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A GLOBAL IONOSPHERIC MODEL
1.0 INTRODUCTION

The purpose of this paper is to describe a global ionospheric model used by NRL to
analyze the performance of high-frequency radar systems. The basic ionospheric model was
developed jointly with the Institute for Telecommunication Sciences, and was primarily based
on numerical maps of ionospheric indices. These numerical maps were derived from reports by
a network of ionospheric vertical sounding stations. Because the network was rather sparse in
the polar region, the numerical maps do not accurately portray the polar ionosphere. The Air
Force Cambridge Research Laboratory has a relatively large polar ionosphere data base which it
has used to derive a set of polar corrections to the numerical maps of the F,-layer critical fre-
quency. These polar corrections are described in Section 3.4 and have been incorporated into -
the ionospheric model used by NRL. Section 5 describes some of the problems to which the
ionospheric model has been applied.

Section 6 provides an atlas of plasma frequency contour maps. This atlas is a graphical
representation of the ionospheric model and will be useful in providing an intuitive feeling for
the model. Some simple graphical raytracing may also be carried out with these contour maps.

2.0 BACKGROUND

For many years numerous organizations, both governmental and private, have been
employing the HF spectrum to communicate point-to-point between long-distance stations, It
was recognized early that HF communication systems were subject to marked variations in per-
formance, and it was hypothesized that most of these variations were directly related to changes
occurring in the ionosphere. Considerable effort was made in the United States, as well as in
other countries, to develop research teams for investigating ionospheric parameters and deter-
mining their effect on the nature of radio waves and the associated reliability of HF circuits.
The investigators soon realized that effective operation of long-distance HF systems increased
in proportion to the ability to predict variations in the ionosphere, since such an ability permit-
ted the selcction of optimum frequencies, antenna systems, and other circuit parameters that
would capitalize on ionospheric variations. With the encouragement provided by these findings,
it was decided that more raw ionospheric data were necessary in order to develop models that
could be used to correctly anticipate ionospheric conditions affecting HF propagation. World-
wide vertical-incidence ionosondes were established which now measure values of parameters
such as f,E, F,F,, f,E, f,F,, and h'F. Worldwide noise measurement records were started
and steps wer . taken to record observed variations in signal amplitude over various HF paths.
The results of this research established that ionized regions ranging from approximately 80 to
600 km above the earth’s surface provide the medium of transmission for electromagnetic ener-
gy in the HF spectrum (3 to 30 MHz). Furthermore, most variations in HF system perfor-
mance are directly related to changes in these ionized regions, which in turn are affected in a
complex manner by solar-activity, seasonal, and diurnal variations, as well as latitude and longi-
tude.

Manuscript submiticd Apiil 10, 1979,
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THOMASON, SKAGGS, AND LLOYD

The Radio Propagation Unit of the U.S. Army Signal Corps provided a great deal of infor-
mation and gridance in 1945 on the phenomena of HF propagation by issuing Technical Report
No. 6 [11. By 1948 a treatise of ionospheric radio propagation [2] was published by the Central
Radio Propagation Laboratory of the National Bureau of Standards. This document outlined
the state of the art in predicting expected maximum usable frequencies (MUF), depicted practi-
cal problems of ionospheric absorption, covered in detail acceptable methods for determining
the MUF for any path at any time, and took into account the various possible modes of propa-
gation by applying principles which were found to work in practice. The model used to make
the MUF predictions em,.loyed the “"two-conirol-point" method and assumed the ionosphere to
be concentric, with refiection occurring only from the regular £ and F; layers.

In 1950 Laitinen and Haydon of the U.S. Army Signal Radio Propagation Agency furth-
ered the science of predicting HF system performance by developing empirical ionospheric
absorption equations and combining them with the theoretical ground loss, free-space loss, and
antenna gain factors. Thus, expected field strengths could be anticipated for radio signals
reflecting from the £ and F, regions, considering the cffect of solar aclivity, seasonal, and diru-
nal extremes. These findings were published in Technical Report No. 9 [3].

The accumulative techniques and methods presented in the cited literature and in a
number of other studies were then combined to establish effective manual methods for predict-
ing the expected performance of HF communication systems; however, these methods were
laborious and time-consuming even when only estimates for the MUF and optimum transmis-
sion frequency (FOT) were needed. To alleviate this problem, electronic computer routines
were developed by such organizations as Stanford Research Institute (1957) [4], Radio Cor-
poration of America (1961), and the Central Radio Propagation Laboratory (1961), all of which
were based upon the established manual prediction methods. The CRPL program [5] was the
first computerized technique that incorporated a numerical coefficient representation of the
ionospheric characteristics [6]. However, only the expected MUF and FOT were predicted,

In 1962 NBS Report 7619 [7] was issued. This report outlined a computer routine that
utilized the then most recent improvenients in the theory of performance predictions, combin-
ing the more predictable ionospheric characteristics with circuit parameters to calculate expected
HF system performance: MUF-FOT, sys.em loss, reliability, and so forth.

In 1966 ESSA Technical Report IER-ITSA-1 [8] was published with an improved electron
density model. In this model the electron density profile along the path was assumed to be ade-
quately represented by two parabolic layers; that is, the £ and F, layers. The height of max-
imum ionization, thickness, and electron density were derived for locations near the points of
actual reflection along the path instead of at control points 2000 km from each end of the path,

Work beyond ITSA-1 was continued in two separate paths, one for communication
analysis and predictions, reported in ITS-78 [9], and another for anzlysis and prediction of the
performance of over-the-horizon (OTH) radar systems, reported in 'wRL Memorandum Reports
2226 [10] and 2500 [11). The electron deusity model described in this report is a descendant of
the routines developed for predicting the performance of OTH radar systems.
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3.0 IONOSPHERIC INDICES MODEL

3.1 Introduction

Prediction of ionospheric indices is used extensively to estimate the performance of long-
distance, HF radio systems and is useful in the design of earth-space communication systems.

The ionosphere exhibits considerable statistical variability. If the minute-to-minute varia-
tions within the hour and the day-to-day variations within the month are averaged, the remain-
ing temporal variations, i.e., diurnal, seasonal, and solar-cycle, become quite well behaved.
These remaining variations characterize what is normally referred to as the quiet ionosphere
because the percentage of disturbed days in a month is usually relatively small.

It is the purpose of this section to review what indices are used to describe the quiet iono-
sphere; tlie next section will describe their use in deriving a complete electron dgnsity profile.

3.2 The Lower Ionosphere
Measurements
Information on electron densities in the lower ioncsphere (50 to 90 km) is very inade-

quate, primarily as a result of limited observations. The technical proticms of observations are
formidable, and the interpretation of measurements extremely difficuit,

Predictions

No D-region indices are included in the present prediction model. The effects of the D
region are accounted for in the electron density model by extrapolating from the £ region using
two exponential tails; this is described in Section 4.2,

3.3 The E Region
Measurements

A large volume of vertical incidence ionosonde data has been collected over about three
solar cycles, and many features of the E region are therefore well known. The minimum vir-
tual height of the £ region and the variation of maximum electron density within this region as
a function of time and geographic location are readily obtained from the icnograms. The
phenomenology of sporadic E has been investigated, but a number of problems remain
unresolved.

The E-region indices which have been systematically scaled from the vertical-incidence
ienosonde records include
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THOMASON, SKAGGS, AND LLOYD

Index Definition

/,E  The critical frequency of the ordinary component of the £ layer; i.e.,

that frequency at which the signal from the ionosode just penetrates the £
layer.

h'E,  The minimum virtual height of the sporadic- £ layer, measured at the point
where the trace becomes horizontal.

J,E,  The maximum frequency of the ordinary component of sporadic £ (Z,;.

I'E The minimum virtual height of the £ layer, measured at the point where

the trace becomes horizontal.

Jul,  The blanketing frequency, i.c., the lowe.. ordinary wave requency at which
the £, layer begins to become transparent, usually determined from the

minimum frequency at which ordinary wave reflections of the first order are
observed from a higher layer.

Predictions

The regular £ layer is predicted using three indices: the montaly median value of critical
frequency, the height ¢f maximum ionization of the layer (#1,,£%, and the ratio of 4, £ to semi-
thickness (y,£). Using a numerical mapping method, Leftin has produced numierical
coefficients representing f,E for computer applications on a worldwide basis. They were
mapped in terms of latitude, longitude, and universal time [12]. The numerical coefficients
were derived from measuremients taken during 1958 (high solar activity) and 1964 (low solar
activity), A linear interpelation procedure was used between the representative data for the
high (sunspot number = 150) and low (sunspot number = 10) solar activily periods to obtain
Jo E estimates at all other phases of the solar cycle.

An examination of monthly median /#'E observations indicates negligible seasonal or geo-
graphic variation in the minimum virtual height of F.region ionization. A typical value 1s 110
km. When the lower region is included as an exponential tail of the £layer, an /1,,E of 110 km
and a value of 5.5 for the ratio (41, E/y,, £) are used.

The medion, upper, and lower dzciles of /, £, wre available from numerical maps [13).
However, because of its probabilistic nature, sporadic £ is not included in the contour maps.

The staistics of the sporadic £ are used when the ionospheric model is used for virtual path
tracing [10]

3.4 The F Region

Measurements

The vertical-incidence ionosonde network, with its long series of measurements over
much of the world, provides the current basis for Ff-region predictions. The following indices

have been systematically scaled from the vertical ionosonde records [14] sithough few stations
report all of them.
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Index Definition

SoF The critical frequency of the ordinary component of the F, layer, i.e.,
that frequency at which the signal fromi the ionosonde just penetrates
the /7, layer.

M(3000) F,  The ratio of the maximum useable frequency for a distance of 3000 km
for the F, layer to the critical frequency of the layer.

JoFy The critical frequency of the ordinary component of the F, layer,
i.e., that frequency at which the signal from the ionosonde just
penetrates the F, layer.

h'F The minimum virtuai height of the Flayer, i.e., the minimum viriaal
height of the night Flayer and the day F layer. It is measured at
the point where the Ftraces become horizontal. (In earlier years, the
minimum virtual height of the night Flayer was often combined with
that of the day F, layer, the combined tabulation being designated h'FF.
In these cases, the minimum virtual height of the F| layer, ' F,, was
tabulated separately.)

h'F, The minimum virtual height of the F, layer, measured at the point
where the F, trace becomes horizontal,

h.Fy The virtual height of the /5 layer corresponding to a frequency f,
where /' = 0.834 f,F,. This is based on the assumption of a parabolic
ionization distribution, which is usually considered justified as an
approximation near the maximum of the F, layer .

Predictions

The F, layer is described by three indices: monthly median values of critical frequency
JoF), height of maximum ionization 4, Fy, and ratio of #,, F, to semithickness y, f,. The
monthly median values of f,F, and the M(3000) F, factors are available ar numerical map
coefficients in terms of modified magnetic dip angle, longitude, and universa: time [15]. The
data for the mapping were from the years 1954 thiough 1958. The solar activity dependence is
accounted for by a linear least squares fit between the high and low Zurich sunspot numbers.
The height of maximum ionization is found by first determining 4, F,, the virtual height of the
F, layer at 0.834 f,F,. A geometric formula h,F, accurate to within 6% was described by
Shimazaki {16):

h,Fy = = 176 + 1490/ M (3000) F,. (3-1

The height of maximum ionization is then found by removing the retardation caused by lower
region ionization:

Il,,,F2 = hl’ Fz — Ret. (3'2)
5
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1'HOMASON, SKAGGS, AND LLOYD

The formulas for retardation depend upon the assumed electron density profile of the
lower layers. For ¢xample, the D~{ ionization can be a parabolic laycr with an exponential
tail, the ['—F valley a linear profile, and the F, layer, if present, a linear or parabolic ledge.
The ratio (1, Fy/y,, Fy) is given by coefficients in terms of sun’s zenith angle and geomagnetic
latitude [8).

The existence of the £ layer is given in terms of a maximum solar zenith angle; i.e., the
Iy layer exists only when the solar zenith angle is less than Z,,. Ilonosonde data were
analyzed to produce a map of Z,,,, [17]:

Zoax= a1+ by R+ (a5 + b aR) cos (X)), (3-3)

where the a,'s and b,s are coefficients from the map for a particular month, R is the Zurich
sunspot number, and X is the modified magnetic dip angle suggested by Rawer [18]. When
solar zenith angle is less than Z,,, f, F1 is then determined by

-/;)Fl = a1, + [)I R + ((12 + bZR) COS x + ((13 + b3R) 0082X (3-4)

where the a's and b's are coefficients from a map for the particular month and x is the solar
zenith angle. The height of maximum ionization (1, F)) is given by

hyFy = 165 + 0.6428 x, (3-5)

where x is given in degrees. The ratio (4, F\/y,F)) is assumed to be 4. The values thus
derived for /1, Fy and y,, F; are only tentative. If the height of the F, layer at f,F, is lower than
hyFy, then h, Fy and y,, Fy are adjusted.

In the fall of 1975, NRL received from Terrance Elkins at the Air Force Cambridge
Research Laboratory a computer deck containing software which could be used to "correct” the
S, Fy coefficients provided by the ITS median model [6]. The polar correction software received
from AFCRL has been adapted for use with the NRL ionospheric model., This software pro-
vides corrections to f,F; as a function of magnetic index (K,), day of the year, universal time,
and geographic location. The polar corrections to the ITS median model are described in detail
in AFCRL Technical Report TR-75-0549 [19]. They are summarized below.

The first correction applied is @ K, correction where 8, the correction factor, is a function
of K, only. The K|, correction is global. All of the other correction factors are applied only in
the polar region. The equations for the K, correction are

SoFa (corrected) = f, Fy(1 = 8), (3-6)
8 =0.025Xy - 0.1, 3-7

where the term Xy is determined by the following:

If K, <03, then Xy = I;
03 € K, <13, Xy =2
13 € K, <23, Xy =3
23 € K, <133, Xy =4
33 £ K, <43, Xv =5
43 € K, <63, Xy = 6;
6.3 < K, Xy =T

6
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Thus, a K, value of 3, which represents a normal magnetic activity level, produces no correc-
tion. Higher magnetic activity reduces f,F,. A maximum reduction of 7% occure when K, 2
6.3.

: The auroral oval correction to f,F, is described in terms of magnetic activity (K,),

f corrected geomagnetic 1ime, and corrected geomagnetic latitude. Software for determining

’— corrected geomagnetic coordinates was also obtained from AFCRL. The corrected geomagnetic

, coordinate system used was described by Gustafsson [20]. For the auroral oval, the correction
factor « is defined such that

; SoFy (corrected) = f,F5 (1 + o), (3-8)
where
o = 0.4946ke™ 125K, (3-9)

Here, eis the Napierian base and & is defined by

k = =9l . (3-10)

Xy

In Eq. (3-10), \ is the corrected geomagnetic latitude in degrees and ¢ is the equatorward
houndary of the auroral oval in degrees. X, is a function of the magnetic activity such that
{ 4 X <6

X\=17-K, (3.11)

The auroral oval correction is applied if the corrected geomagnetic latitude of the location {\) is
greater than or equal to ¢, This equatorward boundary of the oval is described by

$=119-25K,~-1, (3-12)
where ¢ must be within the limits gy < ¢ < ¢y, with
dy=0689-K,-r, (3-13)
da =709~ K, ~ 7, (3-14)
7 =51cos (15 (7, ~ 1)). (3-15)

Here. T is the corrected geomagnetic time in decimal hours (angle is in degrees).

The trough correction is the next w be applied. This is used only equatorward of the
aurora! oval and only when the solar zenith angle x is greater than 90° (nighttime). The trough
corrneiion is not applied for cerrected geomagnetic times 7, in the range 6 < 7, < 18, For the
trough: correction the form of the correcticn factor « (applied as in Eq. (3-8)) depends on the
value of k (defined in Eq. (3-10}):

L o = 1,020 (o kS ), (3-16)
; oAl

. a = 1.6487 1ike ¥ {for & € 1), 3-17n
X where

, ’Z ty = 0.2(1 + cos(2w D/365)) 110 (3-18)
‘a and D is the day of the year. The term vy is defined by Eqgs. (3-19) and (3-20):
5
3
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THOMASON, SKAGGS, AND LLOYD

y=T1,-3{or0< 7T, £6), (3-19)
y=27—-T,(for 18 £ 7, £ 24). (3-20)
Note that only these two intervals need ve defined since the trough correction is not applied in
the interval 6 < T, < 18.
In the interval 90 < x (solar zenith angle; < 94.6, the factor 1y is reduced by

n=t &-——;690 (3-21)

to provida a smooth transition between the normal ionosphere and the trough.

3.5 Summary

The ionospheric .ndices used in this model are a minimum selection frons those available.
The A'F, £, maps are not used because the frequency at which they appear is uot available, so
it iz not possible to properly adjust for retardation, In fact, if 1he retardation is not correctly
accounted for, the bottom of the F layer occasionally will be calculated as higher than /4, F,.
Therefore, the map of the ratio (4, Fy/y,.F2) is used to give consistent results. The maps of

J.Fy and ratio K, Fy/y, Fy are froin the same data base and zre statistically consisten:. Using
the ratio guarantees that y,, F, is positive.

4.0 ELECTRON DENS" ¥ PROFILE MODEL

4.1 Introduction

Section 3 described how a set of indices describing the vertical electron density profile is
generated, This section will describe the procedure used (o generate a vertical electron density

profile from this set of indices. The electron density in terms of the plasma frequency squared
is given by

N =124 x 100 £y2, (d-1)

where N is the number of electrons per cubic meter and fy is the plasma frequency in MHz.

Just orior to exiting from the routine, the profile is converted back to plasma frequency vs
height for use in the contour mapping routines.

4.2 D Region

The profile is generated in two steps. First, the coefficients which describe the various
segments are calculated and then the electron density profile is generated from these

coeflicients. The lower D region is considered first. The lower D layer (40 to 65 km) is given
by

fNZ (/l) = ff/ (40) ‘,0~|2(II—40). (4_2)

where f5,(40) is the plasma frequency at 40 km, which is assumed to be 2.01 x 1072 MHz, and
h is the height. This corresponds to an electron density of 5 electrons per cubic centimete..
This model of the lower D region was suggested by Nestorov {21].
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The oxpression used to describe the upper D region (65 to 98 km) is an adaptation of the
exponential model suggested by Nestorov:

Ia 2(p) = fN2(65) ok (=65) (4-3)

Rather than tie the upper exponential to the solar zenith angle as Nestorov did, the exponential
coefficient A is chosen to merge the exponential upper D region with the E-region model. Thus
the upper D-region model follows the diurnal and seasonal variations of the [-region model.
The expression for X is

= 1n{fy2(98)//y*(65))/(98 — 65), (4-4)

where fy(€51 is the plasma frequency at 65 km from the lower D-region model. fy(65) is 8.98

1072 MHz. This corresponds to about 100 electrons per cubic centimeter. fy(98) is found
by evaluating the E-region parabola at 98 km. The slopes of the equations used for the D layer
are not continuous at the two merge points (65 and 98 km). This produces cusps at these
points in the virtual height profile. However, the clectron density is sufficiently low at these
points so that the cusps do not significantly affect thz direction of rays in the high-frequency
range.

4.3 E Region

The ionospheric indices used are f, £, median (ordinary-ray) critical frequency of the £
layer; h,E, height of maximum ionization of the £ layer (110 km); and p,E, the [-layer
semithickness (20 km), The eclectron density (proportional to plasma frequency squared) is
modeled as a parabola:

h, E~h
2 = ) 2 _lm -
Snih) = (f,E) {1 { o E

2
iu (4“5)
where fy (/) is the plasma frequency at a height /.

4.4 E — F, Valley

Normally there is a valley in the distribution of electron density between the £ and F,
regions. Only the total density in this valley is modeled, not the shape. In this area betwzen
the £ and F; regions the electron density is modeled by a straight line betwcen a point oa the
top side of the F-region parabola and a point on the lower side of the Fy-region parabola.
These two points are both defined in terms of the f,E. The point on the top side of the E-
region parabola is at 0.8516 f,£ The point on the bottom side of the Fy-region purabola is at
0.98 f, £. The height &, of the upper point is

0.98 f,
hu = hmlz ym' ‘/ - l j . (4-6)
The height /i1, of the lower point is
0.8516 £,
hm[: +ymE Vl - [ f Ej ] (4‘7)

The constants 0.8516 and 0.98 have been chosen to represent as necarly as possible measured
deptias of the valley.
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4.5 F; Region

The Fy layer is described by three parameters: the critical frequency (f,F)), the height of

maximum ionization (4, F,), and the semithickness (y, /). The F| layer taay be either linear
or parabolic. If linear,

fN?(h) = Sl (h - hmFI + ym['ll)' (4'8)
where 8, is the slope defined by
(o FD?
5, = Ll (4-9)
s
The term yg is defined by
Ys=ly = hy,Fy+ 3, F (4-10)
or
ys=1
whichever is larger. The term /1, is height in the Fy layer at f, Fy:
: 2
. jnFI -
1’2 =hmF2—ymI'2 I~ [m . @-11)
If the F layer is parabolic,
Sudn) = (L) |1 [ Ay = 1) (4-12)
1) = (/[ - 1. -12)
N I \ )’mFI

The choice of a linear or parabolic shape to the clectron density of the £ wayer is made by com-
paring the height of maximum ionization of the Fy layer (1, F)) to the Fj-tayer height at £, F
(h, as defined by Eq. (4-11)). If hyis higher than A, £y, then the parabolic layer, Eq. (4-12), is
ased for the F| layer, 'f /15 is not higher than /i, Fy, the slope S} defined by Eq. (4-8) is com-
pared with the slope £, of the F, layer at the point /iy (frequency is £, F)):

2(,/‘,,1"2)2 (I’mFZ - ”2)
(.VIMF2)2 . . (4.13)

if the difference (Sy — §,) is positive, the linear F) layer is used. If the difference is negative,
the parabolic layer is used.

4.6 F; Region

The ionospheric parameters used for this region are the median critical frequency (/,F5),

the height of maximum ionization (h,,F,), and the semithickness (y,,/;). The nose of the F,
layer is described by

b Fy = h )
) = (o |1 = [2ml2 (414)
J"ln]'Z
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The top side of the F, region is modeled by merging a single exponential to the top of the F,
fayer at a height /1, determined by the relation

hy = h,Fy +0.25 y,, F,. (4-15)

Above height /i, the plasma frequency fy(#) is described by the equation

Il-fl

p——

k(/;,Fz)ze l *
2yl

(4-16)

sz(h) =

where
k = 1.875 y, Fy (4-17)

This top-side model is an adaptation of one developed by Bent, et al. [22].

The value of & is chosen to make the Fj-region parabola (Eq. (4-14)), the top-side
exponential \Eq. (4-16)), and their derivatives continuous at #,, the merge point. This is done
to keep from causing a cusp at the merge point in the virtual height profile.

5.0 APPLICATIONS
5.1 Anomalous Propagation Diagnostics

Plasma frequency contour maps can be used to predict when anomalous propagation con-
ditions may occur. For example, the contour map shown in Fig. 1 exhibits a definite positive
tilt from the origin out to about 2700 n.mi. Line of sight at zero elevation angle is shown on
the contour map with a broken line. Since low-elevation-angle rays are more likely to become
trapped, tilts in the immediate vicinity of this broken line are critical for trapping during the
first refraction. An estimate of the operating frequency which will produce elevated modes for
a particular contour map can be obtained by finding the highest plasma frequency encountered
by the zero elevation-angle line of sight and using the well known secant law to estimate the
equivalent oblique frequency f,:

Jo = Jy sec &, (5-1)

where f. is the vertical plasma frequency and ¢ is the angle between the ray line of sight and
the zenith at the true height of reflection. When the elevation angle is zero, the angle ¢ may

be found by solving

. R
sin ¢ = - 7 (5-2)
whuo ¢+ o earth radius and £ is the true height of reflection. ¥uking use of the identity
sin ¢ + cos $ = I, Eq. (5-1) may be rewritten
Jo=kf., (5-3)

where K is defined by the expression

-y -]

11

-03

(5-4)
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Following the broken line in Fig. 1 upward from the origin, we find that the vertical plasma fre-
quency increascs until it reaches a maximum of about 5.5 MHz at 280 km. Equation (5-3) may
be used to predict the critical frequency for the zero-elevation-angle ray. In this case we would
estimate that at operating frequencies above 19.2 MHz all rays would penetrate and that at
operating frequencies below 19.2 MHz the low-angle rays would be refracted. Because of the
positive tilt in that region of the 1onosphere where these rays are refracted, the low-angle rays
will probably be tilted into an elevated propagation mode.

Ths trajectory of the zero-elevation-angle ray may be predicted in greater detail by using a
raytracing program with a numerical representation of the contour maps. The contour map
shown in Fig. 1 was used with the raytracing routine developed by Jones and Stephenson [23]
to trace the low-elevation-angle rays. Interface between the raytracing program and the
plasma-frequency centour map was accomplished by an adaptation of an interpolation routine
written by ARCON Corporation for AFCRL (24], This routine supplies plasma frequency and
the required spacial derivatives when a grid of plasma-frequency vertical profiles is input. For
an operating frequency of '19 MHz and the ionosphere shown in Fig. 1, the raytracing program
predicts that the zero-elevation-angle ray will reach a maximum altitude of 276 km at 1170
n.mi. before being refracted back toward the earth. During the first refraction the ray will be
tilted sufficiently to miss the earth. The point of closest approach of the ray to the earth
between the first and second refractions is 113 km at 2000 n.mi. Figure 2 shows graphically the
trajectory of rays between 9° and 10° elevation.

The point of all this is not that the propagation mode predicted will be duplicated precisely
but that elevated modes of the type predicted by the raytracing routine may be expected for the
combination of operating conditions examined.

When used for raytracing, the ionospheric model must be used with a magnetic field
model. Typically, the earth-centered dipole model provided with the Jones-Stephenson raytrac-
ing program is employed. In this model the gyrofrequency f}; is given by

3
R
1 29 0.5, -
Y (1 + 3 cos?) (5-5)

Su=rSu

where fj; is the gyrofrequency at the equator on the ground (typically 0.8 MHz); R is the radius
of the earth; /1 is the height above the earth; and 0 is the geomagnetic colatitude. The magnetic
dip angle /is given by

tan / = 2 cot 0. (5-6)

Occasionally the calculation of absorption in conjunction with raytracing is desired. The
Jones-Stephenson raytracing routine provides this option. The software package supplied with
the basic raytracing routine includes several collision frequency models. Typically the simpie
exponential profile (CXPZ) is used where the collision frequency v is defined by

~alli=1
b = poe all :0)' (5-7)

where /1 is height above the ground; hg is the reference height (typically 70 km); vq is the colli-
sion frequency at the reference height (typically 8 x 10° collisions per second); and « is the
exponential decay coefficient (typically 0.16).
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Comparisons have been made between the loss predicted by the raytracing routine and
that predicted by virtual path tracing. For example, for a test case where the sunspot number
was 28 and the solar zenith angle waz 63°, the virtual path tracing model [10] predicted 39-dB
one-way nondeviative (D region) abscrption loss for a 1° elevation-angle ray at 5§ MHz. This
same program also calculates deviative absorption which occurs as the ray penetrates deeper
into the ionousphere and deviates from a line-of-sight path. For the test case, the deviative
absorption was 6 dB, making a total absorption loss of 45 dB. Using the ionospheric model
described in this report with the Jones-Stephenson raytracing routine, the total absorption loss
calculated for the test case was 41 dB. This level of agreement between the two programs gives
some confidence in the D-region models used. However, there remains one major defect in
using the Jones-Stephenson raytracing routine with this ionospheric model for loss calculations.
Because of the probabilistic nature of the sporadic £, this layer is not handied correctly by the
raytracing routine, which is basically deterministic. In the virtual path tracing program a
separate loss calculation is made for the effect of sporadic £ This loss is termed obscuration
loss and is applied to F-layer modes in the virtual path tracing program. The addition of this
feature to our version of the Jones-Stephenson raytracing routine is planned.

5.2 High-Frequency Radar System Performance Prediction

The global ionospheric mode! may be used to predict the performance of high-frequency
OTH radar systems. This requires that a model of the radar be coupled to the ionospheric
model. NRL Memorandum Reports 2226 [10] and 2500 {11} describe how an carlicr version of
the ionospheric model was used for this purpose. This procedure makes use of virtual path
tracing and therefore will not describe as completely the propagation modes associated with any
specific set of conditions. This is especially true during transition when anomalous propagation
modes exist. For these modes, the ionospheric mode!l should be used with the Jones-
Stephenson raytracing program as described in the previous section.

6.0 ATLAS OF PLASMA FREQUENCY CONTOUR MAPS.

To provide a graphic picture of how the plasma frequency varies as a function of lacation,
season, time of day, and magnetic activity, a set of plasma frequency contour maps are ir<luded
(Figs. 3-38). All of these contour maps begin at the equator, follow the 69°W meridian north
through the north geographic pole, and then south along the 111°E meridian back to the equa-
tor. Thus each contour map provides a cross section of the entire northern hemisphere. Maps
are provided for three seasons, equinox (represented by March), summer (represented by
June), and winter (represented by December). For each season, contours were mapped for
0500 UT, 1100 UT, 1700 UT, and 2300 UT. These times correspond roughly to midnight,
morning, noon, and evening local time along the 69° meridian, For each combination of time
and season, contours were drawn without the polar corrections, and with the polar corrections
for two levels of magnetic activity (K, = 3 and K, = 7).
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