O. Box 12211 Research Triangle Park NC 27709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Department of the Navy ATTN: James R. Patton, Jr. Code 473 800 N. Quincy Street Arlington, VA 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Naval Air Systems Command ATTN: Robert H. Heitkotter Code AIR-330-B Jefferson Plaza, Bldg 1, Rm 478 Washington, DC 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Naval Sea Systems Command ATTN: John W. Murrin NAVSEA-0331 National Ctr, Bldg 2, Rm 6E08 Washington, DC 20362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Naval Surface Weapons Ctr ATTN: Code DG-24, Lisle H. Russell Dahlgren, VA 22448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Naval Surface Weapons Center ATTN: DG20, J. East Dahlgren, VA 22448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 Commander</td>
<td>Naval Surface Weapons Ctr</td>
<td>3 Commander</td>
<td>Naval Ordnance Station</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
<td></td>
<td>Indian Head, MD 20640</td>
</tr>
<tr>
<td>1 Commander</td>
<td>Naval Underwater Sys Center</td>
<td>1 AFRPL (DYSC, Wilbur C. Andrepont)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Conversion Department</td>
<td></td>
<td>Edwards AFB, CA 93523</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 5B331, Robert S. Lazar</td>
<td></td>
<td>Edwards AFB, CA 93523</td>
</tr>
<tr>
<td></td>
<td>Newport, RI 02840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Commander</td>
<td>Naval Weapons Center</td>
<td>1 AFRPL (DYSC, Daweel George)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Conversion Department</td>
<td></td>
<td>Edwards AFB, CA 93523</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 6082, C. Price H. Bradley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Commander</td>
<td>Naval Weapons Center</td>
<td>1 AFATL (DLDG, D. Davis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 3882, Jack Prentice Ronald L. Derr</td>
<td></td>
<td>Eglin AFB, FL 32542</td>
</tr>
<tr>
<td></td>
<td>Code 608, Thomas Boggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code 4505, Charles Theilen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
<td></td>
<td>Wright-Patterson APF, OH 45433</td>
</tr>
<tr>
<td>1 Director</td>
<td>Navy Strategic Sys Project Ofc</td>
<td>1 AFRPL (RJT, Frank Stull)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Roy D. Kinert, SP 2731 M2512 Bldg, Rm 3245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Munitions Bldg, Rm 3245</td>
<td></td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
<td>1 Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Code RP, Frank W. Stephenson Jr.</td>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>600 Independence Avenue, SW Room 625</td>
<td></td>
<td>Lyndon B. Johnson Space Ctr</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20546</td>
<td></td>
<td>ATTN: Joseph Thibodaux, EP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Houston, TX 77058</td>
</tr>
<tr>
<td>1 Superintendent</td>
<td>Naval Postgraduate School Department of Aeronautics</td>
<td>1 Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: David W. Netzer Allen F. Fuhs</td>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93940</td>
<td></td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Richard J. Priem MS-500-204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cleveland, OH 44135</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Director
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
ATTN: K.B. Chandler
Richard J. Richmond
Huntsville, AL 35812</td>
</tr>
<tr>
<td>1</td>
<td>Calspan Corporation
ATTN: Edward B. Fisher
P.O. Box 235
Buffalo, NY 14221</td>
</tr>
<tr>
<td>1</td>
<td>E.I. duPont de Nemours and Co.
ATTN: L. Werner
1007 Market Street
Wilmington, DE 19898</td>
</tr>
<tr>
<td>1</td>
<td>AAI Corporation
ATTN: I. Barr
P.O. Box 126
Cockeysville, MD 21030</td>
</tr>
<tr>
<td>1</td>
<td>E.N.KI Corporation
ATTN: M.I. Madison
9015 Fullbright Avenue
Chatsworth, CA 91311</td>
</tr>
<tr>
<td>1</td>
<td>Aerojet Solid Propulsion Co.
ATTN: Arthur L. Karsnesky
P.O. Box 13400
Sacramento, CA 95813</td>
</tr>
<tr>
<td>1</td>
<td>Foster Miller Associates, Inc.
ATTN: A.J. Erickson
135 Second Avenue
Waltham, MA 02154</td>
</tr>
<tr>
<td>1</td>
<td>Aeronautical Research Assoc.
of Princeton, Inc.
ATTN: E.S. Fishburne
50 Washington Road
P.O. Box 2229
Princeton, NJ 08540</td>
</tr>
<tr>
<td>1</td>
<td>General Applied Science Labs, Inc.
ATTN: John Erdos
Merrick and Stewart Avenues
Westbury, Long Island, NY 11590</td>
</tr>
<tr>
<td>1</td>
<td>General Dynamics Corporation
Pomona Division
ATTN: Paul L. Boettcher
P.O. Box 2507
Pomona, CA 91766</td>
</tr>
<tr>
<td>1</td>
<td>Atlantic Research Corporation
ATTN: Merrill K. King
5390 Cherokee Avenue
Alexandria, VA 22314</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company
Armament Department
ATTN: M.J. Bulman
Lakeside Avenue
Burlington, VT 05402</td>
</tr>
<tr>
<td>1</td>
<td>Atlantic Research Corporation
ATTN: Kemper E. Eagle
7511 Wellington Road
Gainesville, VA 22060</td>
</tr>
<tr>
<td>2</td>
<td>Hercules, Inc.
Allegheny Ballistics Laboratory
ATTN: Roy R. Miller
John E. Christian
P.O. Box 210
Cumberland, MD 21502</td>
</tr>
<tr>
<td>1</td>
<td>AVCO Corporation
AVCO Everett Research Lab Div
ATTN: D. Stickler
2385 Revere Beach Parkway
Everett, MA 02149</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2 | Hercules, Inc. Bacchus Works
ATTN: Merrill W. Beckstead
Burce D. Hopkins
P.O. Box 98
Magna, UT 84044 |
| 1 | Hercules, Inc. Eglin AFB Laboratory
ATTN: Ronald L. Simmons
Eglin AFD, FL 32542 |
| 1 | IITRI
ATTN: Morton J. Klein
10 W. 35th Street
Chicago, IL 60615 |
| 1 | Lockheed Missiles & Space Co. Inc.
ATTN: J. Linsk
P.O. Box 504
Sunnyvale, CA 94086 |
| 1 | Olin Corporation Badger Army Ammunition Plant
ATTN: Jawaharlai Ramnarace
Baraboo, WI 53913 |
| 2 | Olin Corporation New Haven Plant
ATTN: Ralph L. Cook
David W. Riefler
275 Winchester Avenue
New Haven, CT 06511 |
| 1 | Paul Gough Associates, Inc.
P.O. Box 1614
Portsmouth, NJ 03801 |
| 1 | Propulsion Sciences, Inc.
ATTN: Vito Agosta
P.O. Box 814
Melville, NY 11746 |
| 1 | Pulsepower Systems, Inc.
ATTN: L.C. Eimore
815 American St.
San Carlos, CA 94070 |
| 2 | Rockwell International Corp Rocketdyne Division
ATTN: Joseph E. Flanagan, BA 28
Carl L. Oberg, Dept 589-197-SS11
6633 Canoga Avenue
Canoga Park, CA 91304 |
| 1 | Rockwell International Corp Rocketdyne Division
ATTN: William G. Haymes
P.O. Box 548
McGregor, TX 76657 |
| 1 | Science Applications, Inc.
ATTN: Raymond B. Edelman
23146 Cumorah Court
Woodland Hills, CA 91364 |
| 1 | Shock Hydrodynamics, Inc.
ATTN: W.H. Anderson
4710-16 Vineland Avenue
N. Hollywood, CA 91602 |
| 1 | Thiokol Corporation Huntsville Division
ATTN: David A. Flanagan
Huntsville, AL 35807 |
| 1 | Thiokol Corporation
Wasatch Division
ATTN: John A. Peterson
P.O. Box 524
Brigham City, UT 84302 |
| 1 | Thiokol/Huntsville
ATTN: Dick Hessler
Redstone Arsenal, AL 35808 |
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>Address</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | TRW, Inc. | TRW Systems Group
ATTN: A.C. Ellings
One Space Park
Redondo Beach, CA 90278 | 1 | Brigham Young University
ATTN: L. Douglas Smoot
673 WIDB
Provo, UT 84601 |
| 1 | United Technologies Corporation
ATTN: R.H.W. Waesche
400 Main Street
East Hartford, CT 06108 | California State University
School of Engineering
ATTN: Frederick H. Reardon
6000 J Street
Sacramento, CA 95819 |
| 1 | United Technologies Corporation
Chemical Systems Division
ATTN: Robert S. Brown
1050 E. Arques Avenue
Sunnyvale, CA 94088 | Colorado State University
ATTN: Charles R. Mitchell
Fort Collins, CO 80521 |
| 1 | Universal Propulsion Co.
ATTN: H.J. McSpadden
1800 W. Deer Valley Road
Phoenix, AZ 85027 | Director
Chemical Propulsion Info Agency
The Johns Hopkins Univ (APL)
ATTN: T. Christian
Johns Hopkins Road
Laurel, MD 20810 |
| 1 | Whittaker Corporation
Bermite Division
ATTN: L. Bloom
22116 W. Soledad Canyon Road
Saugus, CA 90024 | Director
Graduate Center of Applied Science
New York University
ATTN: Prof. M. Summerfield
26-36 Stuyvesant
New York, NY 10003 |
| 1 | Battelle Memorial Institute
ATTN: Abbott A. Putnam
505 King Avenue
Columbus, OH 43201 | Pennsylvania State University
Applied Research Laboratory
ATTN: Gerard M. Faeth
P.O. Box 30
State College, PA 16801 |
| 1 | California Inst of Technology
204 Karman Laboratory
ATTN: Fred E.C. Culick
1201 E. California Street
Pasadena, CA 91109 | Pennsylvania State University
Dept of Mechanical Engineering
ATTN: Kenneth K. Kuo
University Park, PA 16802 |
| 1 | Georgia Inst of Technology
Georgia Tech Res Inst
ATTN: Edward W. Price
Atlanta, GA 30332 | Princeton University
Forrestal Campus Library
ATTN: J. Cavney
P.O. Box 710
Princeton, NJ 08540 |
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purdue University</td>
<td>1</td>
<td>University of Massachusetts</td>
</tr>
<tr>
<td></td>
<td>School of Mechanical Engr</td>
<td></td>
<td>Dept of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: John R. Osborn</td>
<td></td>
<td>ATTN: Karl Jakus</td>
</tr>
<tr>
<td></td>
<td>TSPC Chaffee Hall</td>
<td></td>
<td>Amherst, MA 01002</td>
</tr>
<tr>
<td></td>
<td>West Lafayette, IN 47906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Purdue University</td>
<td>1</td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td>ATTN: James A. Condon</td>
<td></td>
<td>Dept of Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td>Lafayette, IN 47907</td>
<td></td>
<td>ATTN: Alva D. Baer</td>
</tr>
<tr>
<td>1</td>
<td>Seton Hall University</td>
<td>1</td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td></td>
<td>Park Bldg, Room 307</td>
</tr>
<tr>
<td></td>
<td>ATTN: A. Celiano</td>
<td></td>
<td>Salt Lake City, UT 84112</td>
</tr>
<tr>
<td></td>
<td>South Orange, NJ 07079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of California</td>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Berkeley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Dept</td>
<td></td>
<td>Director, USAMSAA</td>
</tr>
<tr>
<td></td>
<td>ATTN: M.C. Branch</td>
<td></td>
<td>ATTN: DRXSY-D</td>
</tr>
<tr>
<td></td>
<td>Berkeley, CA 94720</td>
<td></td>
<td>DRXSY-MP, H. Cohen</td>
</tr>
<tr>
<td>1</td>
<td>University of California</td>
<td></td>
<td>Cdr, USAECOM</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td></td>
<td>ATTN: DRSTE-FA, J. Byrne</td>
</tr>
<tr>
<td></td>
<td>AMES Department</td>
<td></td>
<td>DRSTE-TO-F</td>
</tr>
<tr>
<td></td>
<td>ATTN: Forman A. Williams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Jolla, CA 92037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Delaware</td>
<td></td>
<td>Dir, USAMTD</td>
</tr>
<tr>
<td></td>
<td>ATTN: T.C. Brill</td>
<td></td>
<td>ATTN: H. Anderson</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td></td>
<td>W. Rieden</td>
</tr>
<tr>
<td></td>
<td>Newark, DE 19711</td>
<td></td>
<td>S. Walton</td>
</tr>
<tr>
<td>1</td>
<td>University of Delaware</td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>ATTN: Herman Krier</td>
<td></td>
<td>Wpns Sys Concepts Team</td>
</tr>
<tr>
<td></td>
<td>AAB Department</td>
<td></td>
<td>Bldg E3516, EA</td>
</tr>
<tr>
<td></td>
<td>ATTN: Herman Krier</td>
<td></td>
<td>ATTN: DRDAR-ACW</td>
</tr>
<tr>
<td></td>
<td>Transportation Bldg, Rm 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newark, IL 61801</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRAEOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

 Name:

 Telephone Number:

 Organization Address: