LIVER REDOX RESISTANCE,
A Dynamic Model of Gluconeogenic Lactate Metabolism

by

Alan T. James
Princeton University

Technical Report No. 146, Series 2
Department of Statistics
Princeton University
March 1979

Research supported in part by contract with the Office of Naval Research, No. N00014-75-C-0459, awarded to the Department of Statistics, Princeton University, Princeton, New Jersey.

*On leave from The University of Adelaide, Adelaide, South Australia.

This document has been approved for public release and sale; its distribution is unlimited.
Summary

For isolated hepatocytes from starved rats metabolising lactate, the time curves of pyruvate and glucose produced and lactate remaining are fitted with elementary mathematical functions by simple statistical procedures. The fitted functions are very close approximations to the solutions of differential equations which express the following model:

(i) The rate of net pyruvate production, which involves hydrogen disposal, is proportional to the rise of cytosolic redox potential.

(ii) Glucose is produced at a rate proportional to the concentration of pyruvate, the initial substrate in the chain of reactions.

(iii) The lactate remaining is that part not transformed into pyruvate or glucose less a small amount progressively transformed into other substances or catabolised. Since the rise of redox potential is measured in volts and the net hydrogen flux from the lactate can be expressed in amps of electron flow involved, the ratio in ohms is called a redox resistance. The estimated flux curves for hydrogen and gluconeogenic intermediates are shown.

1. Experimental

Lactate was added to suspensions of isolated hepatocytes from starved rats to make up 2 ml solutions of approximate concentrations 10 mM Lac, 5 mM Lac, and 2.5 mM Lac. After incubations during times up to an hour, pyruvate, glucose and lactate were assayed. The data are from unpublished results of Berry et al. (M. N. Berry, personal communication). Details of cell preparation, incubations and analyses have been published elsewhere (Berry and Kun, 1972). The results are given under the heading “obs.” in Tables 1A, 1B and 1C and as the plotted points in Figures 1A, 1B, 1C, 2 and 3.

2. Introduction to the Analysis

The aim of the paper is to develop and fit a simple mathematical model, perhaps the simplest, which will fit the data to within its order of accuracy. Such a model supplies a very precise statistical analysis and summary of the data in much sharper focus than crude averages and yields estimates of instantaneous metabolic fluxes.

Improved data will undoubtedly require modification of the model, either refinement or its complete replacement.

Furthermore, while the model, together with the data which it fits, establishes certain quantitative relations between the variables with considerable precision and certainty under the conditions of experiments, the relations may be open to interpretations other than the ones that suggested the model. This is particularly true of causal interpretations.

A mathematical model of this “simplicity” may well fit other situations, unrelated except for the abstract mathematical relations. It illustrates the mathematical and statistical problems which can arise from even a simple model and how they can be solved.

3. Model

Net pyruvate production requires disposal of the hydrogen from the lactate. It was conjectured that the rate would depend upon the lactate pyruvate ratio. The data indicated something approximating a logarithmic relation, which, according to the Nernst equation, can be interpreted as the redox potential. Hence, we postulate:

$$\frac{dP}{dt} = a \ln \frac{L/P}{K},$$

where L and P are the amounts of lactate and pyruvate.
The constants α and κ have to be estimated. The latter is the "equilibrium" value of L/P of about 7, at which net pyruvate production ceases.

The slight delay in gluconeogenesis and subsequently increasing rate suggested that the rate of glucose production might depend upon pyruvate levels, because carboxylation of pyruvate is the first reaction in the chain.

An attempt to fit a Michaelis-Menten relation between rate of glucose production and pyruvate gave a large, rather indeterminate value of the MM constant K_m. Since large values of K_m were consistent with the data, it was decided to take K_m as infinity, thereby simplifying the relation to a linear one,

$$\frac{dG}{dt} = \beta P$$

which, in fact, suffices to fit the data. G is the amount of glucose.

Since higher initial levels of lactate yield lower values of β, this simple relationship may well be regarded an approximation to a more complex situation.

Nevertheless, the fit to glucose as well as to the pyruvate can be used to calculate the residual lactate,

$$L = L_0 - P - 2(G - G_o) - \gamma t.$$ \hspace{1cm} (3)

The constants L_0 and G_o are the initial lactate and glucose and, of course, two molecules of lactate make one molecule of glucose. The last term allows for a slight but significant amount of carbon unaccounted for by the pyruvate and glucose, which for simplicity is taken as proportional to time with a constant γ to be estimated. Some carbon may be catabolised, but, rather, the unaccounted carbon may go into the formation of other substrates, particularly replenishment of the Krebs cycle.

4. Fitting the Model

For prescribed initial values and constants, the three equations must determine the three variables as unique functions of time, $P(t), G(t), L(t)$.

However, although the model may be considered unduly parsimonious, a direct attempt to fit the relations by estimating the constants will run into three very serious difficulties:

(i) The differential equations are nonlinear and hence will require numerical methods of solution.

(ii) There is a singularity at $t = 0$, viz., $L/P = \gamma$.

(iii) The functions obtained as solutions are nonlinear functions of the constants or parameters, i.e., we have nonlinear parameters which will require iterative estimation.

Iterative estimation of parameters using numerical solution of differential equations is a complex operation that could easily go awry, and there are reasons why it might; namely, biological data involving intact cells is subject to a considerable coefficient of variation, in this case about 8%, and has occasional aberrant values or outliers. In addition, the model needs to be checked against the data from stage to stage as it is being fitted to see that it is appropriate.

The problems were bypassed by Dr. A. R. Griewell's discovery of a further empirical relation approximately numerically consistent with the model, namely, $\ln(L/P)$ is approximately linearly related to $\ln t$. See Figure 4.

Substitution in equation (1) yields

$$\frac{dP}{dt} = \beta_1 + \beta_2(1 + \ln t),$$

which integrates to

$$P = \beta_1 t + \beta_2 t \ln t.$$ \hspace{1cm} (4)

Hence, pyruvate can now be fitted by multiple linear regression of P on t and $t \ln t$, yielding the fitted curves shown in Figures 1A, 1B and 1C.

During the second half hour, the pyruvate curve for 2.5 mM Lac has fallen steadily. As the model will not fit this part of the curve, the fit has been truncated in this case shortly after the maximum. The reason for the restriction of the model to high redox states is that some completely different regulatory
mechanisms appear to be involved for low redox states of the cytosol when hydrogen has to be shuttled out of the mitochondrion.

The second differential equation for glucose can now be integrated to yield
\[G = G_0 + \beta I(t) \]
where \(I(t) \) is the integrated pyruvate given by
\[
I(t) = \int_0^t P(t) \, dt = \int_0^t \beta_1 t + \beta_2 t \ln t \, dt = \frac{1}{2} \beta_1 t^2 + \frac{1}{2} \beta_2 t^2(\ln t - \frac{1}{2}).
\]
The estimates \(\beta_1, \beta_2 \) can be substituted for \(\beta_1, \beta_2 \) and \(G_0 \) and \(\beta \) estimated by linear regression of \(G \) on \(I(t) \) yielding estimates \(\hat{G}_0, \beta^* \), shown in Table 2, and fits shown in Figures 5A, 5B, and 5C. Where different initial concentrations of lactate have been used, the slopes \(\beta \) prove to be different, but a common value \(\hat{G}_0 \) is fitted using concurrent regression.

Finally, from equation (3) we have
\[
L + P + 2(G - G_0) = L_0 - \gamma t.
\]
Hence we can estimate \(L_0 \) and \(\gamma \) by substituting the observed lactate and fitted pyruvate and glucose in the lefthand side and regressing on \(t \); see Figure 6 for plots of lefthand side against \(t \) and Figure 3 for the fitted lactate.

5. Checks upon the Approximation

How closely does our approximate solution satisfy the original differential equations? The answer is given by calculating
\[
P^* = b_1^* + b_2^*(1 + \ln t)
\]
from our fit and plotting against \(\ln(L/P) \) also calculated from our fit and seeing if it yields a straight line. Figures 7A, 7B, 7C show it is very good when \(P^* \) is large. The slope yields an estimate of \(a \) and the point of intersection the ordinate yields an estimate of
\[\eta = \ln \eta. \]
A more critical verification is given in the next section.

6. Exact Numerical Solution of the Differential Equations

One can use the fact that \(x = L \) is approximately linear in \(t \) and \(y = \ln(L/P) \) is linear in \(\ln t \). In terms of \(x \) and \(y \), the differential equations become
\[
\begin{align*}
x' &= -a(y - \eta) - 2b P(x, y) - \gamma \\
y' &= x' - \frac{a(y - \eta)}{P(x, y)}
\end{align*}
\]
where \(P(x, y) = x \exp(-y) \), and \(x' \) may be calculated from the first differential equation and substituted in the second.

A numerical solution uses steps of \(\Delta t \) for \(x \) and \(A \ln t = \ln((t + \Delta t)/t) \) for \(y \), since \(\frac{dy}{dt} = ty' \).

For the 10 mM data of experiment 1 for which the estimates are
\[
\begin{align*}
a: \ a &= 0.0303 \\
b: \ b &= 0.030191 \\
c: \ c &= 0.133 \\
\eta: \ \eta &= 1.854
\end{align*}
\]
the differential equation was solved using the fitted regression values at \(t = 30 \) as initial values because there is a singularity at \(t = 0 \). The results of the solution are shown in Table 3 and Figures 8, 9, 10.

If we assume \(x' \) is exactly linear in \(t \) and \(y' \) in \(\ln t \), we obtain a relation of the form
\[
P = \beta_3 t^\rho + \beta_4 t^{1+\rho}
\]
which agrees almost exactly with
\[
P = \beta_1 t + \beta_2 t \ln t.
\]
7. Interpretation of the Constants

Some care is worthwhile in the choice of the functions of the constants or parameters which enter into the model. Initially, one uses β_1, β_2 for the pyruvate because it is a simple linear function of them and they can be estimated by linear regression. However, β_1 is not very readily interpreted, as its complicated transformation under change of scale indicates (see Appendix I). Instead, the maximal value t_{max} of t at which P reaches its maximum seems more meaningful:

$$ t_{\text{max}} = \exp \left(-\frac{\beta_1}{\beta_2} - 1 \right) . $$

The maximum value $P_{\text{max}} = P(t_{\text{max}})$ is a meaningful parameter to go with it, but as its estimate is strongly correlated with t_{max}, instead, we use the average rate of increase of pyruvate to the maximum

$$ P_{\text{max}} = P_{\text{max}}/t_{\text{max}} = -\beta_2 $$

as illustrated in Figure 11. Table 2 gives estimates of t_{max} expressed in liver g.m. wet wt. mins. as $t_{\text{max}} = w_{\text{max}}$ where $w =$ liver dry wt. in g.m.s. \times 3-77, and of P_{max} in mols/g.m. wet wt./min.

In terms of these parameters, the model, or rather the approximation to it, has a more meaningful expression

$$ P = P_{\text{max}} \cdot \ln \left(e^{t_{\text{max}}} / t \right) $$

where e is base of natural logarithms.

We can then write for the integrated pyruvate

$$ I = \frac{1}{2} t^2(\beta_1 + \beta_2(\ln t - \frac{1}{2})) $$

$$ = \frac{1}{2} t(P + \frac{P_{\text{max}}}{t_{\text{max}}} t) . $$

Since glucose is given by

$$ G = G_0 + t \alpha , $$
on substitution in the lactate equation we have

8. Calculation of κ and α

We need them in terms of L_0, t_{max}, P_{max}, β and γ. If $L_{\text{max}} = L(t_{\text{max}})$ is the value of L at t_{max} (not to be confused with the maximum value of L which is, of course, the initial value L_0), then the normal lactate/pyruvate ratio, κ, is given by

$$ \kappa = \frac{L_{\text{max}}}{P_{\text{max}}} = (L_0/t_{\text{max}}) - \gamma) / P_{\text{max}} - (3/2) \beta \cdot t_{\text{max}} - 1 . $$

Differentiating (4), we have

$$ P' = P_{\text{max}} \cdot \ln(t_{\text{max}}/t) . $$

Combining this with the differential equation

$$ P' = \alpha \ln \left(\frac{L}{P} \right) $$
yields

$$ \ln \left(\frac{L}{P} \right) = \frac{P_{\text{max}}}{\alpha} \ln(t_{\text{max}}/t) . $$
i.e.,

$$ \alpha = P_{\text{max}} \cdot \ln(t_{\text{max}}/t) / \ln \left(\frac{L_{\text{max}}}{P_{\text{max}}} \right) . $$

The constancy of the righthand side follows from the combination of the original differential equation model with our approximation.

At $t = t_{\text{max}}$ the righthand side becomes indeterminate as its numerator and denominator both vanish, and likewise at $t = 0$, they both become infinite.

To evaluate α we choose a value in between. The value $t_1 = t_{\text{max}}/e$ seems convenient. Putting

$$ P_1 = P(t_1) = 2 P_{\text{max}} \cdot t_1 $$

$$ L_1 = L(t_1) = L_0 - \gamma t_1 - (\frac{3}{2} \beta t_1 + 1) P_1 , $$

we can calculate

$$ \alpha = P_{\text{max}} \cdot \ln \left(\frac{L_1}{P_1} \right) . $$

Estimates are given in Table 2.
9. Liver Redox Resistance

By using the Nernst equation

$$\Delta E = 0.013 \ln \left(\frac{L/P}{k} \right) \text{ volts}$$

and expressing P in coulombs of reducing electrons that have been shed by L using $2F = 193000$ coulombs/mol, we can write

$$P' = \frac{0.013}{\rho} \ln \left(\frac{L/P}{k} \right) = \frac{\Delta E}{\rho}.$$

If P' is expressed in coulombs/sec, then ρ will be in ohms. Hence we can write ρ, the liver redox resistance, as

$$\rho = \frac{0.013}{a} \text{ ohm gram liver wet weight}.$$

It comes to about 8 ohm gram liver wet weight. ρ is estimated by r^*, as given in Table 2.

An 8 ohm gram wet weight redox resistance implies a shuttle of one milliamp of reducing equivalents per gram wet weight per 8 millivolts rise of redox potential. Since a milliamp corresponds approximately 0.3μmol/sec, it would take a rise of 27 mV in the redox potential to shuttle one μmol H_2/min/gram wet weight.

The relation is only asserted under the conditions of the experiment, which include an adequate oxygen supply and no exogenous lipids or other source of reducing equivalents other than the high lactate, no exogenous ammonia, etc.

10. Metabolic Flux Dynamics

The flux of the 3-carbon precursors of glucose must be twice the rate of glucose production, G', i.e.,

$$2G' = 2P = 2\rho P_{av} \cdot \text{wt} \cdot \left[1 + \ln \left(\frac{t_{max}^*}{\text{wt}} \right) \right]$$

where wt = liver dry weight in grams $\times 3.77$, and the flux of the hydrogen shuttle must be

$$P' = P_{av} \cdot \ln \left(\frac{t_{max}^*}{\text{wt}} \right),$$

both fluxes being in mols/gram. liver wet wt/min. The aspartate transport out of the mitochondrion due to both processes will be their sum.

$$2G' + P'.$$

The fluxes may be estimated by substituting the estimates of the constants given in Table 2 and are shown in Figures 12A, 12B, 12C.

The estimates of the fluxes are only first order approximations in that they would not be accurate enough to determine the slow change over the hour of the amount of an intermediate metabolite as the difference between the influx and efflux. Nevertheless, from the fluxes, it may be possible to infer the time curves of some substrate concentrations by enzyme kinetics and thereby of others by equilibrium constants and redox potentials.

11. Discussion

The fitting of time curves by elementary statistical means, as exemplified in the paper, supplies a more accurate and efficient extraction of information than curves drawn by eye, allows a critical comparison between samples, and, in future, comparison between treatments and controls. It yields interpolated values for times not observed. Integrals can be calculated to relate to accumulations, e.g.,

of glucose, and derivatives yield instantaneous fluxes. The enhanced precision of the analysis should help to unravel the complicated phenomena of metabolic dynamics and perhaps discriminate between conflicting theories.

The elementary fitted functions are close to approximations to the solutions of differential equations, based on a model which relates the flux of the hydrogen shuttle to the cytosolic redox potential. Under the conditions of these particular experiments, they appear to be proportional. The constant of proportionality is the redox resistance, a perhaps important physiological parameter. It would be interesting to know if pretreatment of the rat can alter it.
ACKNOWLEDGEMENT

The data in this paper are unpublished results of Professor M. N. Berry and Dr. A. R. Grivell of the Department of Clinical Biochemistry, Flinders Medical Center, The Flinders University of South Australia. The author acknowledges with gratitude their permission to quote it.

REFERENCES

<table>
<thead>
<tr>
<th>EXPERIMENT No. 1 - Liver Dry Weight 0.01685 g.</th>
<th>10 mM. Lac.</th>
<th>5 mM. Lac.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>P</td>
</tr>
<tr>
<td>min. obs.</td>
<td>fit.</td>
<td>obs.</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.44</td>
<td>0.425</td>
</tr>
<tr>
<td>15</td>
<td>0.89</td>
<td>0.891</td>
</tr>
<tr>
<td>30</td>
<td>1.29</td>
<td>1.298</td>
</tr>
<tr>
<td>60</td>
<td>1.62</td>
<td>1.627</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.5 mM. Lac.</th>
<th>10 mM. Lac.</th>
<th>5 mM. Lac.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>P</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.27</td>
<td>0.296</td>
</tr>
<tr>
<td>15</td>
<td>0.50</td>
<td>0.478</td>
</tr>
<tr>
<td>30</td>
<td>0.43</td>
<td>0.437</td>
</tr>
</tbody>
</table>
TABLE 1C. Observed and Fitted Values of Pyruvate, Glucose and Lactate in μ mol.

<table>
<thead>
<tr>
<th>EXPERIMENT No. 3 - Liver Dry Weight 0.01638 g.</th>
<th>10 mM. Lac.</th>
<th>5 mM. Lac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>0</td>
<td>0.016</td>
<td>0.175</td>
</tr>
<tr>
<td>5</td>
<td>0.37</td>
<td>0.418</td>
</tr>
<tr>
<td>15</td>
<td>0.027</td>
<td>0.885</td>
</tr>
<tr>
<td>30</td>
<td>1.42</td>
<td>1.307</td>
</tr>
<tr>
<td>45</td>
<td>1.51</td>
<td>1.553</td>
</tr>
<tr>
<td>60</td>
<td>1.68</td>
<td>1.686</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.5 mM. Lac.</th>
<th>P</th>
<th>G</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.017</td>
<td>0.183</td>
<td>0.389</td>
</tr>
<tr>
<td>5</td>
<td>0.364</td>
<td>0.309</td>
<td>0.39</td>
</tr>
<tr>
<td>15</td>
<td>0.472</td>
<td>0.494</td>
<td>0.633</td>
</tr>
<tr>
<td>30</td>
<td>0.454</td>
<td>0.446</td>
<td>1.12</td>
</tr>
<tr>
<td>Experiment 1</td>
<td>(Liver dry wt. 0.01685 gm.)</td>
<td>10 mM Lac.</td>
<td>9.05 ± .28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mM Lac.</td>
<td>6.82 ± .33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 mM Lac.</td>
<td>4.82 ± .33</td>
</tr>
</tbody>
</table>

| Experiment 2 | (Liver dry wt. 0.01725 gm.) | 10 mM Lac. | 21.17 ± .28 | 9.29 ± .32 | 0.235 ± .039 | 0.521 ± .019 | 0.51 ± .14 | 3.98* | 14.52* |
| | | 5 mM Lac. | 11.08 ± .28 | 2.70 ± .32 | 0.311 ± .028 | 0.771 ± .021 | 0.29 ± .10 | 8.16 ± .68 | 8.36 ± .94 |

Experiment 3	(Liver dry wt. 0.01638 gm.)	10 mM Lac.	21.56 ± .37	4.81 ± .83	0.361 ± .041	0.396 ± .020	0.48 ± .16	7.25 ± .71	7.65 ± 1.14
		5 mM Lac.	10.71 ± .28	3.37 ± .54	0.304 ± .041	0.565 ± .029	0.15 ± .14	6.10 ± .92	9.08 ± 1.11
		2.5 mM Lac.	6.24 ± .33	1.20 ± .22	0.424 ± .095	0.910 ± .119	0.43 ± .31	8.58 ± 1.30	5.09 ± 1.61

* - estimated graphically
APPENDIX I - CHANGE OF SCALE

If \(w \) is the wet weight of liver in grams (taken as 3.77 times dry weight), we can introduce an operational time \(t^* = wt \) gram wet weight mins.

Let \(b_1^* \) and \(b_2^* \) be the regression coefficients on operational time. Then we must have

\[
P = b_1^* t^* + b_2^* \log t^* = b_1 t + b_2 \log t,
\]

from which we deduce that

\[
\begin{bmatrix} b_1^* \\ b_2^* \end{bmatrix} = \begin{bmatrix} w^{-1} & -w^{-1} \log w \\ 0 & w^{-1} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.
\]

The multipliers for other scale changes are given by the

Dimensions.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Dimension</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L, t_0, P,)</td>
<td>(M)</td>
<td>amount</td>
</tr>
<tr>
<td>(L_w, L_d)</td>
<td>(L)</td>
<td>liver weight</td>
</tr>
<tr>
<td>(T, T_{max})</td>
<td>(T)</td>
<td>chronological time</td>
</tr>
<tr>
<td>(T^, T_{max}^)</td>
<td>(L^* = \rho^*)</td>
<td>operational time = liver wet wt. (\times) time</td>
</tr>
<tr>
<td>(\log_{10}, \ln, \eta)</td>
<td>(B)</td>
<td>base of logs</td>
</tr>
<tr>
<td>(a, \alpha)</td>
<td>(M^{-1}B^{-1})</td>
<td></td>
</tr>
<tr>
<td>(P, P_{max})</td>
<td>(M^{-1}B^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\rho, \rho_{max})</td>
<td>(M^{-1})</td>
<td></td>
</tr>
<tr>
<td>(s, \tau)</td>
<td>(\rho^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\kappa)</td>
<td>(1)</td>
<td>number</td>
</tr>
</tbody>
</table>

Fig. IA. Pyruvate vs. Time, Expt. 1
Fig. 5A. Glucose vs. Integrated Pyruvate, Exp. 1

Fig. 4. Lactate/Pyruvate Ratio vs. Ln t, Exp. 1
Fig. 7C. Pyruvate Rate vs. Lin Lactate/Pyruvate Ratio, Expt. 3

Fig. 7D. Pyruvate Rate vs. Lin Lactate/Pyruvate Ratio, Expt. 2
Fig. 8. Ln Lactate/Pyruvate Ratio vs. Ln t.
Numerical solution of differential equations compared with regression for 10 mM Lac, Expt. 1

Fig. 9. Pyruvate vs. Time.
Numerical solution of differential equations compared with regression for 10 mM Lac, Expt. 1
Fig. 11. Illustration of the constants \(\tau \) and \(\tau_{max} \) for the pyruvate curve.

Fig. 10. Lactate vs. Time for the numerical solution of differential equations compared with regression for 10 mM Lac, Expt. 1.

Fig. 12A. Fluxes of Hydrogen, Phospho Enol Pyruvate, and Aspartate vs. Time 10 mM Lac, Expt. 1.
Fig. 12C. Fluxes of Hydrogen, Phospho Enol Pyruvate, and Aspartate vs. Time 2.5 mL Lac. Expt. I

Fig. 12D. Fluxes of Hydrogen, Phospho Enol Pyruvate, and Aspartate vs. Time 5 mL Lac. Expt. I
LEGEND OF FIGURES

Fig. 1A Pyruvate vs. Time, Expt. 1
Fig. 1B Pyruvate vs. Time, Expt. 2
Fig. 1C Pyruvate vs. Time, Expt. 3
Fig. 2 Glucose minus Initial Glucose vs. Time, Expt. 1
Fig. 3 Lactate vs. Time, Expts. 1, 2, and 3
Fig. 4 Ln Lactate/Pyruvate Ratio vs. Ln t, Expt. 1
Fig. 5A Glucose vs. Integrated Pyruvate, Expt. 1
Fig. 5B Glucose vs. Integrated Pyruvate, Expt. 2
Fig. 5C Glucose vs. Integrated Pyruvate, Expt. 3
Fig. 6 Carbon Balance vs. Time, Expts. 1, 2, and 3
Fig. 7A Pyruvate Rate vs. Ln Lactate/Pyruvate Ratio, Expt. 1
Fig. 7B Pyruvate Rate vs. Ln Lactate/Pyruvate Ratio, Expt. 2
Fig. 7C Pyruvate Rate vs. Ln Lactate/Pyruvate Ratio, Expt. 3
Fig. 8 Ln Lactate/Pyruvate Ratio vs. Ln t. Numerical solution of differential equations compared with regression for 10mM Lac, Expt. 1
Fig. 9 Pyruvate vs. Time. Numerical solution of differential equations compared with regression for 10mM Lac, Expt. 1
Fig. 10 Lactate vs. Time. Numerical solution of differential equations compared with regression for 10mM Lac, Expt. 1
Fig. 11 Illustration of the constants t_{max}, P_{max} and P_{av} for the pyruvate curve
Fig. 12A Fluxes of Hydrogen, Phospho Enol Pyruvate and Aspartate vs. Time 10mM Lac, Expt. 1
Fig. 12B Fluxes of Hydrogen, Phospho Enol Pyruvate and Aspartate vs. Time 5mM Lac, Expt. 1
Fig. 12C Fluxes of Hydrogen, Phospho Enol Pyruvate and Aspartate vs. Time 2.5mM Lac, Expt. 1