QUASI-SQUARE HOLE WITH OPTIMUM SHAPE IN AN INFINITE PLATE
SUBJECTED TO IN-PLANE LOADING

BY

A. J. Durelli and K. Rajaiah

SPONSORED BY

Office of Naval Research
Department of the Navy
Washington, D.C. 20025

on

Contract No. N00014-76-C-0487
O U. Project No. 31414-24

AND

National Science Foundation
Washington, D.C. 20550

on

Grant No. ENG77-07974
O U. Project No. 32110-18

School of Engineering
Oakland University
Rochester, Michigan 48063

January 1979

79 02 13 005
QUASI-SQUARE HOLE WITH OPTIMUM SHAPE IN AN INFINITE PLATE

SUBJECTED TO IN-PLANE LOADING

by

A. J. Durelli and K. Rajaiah

Sponsored by

Office of Naval Research
Department of the Navy
Washington, D.C. 20025

on

Contract No. N00014-76-C-0487
O.U. Project No. 31414-24
Report No. 49

and

National Science Foundation
Washington, D.C. 20550

on

Grant No. ENG77-07974
O.U. Project No. 32110-18

School of Engineering
Oakland University
Rochester, Michigan 48063

January 1979
Previous Technical Reports to the Office of Naval Research

1. A. J. Durelli, "Development of Experimental Stress Analysis Methods to Determine Stresses and Strains in Solid Propellant Grains"—June 1962. Developments in the manufacturing of grain-propellant models are reported. Two methods are given: a) cementing routed layers and b) casting.

2. A. J. Durelli and V. J. Parks, "New Method to Determine Restrained Shrinkage Stresses in Propellant Grain Models"—October 1962. The birefringence exhibited in the curing process of a partially restrained polyurethane rubber is used to determine the stress associated with restrained shrinkage in models of solid propellant grains partially bonded to the case.

3. A. J. Durelli, "Recent Advances in the Application of Photoelasticity in the Missile Industry"—October 1962. Two- and three-dimensional photoelastic analysis of grains loaded by pressure and by temperature are presented. Some applications to the optimization of fillet contours and to the redesign of case joints are also included.

4. A. J. Durelli and V. J. Parks, "Experimental Solution of Some Mixed Boundary Value Problems"—April 1964. Means of applying known displacements and known stresses to the boundaries of models used in experimental stress analysis are given. The application of some of these methods to the analysis of stresses in the field of solid propellant grains is illustrated. The presence of the "pinching effect" is discussed.

6. A. J. Durelli, "Experimental Strain and Stress Analysis of Solid Propellant Rocket Motors"—March 1965. A review is made of the experimental methods used to strain-analyze solid propellant rocket motor shells and grains when subjected to different loading conditions. Methods directed at the determination of strains in actual rockets are included.

7. L. Ferrer, V. J. Parks and A. J. Durelli, "An Experimental Method to Analyze Gravitational Stresses in Two-Dimensional Problems"—October 1965. Photoelasticity and moiré methods are used to solve two-dimensional problems in which gravity-stresses are present.
8. A. J. Durelli, V. J. Parks and C. J. del Rio, "Stresses in a Square Slab Bonded on One Face to a Rigid Plate and Shrunk"--November 1965. A square epoxy slab was bonded to a rigid plate on one of its faces in the process of curing. In the same process the photoelastic effects associated with a state of restrained shrinkage were "frozen-in." Three-dimensional photoelasticity was used in the analysis.

9. A. J. Durelli, V. J. Parks and C. J. del Rio, "Experimental Determination of Stresses and Displacements in Thick-Wall Cylinders of Complicated Shape"--April 1966. Photoelasticity and moiré are used to analyze a three-dimensional rocket shape with a star shaped core subjected to internal pressure.

11. A. J. Durelli and V. J. Parks, "Experimental Stress Analysis of Loaded Boundaries in Two-Dimensional Second Boundary Value Problems"--February 1967. The pinching effect that occurs in two-dimensional bonding problems, noted in Reports 2 and 4 above, is analyzed in some detail.

12. A. J. Durelli, V. J. Parks, H. C. Peng and F. Chiang, "Strains and Stresses in Matrices with Inserts,"--May 1967. Stresses and strains along the interfaces, and near the fiber ends, for different fiber end configurations, are studied in detail.

13. A. J. Durelli, V. J. Parks and S. Uribe, "Optimization of a Slot End Configuration in a Finite Plate Subjected to Uniformly Distributed Load,"--June 1967. Two-dimensional photoelasticity was used to study various elliptical ends to a slot, and determine which would give the lowest stress concentration for a load normal to the slot length.

15. A. J. Durelli, "Experimental Stress Analysis Activities in Selected European Laboratories"--August 1968. This report has been written following a trip conducted by the author through several European countries. A list is given of many of the laboratories doing important experimental stress analysis work and of the people interested in this kind of work. An attempt has been made to abstract the main characteristics of the methods used in some of the countries visited.
Use of the immersion analogy to determine gravitational stresses in two-dimensional bodies made of materials with different properties.

A method for the complete experimental determination of dynamic stress distributions in a ring is demonstrated. Photoelastic data is supplemented by measurements with a capacitance gage used as a dynamic lateral extensometer.

A simplified absolute retardation approach to photoelastic analysis is described. Dynamic isopachics are presented.

A complete direct, full-field optical determination of dynamic stress distribution is illustrated. The method is applied to the study of flexural waves propagating in a urethane rubber bar. Results are compared with approximate theories of flexural waves.

Optical methods of vibration analysis are described which are independent of assumptions associated with theories of wave propagation. Methods are illustrated with studies of transverse waves in prestressed bars, snap loading of bars and motion of a fluid surrounding a vibrating bar.

A three-dimensional photoelastic method to determine stresses in composite materials is applied to this basic shape. The analyses of models with different loads are combined to obtain stresses for the triaxial cases.

The method described in Report No. 10 above is applied to two specific problems. An approach is suggested to extend the solutions to a class of surface traction problems.

A spatial filtering technique for adding and subtracting images of several gratings is described and employed to determine the whole field of Cartesian shears and rigid rotations.
Errors associated with interpreting stress-holo-interferometry patterns as the superposition of isochromatics (with half order fringe shifts) and isochromatics are analyzed theoretically and illustrated with computer generated holographic interference patterns.

Experimental analysis of the propagation of flexural waves in prismatic, elastic bars with and without prestressing. The effects of prestressing by axial tension, axial compression and pure bending are illustrated.

An extension of the method of photoviscous analysis is presented which permits quantitative studies of strains associated with steady state vibrations of immersed structures. The method is applied in an investigation of one form of behavior of buoy-cable systems loaded by the action of surface waves.

Displacements and strains (ranging from 0.001 to 0.50) are determined in a polyurethane sphere subjected to several levels of diametral compression. A 500 lines-per-inch grating was embedded in a meridian plane of the sphere and moiré effect produced with a non-deformed master. The maximum applied vertical displacement reduced the diameter of the sphere by 27 per cent.

A transparent material with variable modulus of elasticity has been manufactured that exhibits good photoelastic properties and can also be strain analyzed by moiré. The results obtained suggest that the stress distribution in the disk of variable E is practically the same as the stress distribution in the homogeneous disk. It also indicates that the strain fields in both cases are very different, but that it is possible, approximately, to obtain the stress field from the strain field using the value of E at every point, and Hooke's law.

Two- and three-dimensional photoelasticity as well as electrical strain gauges, dial gauges and micrometers are used to determine the stress distribution in a belt-pulley system. Contact and tangential stress for various contact angles and friction coefficients are given.

Strain fields obtained in a sphere subjected to large diametral compressions from a previous paper were converted into stress fields using two approaches. First, the concept of strain-energy function for an isotropic elastic body was used. Then the stress field was determined with the Hooken type natural stress-natural strain relation. The results so obtained were also compared.

Previous solutions for the case of close coiled helical springs and for helices made of thin bars are extended. The complete solution is presented in graphs for the use of designers. The theoretical development is correlated with experiments.

The same methods described in No. 27, were applied to a hollow sphere with an inner diameter one half the outer diameter. The hollow sphere was loaded up to a strain of 30 per cent on the meridian plane and a reduction of the diameter by 20 per cent.

A new material is reported which is unique among three-dimensional stress-freezing materials, in that, in its heated (or rubbery) state it has a Poisson's ratio which is appreciably lower than 0.5. For a loaded model, made of this material, the unique property allows the direct determination of stresses from strain measurements taken at interior points in the model.

It was shown that Mohr's circle permits the transformation of strain from one axis of reference to another, irrespective of the magnitude of the strain, and leads to the evaluation of the principal strain components from the measurement of direct strain in three directions.

Continuation of Report No. 15 after a visit to Belgium, Holland, Germany, France, Turkey, England and Scotland.

Strain analysis of the ligament of a plate with a big hole indicates that both geometric and material non-linearity may take place. The strain concentration factor was found to vary from 1 to 2 depending on the level of deformation.
Analysis of experimental strain, stress and deflection of a cubic box subjected to concentrated loads applied at the center of two opposite faces. The ratio between the inside span and the wall thickness was varied between approximately 5 and 121.

Experimental analysis of strain, stress and deflections in a cubic box subjected to either internal or external pressure. Inside span-to-wall thickness ratio varied from 5 to 14.

A steady state vibrating object is illuminated with coherent light and its image slightly misfocused. The resulting specklegram is "time-integrated" as when Fourier filtered gives derivatives of the vibrational amplitude.

"Time-averaged isochromatics" are formed when the photographic film is exposed for more than one period. Fringes represent amplitudes of the oscillating stress according to the zeroth order Bessel function.

Time-averaged shadow moiré permits the determination of the amplitude distribution of the deflection of a steady vibrating plate.

Possible rotations and translations of the grating are considered in a general expression to interpret shadow-moiré fringes and on the sensitivity of the method. Application to an inverted perforated tube.

Comments on the planning and organization of, and scientific content of paper presented at the 18th Polish Solid Mechanics Conference held in Wisła-Jawornik from September 7-14, 1976.

The advantages and limitations of methods available for the analyses of displacements, strain, and stresses are considered. Comments are made on several theoretical approaches, in particular approximate methods, and attention is concentrated on experimental methods: photoelasticity, moiré, brittle and photoelastic coatings; gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity, dynamics and anisotropy.
The method requires the rotation of one photograph of the deformed grating over a copy of itself. The moiré produced yields strains by optical double differentiation of deflections. Applied to projected gratings the idea permits the study of plates subjected to much larger deflections than the ones that can be studied with holograms.

The concept of "coefficient of efficiency" is introduced to evaluate the degree of optimization. An ideal design of the inside boundary of a tube subjected to diametral compression is developed which decreases its maximum stress by 25%, at the same time it also decreases its weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with a brittle material show an increase in strength of 20%. An ideal design of the boundary of the hole in a plate subjected to axial load reduces the maximum stresses by 26% and increases the coefficient of efficiency from 0.54 to 0.90.

A steady-state vibrating object is illuminated with coherent light and its image is slightly misfocused in the film plane of a camera. The resulting processed film is called a "time-integrated specklegram." When the specklegram is Fourier filtered, it exhibits fringes depicting derivatives of the vibrational amplitude. The direction of the spatial derivative, as well as the fringe sensitivity may be easily and continuously varied during the Fourier filtering process. This new method is also much less demanding than holographic interferometry with respect to vibration isolation, optical set-up time, illuminating source coherence, required film resolution, etc.

This paper describes a multiple image-shearing camera. Incorporating coherent light illumination, the camera serves as a multiple shearing speckle interferometer which measures the derivatives of surface displacements with respect to three directions simultaneously. The application of the camera to the study of flexural strains in bent plates is shown, and the determination of the complete state of two-dimensional strains is also considered. The multiple image-shearing camera uses an interference phenomena, but is less demanding than holographic interferometry with respect to vibration isolation and the coherence of the light source. It is superior to other speckle techniques in that the obtained fringes are of much better quality.
QUASI-SQUARE HOLE WITH OPTIMUM SHAPE IN AN INFINITE PLATE
SUBJECTED TO IN-PLANE LOADING

by
A. J. Durelli and K. Rajaiah

ABSTRACT

This paper deals with the optimization of the shape of the corners and sides of a square hole, located in a large plate and subjected to in-plane loads, with the object of minimizing stress concentrations. Appreciable disagreement has been found between the results obtained previously by other investigators. In this paper new tests have been conducted and discrepancies have been corrected. Using an optimization technique, the authors have developed a quasi square shape which introduces a stress concentration of only 2.54 in a uniaxial field, the comparable value for the circular hole being 3. The efficiency factor of the proposed optimum shape is 0.90 whereas the efficiency factor of the best shape developed previously was 0.71. The shape also is developed that minimizes the stress concentration in the case of biaxial loading when the ratio of biaxiality is 1:-1.
Introduction:

The problem of a square hole with rounded corners in an infinite plate subjected to uniaxial loading has attracted the attention of several investigators over the years. Richmond (1) conducted photoelastic tests with three different corner radii and concluded that "a minimum stress concentration factor seems to result for a value of \(r / D \) of about \(\frac{1}{6} \)," where \(r \) is the corner radius and \(D \) the width of hole. He also found that the minimum value of the stress concentration factor (s.c.f.) was less than 3, the value corresponding to the circular hole. Mindlin (2) in the discussion of the paper stated that Richmond's finding was of importance. Peterson (3) in his recent monograph on "Stress Concentration Factors" presented the theoretical results obtained by Sobey (4) for rectangular holes with round corners. Comparison of Sobey's values with those of Richmond for square holes shows gross underestimate of the s.c.f. by Richmond (Fig. 1). According to Sobey, the minimum possible stress concentration factor is 2.85 for a corner radius of 0.37D, whereas Richmond reported a minimum of 2.5 for a corner radius of D/6. As stated by Peterson (5), Richmond "probably used a small model, and with techniques of that time and the edge effect problem, his results could be considerably in error." The importance of the subject and contradictions among authors made advisable the review of other contributions and conducting new tests. That is the object of this paper. Emphasis will be placed on the optimization of the shape.

Previous Contributions:

Sobey in his review of previous analyses (6), (7), (8), (9) that were conducted using the Schwarz-Christoffel transformation of the square with
sharp corners as approximation to the square with round corners found
that the authors used only two or three terms in the mapping function and
"their profile differs considerably in local curvature variation from
the ideal profile so that the stress distributions are not very accurate."
Sobey used Mushkilishvili's complex variable method\(^\text{(6)}\) but included a large
number of terms in the mapping function to get high accuracy for the hole
shape and hence for the stress distribution. Isida\(^\text{(10)}\) analyzed the problem
of hypotrochoidal hole with four sides which approximates square holes with
rounded corners in finite and infinite plates using a perturbation method.
His numerical results for a corner radius of 0.125D are lower than Sobey's
(Fig. 1).

Savin\(^\text{(11)}\) presented the results obtained by Leknitsky\(^\text{(12)}\) using the
conformal mapping technique. For the corner radius 0.2D these results are
also lower than those obtained by Sobey (Fig. 1).

Ross\(^\text{(13)}\) reported results of numerous photoelastic experiments on holes
and notches in thin plates under uniaxial tension, including those for
square holes with rounded corners. His results show a gross overestimate
of the s.c.f.'s when compared to Sobey's values (Fig. 1). It would appear
that the extrapolation technique used by Ross is not correct (for the
circular hole he obtains a s.c.f. of 3.25). Ross also presented results for
a barrel-shaped hole proposed earlier by Heywood\(^\text{(14)}\) as an "ideal shape" for
holes in infinite plates under uniaxial tension. The s.c.f. for this case
also appears to have been overestimated.

More recently Durelli, Brown and Yee\(^\text{(15)}\) have shown that, similarly to
the earlier work for fillets by Durelli et al\(^\text{(16),(17),(18),(19)}\) hole shapes
can also be very effectively optimized by using two-dimensional photoelastic
techniques. Following that approach, it is shown in the present work that
by optimizing the shape of the square hole, a s.c.f. significantly lower than
the lowest value given can be achieved. It has also been verified experimentally that the results given by Richmond and Ross are in error.

Square Hole with Rounded Corners:

Experiments were conducted first on plates with square holes with rounded corners for two different corner radii. Two plates of 11" x 11" x 0.272" (280x280x2.9mm) with hole size (D) of 1.5" x 1.5" (38x38mm), one with a corner radius of 0.25" (6.4mm) equal to (D/6) and the other with 0.555" (14mm) equal to (0.37D) radius were machined out of Homalite-100. The fringe constant was 151 lb/in-fr (26.2 kN/m-fr). The plates were loaded under uniform compression on two opposite edges. The resulting s.c.f. values are shown in Fig. 1 and the corresponding photoelastic isochromatic patterns are shown in Figs. 2 and 3. The stress distributions around the hole for the two cases, referred to the net area, are included in Fig. 4. It is seen from Fig. 1 that the present results are in close agreement with Sobey's and not so with those of Richmond, Ross, Savin nor Isida. (The s.c.f. given by Peterson and Ross, referred to the gross area, have been referred for comparison purposes to the net area.)

Optimization of the Square Hole:

The constraints of the problem are: (a) the inside boundary has to lie inbetween the circle of diameter D and the square of side D; (b) the allowable maximum stress for compression is about three times the allowable maximum stress for tension. To start the optimization process a plate with a hole with a corner radius of 0.37D was selected as this hole exhibits a low s.c.f.
Material was removed from the lower stress regions of the boundary, at and near the horizontal axis and at the corner by careful hand filing while the model was under load until an isochromatic fringe coincided with the boundary of the model. The resulting isochromatic pattern is shown in Fig. 5 and the stress distribution around the hole is presented in Fig. 4. For the sake of comparison, Fig. 4 also includes the distributions given by Ross (for Heywood's ideal shape), by Savin for the square hole with 0.2D corner radius, by Isida for the square hole with 0.125D corner radius and also for the circular hole.

The empirically developed geometry has been fitted with a combination of circles of different diameters and common tangents at the points of intersections. The geometry of the optimized shape is shown in Fig. 6.

In an earlier paper, it was proposed that the degree of optimization be evaluated quantitatively as a coefficient of efficiency, k_{eff}, defined as

$$
k_{\text{eff}} = \frac{1}{S_2 - S_0} \left\{ \int_{S_0}^{S_1} \sigma^+_{\text{all}} \, ds + \int_{S_1}^{S_2} \sigma^-_{\text{all}} \, ds \right\}
$$

where σ_{all} represents the maximum allowable stress (the positive and negative superscripts referring to tensile and compressive stresses, respectively), S_0 and S_1 are the limiting points of the segment of the boundary subjected to tensile stresses and S_1 and S_2 are limiting points of the segment of boundary with compressive stresses. The same criterion has been used here too to evaluate the shapes and the results are discussed below.
The Biaxial Case:

It has been shown that the optimum shape of a hole in a biaxial field of two loadings of the same sign is an ellipse the eccentricity of which is related to the biaxiality ratio \(^{20}\). For 1:1 biaxiality, the shape of the hole is a circle and the s.c.f. is 2. However, for loadings of opposite sign no such simple relation has been found.

The above study suggests that, for a plate under pure shear (1:-1 biaxiality), a doubly symmetric shape with both the longitudinal and the transverse edges of barrel shape (double barrel) would appear to be close to an optimum shape. This case has also been investigated here.

A double barrel shaped hole with the radius of curvature of each edge being 1.25D as in the case of the optimized hole was made in a large Homalite—100 plate and tested. For a uniaxial loading this shape provides a slightly increased stress level on the edge perpendicular to the load while the one on the edge parallel to the load stays the same (Fig. 4 and Fig. 7). However, for the case of shear loading, there is a 10% reduction in s.c.f. (Fig. 8).

The Case of the Notch:

It is well-known that the s.c.f. for the case of a semi-circular edge notch in a wide plate under uniaxial load is approximately the same as that for a circular hole in a wide plate under uniaxial load.\(^{3}\) Based on this observation, it is believed that the optimum shape for a notch in a wide plate subjected to uniaxial loading will be approximately the same as the optimum shape developed above for the case of the square hole.
Discussion and Conclusion:

By the optimization method followed here, it has been possible to obtain a s.c.f. of 2.54 for the square hole with rounded corners. This value is about 11% lower than the s.c.f. value of 2.85 as given by Peterson following Sobey. The efficiency factor for the optimum shape is 0.90 whereas it is 0.71 for the shape given by Peterson as corresponding to the minimum s.c.f., 0.67 for Richmond's minimum s.c.f. shape and 0.74 for Ross results obtained using Heywood's 'ideal shape.' The corresponding value for a circular hole is 0.61.

Richmond's values for s.c.f. are found to be significantly in error on the low side while Ross's results are significantly in error on the high side. It may be safely concluded that Ross's values for Heywood's "ideal shape" are also significantly overestimated; in fact, the s.c.f. for Heywood's shape may be expected to be less than 3. The isochromatic pattern given by Ross shows that Heywood's shape is quite close to an optimum with only a slight stress concentration on the horizontal axis of symmetry normal to the load. The radius of curvature for the longitudinal sides of the hole is given as D by Heywood while it is estimated to be 1.25D for the optimized shape proposed here.

For a plate subjected to pure shear, the double barrel shape yields a 10% reduction in s.c.f.
Acknowledgments

The research program from which this paper was developed was supported by the National Science Foundation (Grant ENG-76-07974) and the Office of Naval Research (Contract No. N00014-76-C-0487). The authors are grateful to C. C. Astill of NSF and N. Perrone and N. Basdekas of ONR for their support. The manuscript reproduction has been prepared by P. Baxter.
References:

FIG. 2 STRESSES AT THE BOUNDARY OF A SQUARE HOLE WITH A ROUNDED CORNER ($r = D/6$) IN A LARGE PLATE ($D/\alpha_w = 0.136$) SUBJECTED TO UNIAXIAL LOAD
FIG. 3 STRESSES AT THE BOUNDARY OF A SQUARE HOLE WITH A ROUNDED CORNER ($r = 0.37D$) IN A LARGE PLATE ($R = 0.136$) Subjected To UNIAXIAL LOAD
Fig. 4: Distribution of stresses around a quasi-square hole with a large plate subject to uniaxial loading. The graph shows the normalized tangential stress (\(0\) degrees) as a function of the ratio of the hole diameter to the hole depth (\(D/W\)) for different hole configurations. The configurations include circular hole, Savin, Iida, Heywood/Ross, double barrel, optimized hole, and square hole (\(D/W = 0.140\) or \(0.136\)). The graph compares experimental and theoretical results.
FIG. 5 STRESSES AT THE BOUNDARY OF AN OPTIMIZED QUASI-SQUARE HOLE IN LARGE PLATE ($w = 0.140$) SUBJECT TO UNIAXIAL LOAD

\[K_n = \frac{\sigma_{\text{max}}}{\sigma_{\text{av}} n} = 2.19 \]

\[n_{\text{max}} = 1.45 \]
FIG. 6 OPTIMIZED GEOMETRY OF A QUASI-SQUARE HOLE ASSOCIATED WITH THE MINIMUM STRESS CONCENTRATION FACTOR IN A LARGE PLATE SUBJECTED TO UNIAXIAL LOADING
FIG. 7 STRESSES AT THE BOUNDARY OF A DOUBLE BARREL HOLE IN A LARGE PLATE ($\frac{H}{w} = 0.163$) SUBJECTED TO UNIAXIAL LOAD

\[K_n = \frac{c_{\text{max}}}{c_{\text{av}}n} = 2.17 \]
Figure 8: Distribution of stress around a double barrel hole in a large plate subjected to biaxial loading of 1-1 (pure shear).
ONR DISTRIBUTION LIST

Office of Naval Research
Department of the Navy
Arlington, VA 22217
Attn: Code 474 (2)

Onr Branch Office
666 Summer Street
Boston, MA 02210

Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605

Director
ONR Branch Office
715 Broadway - 5th Floor
New York, NY 10003

Director
ONR Branch Office
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory (6)
Code 2627
Washington, D.C. 20375

Defense Documentation Center
Cameron Station (12)
Alexandria, VA 22314

Undersea Exploration Res. Division
Naval Ship Research & Development Center
Norfolk Naval Shipyard
Portsmouth VA 23709

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 8400

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 8410

Commanding Officer
U.S. Naval Civil Eng. Lab.
Code L11
Fort Hueneeme, CA 93041

Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910
Attn: Code R-10

Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910
Attn: Code G-402

Technical Director
Naval Ocean Systems Center
San Diego, CA 92152

Supervisor of Shipbuilding
U.S. Navy
Newport News, VA 23607

U.S. Navy Underwater Sound
Reference Division
Naval Research Laboratory
P.O. Box 8337
Orlando, FL 32806

Chief of Naval Operations
Department of the Navy
Washington, DC 20350
Attn: Code OP-098

Strategic Systems Project Off.
Department of the Navy
Washington, DC 20376
Attn: NSP-200

Naval Air Systems Command
Department of the Navy
Washington, DC 20361
Attn: Code 5302

Naval Air Systems Command
Department of the Navy
Washington, DC 20361
Attn: Code 604
<table>
<thead>
<tr>
<th>Institution/Agency</th>
<th>Address</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webb Institute of Naval Architecture</td>
<td>Attn: Librarian, Crescent Beach Road, Glen Cove, Long Island, NY 11542</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>P.O. Box 12211, Research Triangle, PA 27709</td>
<td>Commander WADD, Wright Patterson AFB, Attn: Structures Div., Dayton, OH 45433</td>
</tr>
<tr>
<td>NACGS Research Center</td>
<td>Watervliet, NY 12189</td>
<td>Chief Appliance Mechanics Group, Wright Patterson AFB, Dayton, OH 45433</td>
</tr>
<tr>
<td>U.S. Army Materials and</td>
<td>Attn: Dr. R. Shea DORGH-T</td>
<td></td>
</tr>
<tr>
<td>Mechanics Research Center</td>
<td>Watertown, NY 11542</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Missile Research and</td>
<td>Redstone Scientific Info. Cen., Chief, Document Section, Redstone Arsenal, AL 35809</td>
<td></td>
</tr>
<tr>
<td>Development Center</td>
<td>Fort Belvoir, VA 22060</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>Structures Research Division, Langley Research Center, Langley Station, Hampton, VA 23365</td>
<td>Commandant, Chief, Testing & Devel. Div., U.S. Coast Guard, 1300 E. Street, NW, Washington, D.C. 20226</td>
</tr>
<tr>
<td>NASA</td>
<td>Associate Adm. for Advanced Research & Technology, Washington, DC 20546</td>
<td>Technical Director, Marine Corps Devl. & Educ. Command, Quantico, VA 22134</td>
</tr>
<tr>
<td>Scientific & Tech. Info. Fac.</td>
<td>NASA Representative (S-N/JDL), P.O. Box 5700, Bethesda, MD 20014</td>
<td>Director Defense Research & Egr., Technical Lib. Rm 3C-128, The Pentagon, Washington, D.C. 20301</td>
</tr>
<tr>
<td>Commander WADD</td>
<td>Wright Patterson AFB, Attn: Code WADDW, Dayton, OH 45433</td>
<td></td>
</tr>
<tr>
<td>Commander WADD</td>
<td>Wright Patterson AFB, Attn: Code AFFDL(3DID), Dayton, OH 45433</td>
<td>Dr. M. Gaus, National Science Foundation, Environmental Research Div., Washington, DC 20550</td>
</tr>
<tr>
<td>Libraries and Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>Defense Nuclear Agency, Washington, DC 20305</td>
<td>Mr. Jerome Persh, Staff Specialist for Materials and Structures, OUSDRAE, The Pentagon-Rm 301089, Washington, DC 20301</td>
</tr>
<tr>
<td>National Academy of Sciences</td>
<td>Attn: Science & Technology Div., Division of Engineering, Washington, DC 20550</td>
<td></td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>Picatinny Arsenal, Engineering Mechanics Section, Washington, DC 20550</td>
<td></td>
</tr>
<tr>
<td>U.S. Army</td>
<td>Attn: B. L. Wilson, EM 219</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>Directed</td>
<td></td>
</tr>
<tr>
<td>Commander WADD</td>
<td>Wright Patterson AFB, Attn: Code WADDW, Dayton, OH 45433</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>Attn: National Bureau of Standards, Washington, DC 20034, Attn: B. L. Wilson, EM 219</td>
<td></td>
</tr>
</tbody>
</table>
UNIVERSITIES

Dr. J. Timley Owen
University of Texas at Austin
345 Engr. Science Building
Austin, TX 78712

Professor Walter D. Pilkey
University of Virginia
Res. Lab. for Egr. Sciences
School of Egr. & Appl. Sciences
Charlottesville, VA 22901

Professor K. D. Willmert
Clarkson College of Technology
Dept. of Mechanical Engineering
Potsdam, NY 13676

Dr. Harold Liebowitz, Dean
School of Egr. & Appl. Science
George Washington University
Washington, DC 20032

Dr. Walter E. Hauser
Texas A&M University
Aerospace Engineering Department
College Station, TX 77843

Dr. Hussein A. Kamel
University of Arizona
Dept. of Aero. & Mechanical Egr.
Tucson, AZ 85721

Dean B. A. Boley
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

Professor Eli Sternberg
California Inst. of Technology
Div. of Engr. & Appl. Science
Pasadena, CA 91109

Professor Paul N. Naghdi
University of California
Dept. of Mechanical Engr.
Berkeley, CA 94720

Dr. S. J. Pelovacs
Carnegie-Mellon University
Dept. of Civil Engineering
Scholfield Park
Pittsburgh, PA 15213

Professor F. L. D'Incau
University of California
Dept. of Mechanical Engineering
New York, NY 10027

Dr. Ronald L. Huston
Dept. of Engineering Analysis
University of Cincinnati
Cincinnati, OH 45221

Professor F. E. Reissner
University of Illinois
Dept. of Civil Engineering
Urbana, IL 61801

Professor H. J. Riedmich
University of California
Dept. of Mechanical Engineering
Stanford, CA 94305

Professor W. A. Nash
University of Massachusetts
Amherst, MA 01002

Professor D. C. Brucker
University of Illinois
Dept. of Civil Engineering
Urbana, IL 61803

Professor E. Reissner
University of California, San Diego
Dept. of Applied Mechanics
La Jolla, CA 92037

Professor V. R. Hodson
Wayne State University
School of Medicine
Detroit, MI 48202

Dr. E. V. Hodson
Wayne State University
School of Medicine
Detroit, MI 48202

Professor S. B. Dong
University of California
Dept. of Mechanics
Los Angeles, CA 90024

Professor Albert I. King
Wayne State University
Biomechanics Research Center
Detroit, MI 48202

Dr. E. V. Hodson
Wayne State University
School of Medicine
Detroit, MI 48202

Professor F. G. N. F. Hodge, Jr.
University of Minnesota
Minneapolis, MN 55455

Dr. S. J. Pelovacs
Carnegie-Mellon University
Dept. of Civil Engineering
Scholfield Park
Pittsburgh, PA 15213

Professor J. H. Riedmich
University of California
Dept. of Mechanical Engineering
Stanford, CA 94305

Professor J. D. Achembach
Northwestern University
Dept. of Civil Engineering
Evanston, IL 60201

Professor S. B. Dong
University of California
Dept. of Mechanics
Los Angeles, CA 90024
Professor Kurt Paul
University of Pennsylvania
Towne School of Civil and Mechanical Engineering
Philadelphia, PA 19104

Professor R. W. Liu
Syracuse University
Dept. of Chemical EGR & Metal.
Syracuse, NY 13210

Professor S. Bodner
Technion R & D Foundation
Haifa, Israel

Professor Werner Goldsmith
University of California
Department of Mech. Engr.
Berkeley, CA 94720

Professor R. S. Rivlin
Lehigh University
Center for Appl. of Math.
Bethlehem, PA 18015

Professor F. A. Cozzarelli
STG at Buffalo
Div. of Inter. Studies
Karr Parker Egr. Bldg.
Buffalo, NY 14214

Professor Joseph L. Rose
Drexel University
Philadelphia, PA 19104

Professor B. E. Donaldson
University of Maryland
Aerospace Engineering Dept.
College Park, MD 20742

Professor Joseph A. Clark
Catholic University of America
Dept. of Mechanical Engr.
Washington, DC 20064

Professor T. C. Huang
University of Wisconsin-Madison
Dept. of Eng. Mechanics
Madison, WI 53706

Professor Isaac Fried
Boston University
Dept. of Mathematics
Boston, MA 02215

Dr. Samuel B. Batsford
University of California
School of Engr.& Appl. Science
Los Angeles, CA 90024

Professor Michael Pappas
New Jersey Inst. of Technology
Newark College of Engineering
321 High Street
Newark, NJ 07102

Professor E. Kreml
Rensselaer Polytechnic Inst.
Division of Engineering Mechanics
Troy, NY 12181

Dr. Jack R. Vinson
University of Delaware
Dept. of Mech. & Aero. Engr.
and Center for Composite Matls.
Newark, DE 19711

Dr. Dennis A. Nagy
Princeton University
School of Engr. & Appl. Science
Dept. of Civil Engineering
Princeton, NJ 08540

Dr. J. Duffy
Brown University
Division of Engineering
Providence, RI 02912

Dr. J. L. Sneed
Carnegie-Mellon University
Dept. of Mechanical Engineering
Pittsburgh, PA 15213

Dr. V. K. Varadan
Ohio State Bd. Res. Foundation
Dept. of Engineering Mechanics
Columbus, OH 43210

Dr. Jackson C. S. Yang
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Dr. Z. Hashin
University of Pennsylvania
Dept. of Metallurgy & Mats. Sci.
Philadelphia, PA 19104

Dr. T. Y. Chang
University of Akron
Department of Civil Engineering
Akron, OH 44325

Professor Charles W. Bert
University of Oklahoma
School of Aerospace, Mechanical and Nuclear Engineering
Norman, OK 73019

Professor Satya N. Atluri
Georgia Inst. of Technology
School of Egr. Sci & Mech.
Atlanta, GA 30332

Professor Graham F. Carey
University of Texas at Austin
Austin, TX 78712

Dr. Jackson C. S. Yang
Advanced Tech. & Research, Inc.
10006 Green Forest Drive
Adelphi, MD 20783

Dr. Norman Bobbs
Kaman Avdyne
Division of Kaman Sci. Corp.
Burlington, MA 01803

Argonne National Laboratory
Library Services Department
9700 South Cass Avenue
Argonne, IL 60439

Dr. M. C. Junger
Cambridge Acoustical Assoc.
1033 Massachusetts Avenue
Cambridge, MA 02138

Dr. V. Godino
General Dynamics Corporation
Electric Boat Division
Groton, CT 06340

Dr. J. E. Greenspoon
J.G. Engineering Research Assoc.
3831 Menlo Drive
Baltimore, MD 21215

Dr. K. C. Park
Lockheed Missle & Space Co.
3251 Hanover Street
Palo Alto, CA 94304

Newport News Shipbuilding and Dry Dock Company
Library
Newport News, VA 23607
This paper deals with the optimization of the shape of the corners and sides of a square hole, located in a large plate and subjected to in-plane loads, with the object of minimizing stress concentrations. Apparent disagreement has been found between the results obtained previously by other investigators. In this paper new tests have been conducted and discrepancies have been corrected. Using an optimization technique, the authors have developed a quasi square shape which...
introduces a stress concentration of only 2.54 in a uniaxial field, the comparable value for the circular hole being 3. The efficiency factor of the proposed optimum shape is 0.90 whereas the efficiency factor of the best shape developed previously was 0.71. The shape also is developed that minimizes the stress concentration in the case of biaxial loading when the ratio of biaxiality is 1:-1.