A LOWER BOUND FOR THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX. (U)

SEP 78 S FRIEDLAND

UNCLASSIFIED

MRC-TSR-1882
A LOWER BOUND FOR THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX

Shmuel Friedland

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706
September 1978

(Received August 16, 1978)

Approved for public release
Distribution unlimited
It is shown here that the permanent of an $n \times n$ doubly stochastic matrix is not less than e^{-n}.

AMS(MOS) Subject Classifications: 15A15, 15A45, 05B20.

Key Words: Permanents, van der Waerden conjecture, Marshall Hall's problem.

Work Unit Number 4 - Probability, Statistics and Combinatorics.

*Institute of Mathematics, The Hebrew University at Jerusalem.

Sponsored by the United States Army under Contract No. DAAG29-75-C-00249
Let A be a square matrix. The permanent $p(A)$ of A is basically the determinant of A where all the summands appear with $+$ signs. The notion $p(A)$ arises naturally in many combinatorial settings where a count of the number of systems of distinct representatives of some configuration is required. In this paper we establish lower estimates of the right order for the permanents of doubly stochastic matrices. Recall that A is called a doubly stochastic matrix if all the entries of A are nonnegative and each row and column sum of A is equal to 1. Doubly stochastic matrices appear frequently in probability and combinatorics. The result established in this paper will have various applications in combinatorics and probability, in particular to Latin squares and block designs.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.
A LOWER BOUND FOR THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX

Shmuel Friedland

1. Introduction.

Let A be an $n \times n$ matrix $(a_{ij})_{i,j=1}^{n}$. The permanent of A is defined by

$$ p(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)} $$

where S_n is the symmetric group of order n. Let Ω_n be the set of all doubly stochastic matrices, that is, the set of all $n \times n$ matrices A satisfying

$$ a_{ij} \geq 0, \quad \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} a_{ij} = 1, \quad 1 \leq i, j \leq n. $$

It is conjectured that any doubly stochastic matrix satisfies the inequality

$$ p(A) \geq n! / n^n, $$

with the equality holding only for the matrix J_n all of whose entries are $1/n$. The problem of finding the minimum of $p(A)$ on the set Ω_n goes back to van der Waerden [6]. In fact the inequality (1.3) is commonly referred as the van der Waerden conjecture. This conjecture is known to have applications to certain combinatorial problems. In this paper we establish the inequality

$$ p(A) \geq e^{-n}, \quad A \in \Omega_n. $$

Recall that by Stirling's formula $n! / n^n \sim \sqrt{2\pi n} e^{-n}$. The previous lower bound known before was $1/n!$. See [3] for the proof of this result and for the survey of the main results achieved in connection with the van der Waerden conjecture. Our starting point is the inequality due to T. Bang [1]

$*$Institute of Mathematics, The Hebrew University at Jerusalem.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
which holds for any non-negative A. Here by $B \otimes C$ we denote the tensor product of matrices B and C. Most of the paper is devoted to the proof of the equality

\[(1.6) \quad \lim_{m \to \infty} p(A \otimes J_m)^{1/m} = e^{-n},\]

for any $n \times n$ doubly stochastic matrix A. Clearly in view of (1.5), the equality (1.6) implies the estimate (1.4).
2. Preliminary results.

Let \(\sigma \in S_n \). Define

\[
\begin{align*}
\mathcal{P}_0 &= \left(\delta_{\sigma(1)} \right)^n,
\end{align*}
\]

By \(\Phi_{n,m} \) we denote the set of all matrices \(\alpha \) with integer coefficients such that \(\alpha/m \) is an \(n \times n \) doubly stochastic matrix:

\[
\Phi_{n,m} = \{ \alpha | \alpha = (a_{ij})^n, \ a_{ij} \in \mathbb{Z}, \ a/m \in \mathbb{Q}_n \}.
\]

From the classical Birkhoff theorem (e.g. [4]) it follows that

\[
\alpha = \sum_{k=1}^{m} P_{\ell_k}, \ \alpha \in \Phi_{n,m}.
\]

Following T. Bang [1] we bring a formula for the permanent of \(A \otimes J_m \).

Theorem 2.1. Let \(A \) be an \(n \times n \) matrix. Then

\[
p(A \otimes J_m) = (m!)^{-2n} \sum_{\alpha \in \Phi_{n,m}} \prod_{i,j=1}^{n} a_{ij}^{a_{ij}} / a_{ij}.
\]

Proof. Consider a term in \(p(A \otimes J_m) \). It is of the form

\[
m^{-nm} \prod_{i,j=1}^{n} a_{ij}.
\]

Clearly, each \(a_{ij} \) is a non-negative integer. Consider the rows \(i, m+i, \ldots, (n-1)m+i \). These rows contribute to the product \(2.5 \) the term \(m^{-n} \prod_{j=1}^{n} a_{ij} \). Therefore, \(\sum_{j=1}^{n} a_{ij} = m \). In the same way one shows that \(\sum_{i=1}^{n} a_{ij} = m \). Thus, \((a_{ij})^m \in \Phi_{n,m} \). Vice versa, suppose that \(\alpha \in \Phi_{n,m} \). Then \(2.3 \) holds. Let us view \(A \otimes J_m \) as a block matrix

\[
A \otimes J_m = (A_{ij})_1^m, \ A_{ij} = m^{-1} A, \ i,j = 1, \ldots, m.
\]
In the block A_{rr} take a product $m^{-n} \prod_{i=1}^{n} a_{ij}(i)$. By multiplying all these terms together one obtains the expression

$$(2.7) \quad m^{-nm} \prod_{r=1}^{m} \prod_{i=1}^{n} a_{ij}(i).$$

In view of (2.3) the expression (2.7) is equal to (2.5). We now compute the coefficient of the term (2.5). That is, we are looking for the number of different ways to pick up a_{11} elements $a_{11}/m, \ldots, a_{nn}/m$ from the matrix $A \otimes J_m$ such that any two elements are not on the same row or column. We call such a choice an admissible choice. Let us label a_{ij} elements a_{ij}/m by $a_{11}(i), \ldots, a_{ij}(i)$. Assume that for $a_{ij} \geq 1$ the element $a_{ij}(k)/m$ ($1 \leq k \leq a_{ij}$) sits in the row $i + \mu(k,i,j)n$ and the column $j + \nu(k,i,j)n$ in the matrix $A \otimes J_m$. We assume that no two elements are placed in the same position. Let us call such a choice of positions a configuration. Two configurations considered to be equal if for each $a_{ij} \geq 1$ and $1 \leq k \leq a_{ij}$ the positions of the elements $a_{ij}(k)/m$ coincide. Given a configuration one obtains a distinct configuration by interchanging rows (columns) i and j, where $i \equiv j \pmod{n}$. It is easy to see that one can obtain any admissible configuration from a given configuration by interchanging appropriate rows and columns. Obviously, the rows (columns) $i, i+n, \ldots, i+(m-1)n$ ($1 \leq i \leq n$) can be interchanged in $m!$ ways. Thus according to what we proved one has $(m!)^{2n}$ distinct configurations. Let us go back to the problem of determining the number of different ways to pick up the a_{ij} elements a_{ij}/m for $i,j=1,\ldots,m$ (an admissible choice). Clearly any configuration gives rise to an admissible choice. We claim that to any admissible choice correspond $n! \prod_{i,j=1}^{n} a_{ij}$ distinct configuration.

Indeed, for this choice, we have $a_{ij}(\geq 1)$ places occupied by a_{ij}/m. In these a_{ij} places we put $a_{ij}(1)/m, \ldots, a_{ij}(a_{ij})/m$. This can be done in $a_{ij}!$ ways. Thus, to the given admissible choice correspond $n! \prod_{i,j=1}^{n} a_{ij}$ distinct configurations. Obviously, to two distinct admissible choices correspond distinct configurations. This demonstrates that the number of different ways to pick up a_{ij} elements $a_{ij}/m, i,j=1,\ldots,m$, from the matrix $A \otimes J_m$, such that any two elements are not on the same row or column, is equal to $(m!)^{2n} \prod_{i,j=1}^{n} a_{ij}^{-1}$. The
proof of the theorem is completed.

The permanent of a non-negative matrix can be estimated in terms of the permanent of $A \otimes J_m$ [1].

Theorem 2.2. Let s be a positive integer and $m = 2^s$. Then for any non-negative square matrix the following inequality holds

\[(2.8) \quad p(A) \geq [p(A \otimes J_m)]^{1/m} \]

Proof. We prove first the inequality (2.8) for $m = 2$. From (2.4) it follows

\[(2.9) \quad p(A \otimes J_2) = \sum_{a \in \Phi_{n,2}} \prod_{i,j=1}^n a_{ij}^{a_{ij} / a_{ij}'}.\]

On the other hand

\[(2.10) \quad p(A)^2 = \sum_{a, b \in \Phi_n} \prod_{i=1}^n a_{i\sigma(i)} \prod_{j=1}^n a_{j\tau(j)} \prod_{i,j=1}^n a_{ij}^{a_{ij} / a_{ij}'}.\]

Let $a \in \Phi_{n,2}$. According to (2.3) $a = p_a + p_{a' \sigma}$. Thus

\[(2.11) \quad \prod_{i=1}^n a_{i\sigma(i)} \prod_{j=1}^n a_{j\tau(j)} = \prod_{i,j=1}^n a_{ij}^{a_{ij} / a_{ij}'}.\]

Therefore, the coefficient of the term $\prod_{i,j=1}^n a_{ij}^{a_{ij} / a_{ij}'}$ in $p(A)^2$ is a positive integer. The coefficient of this term in $p(A \otimes J_2)$ never exceeds 1. This establishes the inequality (2.8) for $m = 2$. Now the general case easily follows by induction. Indeed, suppose that (2.8) holds. Then

\[(2.12) \quad p((A \otimes J_m) \otimes J_2) \leq p(A \otimes J_m)^{1/m} \leq p(A).\]

It is left to note that the tensor product is associative and

\[(2.13) \quad J_m \otimes J_2 = J_{2^m}.\]

End of proof.

Let A be an $n \times n$ doubly stochastic matrix. Suppose that the van der Waerden
conjecture holds. Then

\[p(A \otimes \text{J}_m)^{1/m} \geq \left[\frac{(nm)!}{(nm)^{nm}} \right]^{1/m} \]

In what follows we estimate \(p(A \otimes \text{J}_m) \) from above.

Lemma 2.1. Let \(A = (a_{ij})_{1}^{n} \) be a non-negative matrix. Then

\[p(A \otimes \text{J}_m) \leq \frac{(m!)^{n}}{m^{mn}} \prod_{j=1}^{n} a_{ij}^{m}. \]

Proof. Consider the expression

\[\left(\sum_{j=1}^{n} a_{ij} \right)^{m} = m! \prod_{j=1}^{n} a_{ij}^{m} \beta_{1} \cdots \beta_{n} = m! \prod_{j=1}^{n} a_{ij}^{m} \beta_{1} \cdots \beta_{n}. \]

Choosing \(\beta_{j} = a_{ij}, j = 1, \ldots, n, \) we get that the coefficient of the term \(\prod_{j=1}^{n} a_{ij}^{m} \) in the expansion (2.16) is \(m! \prod_{j=1}^{n} a_{ij}^{m}. \) Expanding the expression

\[\frac{(m!)^{n}}{m^{mn}} \prod_{j=1}^{n} a_{ij}^{m} \]

we see that the term \(\prod_{i,j=1}^{n} a_{ij}^{m}, a \in \phi, m' \) appears in (2.17) with the coefficient \((m!)^{2n} \prod_{i,j=1}^{n} (a_{ij}!)^{-1}. \) As the expansion of the term (2.17) contains only non-negative terms from the identity (2.4) we deduce the inequality (2.15).

Thus, if \(A \) is a stochastic matrix the inequality (2.15) implies

\[p(A \otimes \text{J}_m)^{1/m} \leq \left[\frac{(m!)^{n}}{m^{mn}} \right]^{1/m} \]

Note that if \(A = \text{P} \) then the equality sign holds in (2.18). Recall the well known Stirling formula (e.g. [2, p.52])

\[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^{n} n^{1/12} \]

Thus, if the van der Waerden conjecture holds by combining (2.14) and (2.18) with the Stirling formula we obtain
for any doubly stochastic matrix A. We shall prove the equality above in the next section, without assuming the validity of the van der Waerden conjecture. Of course, once (2.20) is established in view of Theorem 2.2 one deduces the inequality

$$p(A) > e^{-n}, \quad A \in \mathbb{U}_n.$$

Vice versa, (2.21) implies

$$p(A \otimes J_m)^{1/m} \geq e^{-n}.$$

Combining (2.22) with (2.18) we obtain again the equality (2.20). This manifests the equivalence of the relations (2.20) and (2.21).
3. The main result.

Lemma 3.1. Let \(n \) and \(r \) be fixed positive integers. Then there exists two sequences of positive numbers \(\{c_m\}_1^\infty \), \(\{\delta_m\}_1^\infty \) tending to zero such that for any non-negative \(r \) integers satisfying the equality

\[
k_1 + \ldots + k_r = m
\]

the following inequality holds

\[
n^{nm}(1 + \delta_m)^{nm} \geq \frac{(nk_1)! \ldots (nk_r)!}{(k_1^n \ldots (k_r^n)} \geq n^{nm}(1 - c_m)^{nm}, \quad (c_m < 1).
\]

Proof. According to Stirling's formula (2.19)

\[
\sqrt{2\pi} e^{j+1/2}/e^j \geq j! \geq \sqrt{2\pi} j^{j+1/2}/e^j
\]

for any \(j \geq 1 \). Without loss of generality we may assume that

\[1 \leq k_i, \quad i = 1, \ldots, s, \quad k_1 = 0, \quad i = s + 1, \ldots, r.\]

Thus

\[
\frac{(nk_1)! \ldots (nk_r)!}{(k_1^n \ldots (k_r^n)} \leq \frac{n^{nk_1+1/2}}{e^{n(n-1)/2}} \frac{n^{nk_r+1/2}}{n^s e^{s(n-1)/2}} =
\]

\[
\frac{n^{nm+2/2}}{e^{n[(2\pi)^{1/2}k_1 \ldots k_s]^2}} \geq \frac{n^{nm+2/2}}{e^{n((2\pi)_{m/s}^2)^2/(n-1)/2}}.
\]

The last part of the above inequality follows from the obvious fact

\[k_1 \ldots k_s \leq [(k_1 + \ldots + k_s)/s]^s = (m/s)^s.
\]

We also have
\[
\frac{(nk_1)\ldots(nk_s)!}{(k_1^n\ldots k_s^n)^n} \leq \frac{e^n(nk_1)\ldots(nk_s)}{(2\pi)^{n(n-1)/2}(n(k_1+1/2)\ldots(n(k_s+1/2))}
\]

(3.4)

\[
\frac{e^{n(nm+n^2/2)}}{(2\pi)^{(n-1)/2}s} \leq \frac{e^{n(nm+n^2/2)}}{(2\pi)^{(n-1)/2}s}.
\]

Here we used the inequality

\[
k_1\ldots k_s \geq (m-s+1)
\]

since \(k_1,\ldots, k_s\) are positive integers which sum up to \(m\). Clearly the relations

\[
\lim_{m\to\infty} \frac{n^{1+s/2}}{e^{n(2\pi/m)(n-1)/2}} = \lim_{m\to\infty} \frac{e^{s/nm}}{n^{1+s/2}} = n
\]

prove the lemma.

Lemma 3.2. Let \(p_1,\ldots, p_r\) be non-negative integers such that

\[
p_1 + \ldots + p_r = nm
\]

(3.6)

Then there exist non-negative integers \(q_1,\ldots, q_r\) with the following properties

\[
q_1 + \ldots + q_r = m
\]

(3.7)

\[
|p_j - nq_j| < n, \quad j = 1,\ldots, r
\]

(3.8)

and

\[
\frac{(nm)!}{p_1!\ldots p_r!} < \left(\begin{array}{c} n \vspace{0.1cm} \end{array}\right)^{r-1} \frac{(nm)!}{(nq_1)!\ldots(nq_r)!}
\]

(3.9)

Proof. By rearranging the indices we may assure that

\[
p_j \not\equiv 0 \pmod{n}, \quad j = 1,\ldots, k
\]

(3.10)

\[
p_j \equiv 0 \pmod{n}, \quad j = k+1,\ldots, r
\]

In case that \(k = 0\) (3.9) is trivial. Assume that \(k \geq 2\). Without loss of generality we
assume that

\[(3.11)\]
\[P_1 \leq P_2 .\]

Let

\[(3.12)\]
\[p_1 = nq_1 + t_1, \quad p_2 = n(q_1 + 1) - t_2, \quad 1 \leq t_1, \quad t_2 < n .\]

Suppose that

\[(3.13)\]
\[t_1 \leq t_2 .\]

Then

\[(3.14)\]
\[
\frac{\binom{p_1}{p_1-1} \cdots \binom{p_2}{p_2-t_1}}{(nq_1)! \binom{p_2+t_1}{t_1}} = \frac{(nq_1 + 1) \cdots (nq_1 + t_1)}{(nq_1 + 1 - t_2 + 1) \cdots (nq_1 + t_2 - t_1 + 1)} .
\]

Noting that the function \(\frac{nx+a}{nx+b}\) is increasing on \((0,\infty)\) if \(0 < a < b\) we obtain

\[(3.15)\]
\[
\frac{\binom{p_1}{p_1-1} \cdots \binom{p_2}{p_2-t_1}}{(nq_1)! \binom{p_2+t_1}{t_1}} \geq \frac{t_1!}{(n-t_2+1)! \cdots (n-(t_2-t_1))} \geq \frac{1}{\binom{n}{t_1}} .
\]

Recalling the well known inequality

\[
\binom{n}{t_1} \leq \binom{n}{\frac{n}{2}}
\]

one deduces

\[(3.16)\]
\[
\frac{1}{\binom{p_1}{p_1-1} \cdots \binom{p_2}{p_2-t_1}} \leq \left(\frac{n}{t_1}\right)^{t_1!} \left(\frac{n}{p_2+t_1}\right)! .
\]

Let

\[(3.17)\]
\[p_j' = p_{j+2}, \quad j = 1, \ldots, k-2, \quad p_{k-1}' = p_{2+t_1}, \quad p_k' = nq_1, \quad p_j' = p_j, \quad j = k+1, \ldots, r .
\]

According (3.16) we proved

\[(3.18)\]
\[
\frac{(nm)!}{p_1! \cdots p_r!} \leq \left(\frac{n}{t_1}\right)^{t_1!} \left(\frac{nm}{p_2+t_1}\right)! .
\]
In case that \(t_2 < t_1 \), we replace \(p_{k-1}^t \) and \(p_k^t \) given by (3.17) by \(p_{1-t_2}^t \) and \(n(q_1+1) \) respectively and (3.18) is still valid. Note that \(p_{1-t}^t + p_{1-t}^t = nm \) and at most \(k-1 \) numbers out of \(p_1^t, \ldots, p_r^t \) are not divisible by \(n \). Continuing the procedure above we obtain the inequality (3.9).

Lemma 3.3. Let

\[
0 < a_r < a_{r-1} < \ldots < a_1 < 1
\]

Then

\[
\left(\frac{r}{j=1} a_j \right)^{nm} \leq a_r^{-(n-1)r} \left(\begin{array}{c} n \\ln \frac{r}{2} \end{array} \right) \left(\begin{array}{c} (2n-1)^{r-1} \end{array} \right)
\]

\[
\sum_{k_1 + \ldots + k_r = nm} \frac{(nm)!}{(nk_1)! \ldots (nk_r)!} a_1 \ldots a_r.
\]

Proof. Recall that

\[
\left(\frac{r}{j=1} a_j \right)^{nm} = \sum_{P_1 + \ldots + P_r = nm} \frac{(nm)!}{P_1! \ldots P_r!} a_1 \ldots a_r.
\]

Consider a term

\[
\frac{(nm)!}{P_1! \ldots P_r!} a_1 \ldots a_r.
\]

According to Lemma 3.2 there exist positive integers \(q_1, \ldots, q_r \) such that (3.7) – (3.9) hold. As \(a_j \leq 1 \) we also have

\[
a_1 \ldots a_r \leq (a_1 \ldots a_1)^{-(n-1)} \ldots (a_r \ldots a_r)^{-(n-1)} \leq a_r^{-(n-1)r} (a_1 \ldots a_r).
\]

So

\[
\frac{(nm)!}{P_1! \ldots P_r!} a_1 \ldots a_r \leq \left(\begin{array}{c} n \\ln \frac{r}{2} \end{array} \right)^{r-1} \frac{(nm)!}{(nq_1)! \ldots (nq_r)!} a_r^{-(n-1)r} (a_1 \ldots a_r).
\]

For a fixed \(r \) integers \(q_1, \ldots, q_r \) we can have at most \((2n-1)^r \) types of \(r \) integers.
Thus, by using the inequality (3.24) for each summand appearing in (3.21) we establish the lemma.

We are now ready to prove our main result.

Theorem 3.1. Let A be an $n \times n$ doubly stochastic matrix. Then

\[
\lim_{m \to \infty} p(A \otimes J_m)^{1/m} = e^{-n}.
\]

Proof. From the classical Birkhoff theorem (e.g. [4]) it follows that

\[
A = \sum_{j=1}^{r} a_j P_{j}, \quad a_j > 0, \quad j = 1, \ldots, r, \quad \sum_{j=1}^{r} a_j = 1.
\]

Without loss of generality one may assume that (a_j) is a decreasing sequence, i.e. (3.19) holds. We claim that

\[
p(A \otimes J_m) \geq \frac{(ml)^{2n}}{m^{2n} k_1 \cdots k_m} \frac{\prod_{1 \leq j \leq r} a_j^{k_j} (k_m^1)^{n} \cdots (k_m^r)^{n}}{(k_m^1)^{n} \cdots (k_m^r)^{n}}.
\]

Indeed, let k_1, \ldots, k_r be positive integers which sum up to m. Consider

\[
\beta = \sum_{1 \leq j \leq r} k_j p_{j} \in \mathbb{N}_m.
\]

From the expansion (2.4) for the permanent of $p(A \otimes J_m)$ it follows that one has a term of the form

\[
\frac{(ml)^{2n}}{m^{2n}} \prod_{i,j=1}^{r} \frac{\delta_{ij}}{\beta_{ij}}.
\]

Recall that $p_0 = (\delta_{ij})_1^r$. So

\[
\delta_{ij} = \sum_{k=1}^{r} k^j p_{(i)k} = \sum_{k=1}^{r} k^j \delta_{i(k)}.
\]

\[
a_{ij} = \sum_{s=1}^{r} a_s \delta_{i(s)}.
\]
Thus, the multinomial expansion of a_{ij}^β contains the term

$$
\frac{k_1 \delta_{s_1(i)j} k_r \delta_{s_r(i)j}}{a_1 \ldots a_r (\beta_{ij})!} \frac{a_1 \ldots a_r}{(k_1 \delta_{s_1(i)j})! \ldots (k_r \delta_{s_r(i)j})!}.
$$

(3.32)

This implies at once that the expansion of (3.29) contains a term of the form

$$
\frac{k_1 \delta_{s_1(i)j} k_r \delta_{s_r(i)j}}{a_1 \ldots a_r} \frac{a_1 \ldots a_r}{(k_1 \delta_{s_1(i)j})! \ldots (k_r \delta_{s_r(i)j})!} \frac{nk_1 \ldots nk_r}{(k_1 i)^n \ldots (k_r i)^n}.
$$

(3.33)

As the multinomial expansion of a_{ij}^β contains only positive summands from (2.4) and (3.33) we obtain the inequality (3.27).

Consider the identity

$$
\frac{nk_1 \ldots nk_r}{(k_1 i)^n \ldots (k_r i)^n} = \frac{(nk_1)! \ldots (nk_r)!}{(nk_1) \ldots (nk_r)!} = \frac{nk_1 \ldots nk_r}{(nk_1)! \ldots (nk_r)!}.
$$

(3.34)

According to Lemma 3.1

$$
\frac{nk_1 \ldots nk_r}{(k_1 i)^n \ldots (k_r i)^n} \geq \sum_{k_1 + \ldots + k_r = m} \frac{nk_1 \ldots nk_r}{(nk_1)! \ldots (nk_r)!}.
$$

(3.35)

From (3.27) and (3.35) it follows

$$
p(A \oplus J_m) \geq \sum_{k_1 + \ldots + k_r = m} \frac{(nk_1)! \ldots (nk_r)!}{(nk_1) \ldots (nk_r)!} \frac{nk_1 \ldots nk_r}{(k_1 i)^n \ldots (k_r i)^n}.
$$

(3.36)

Applying the inequality (3.20) and noting that $\sum_{j=1}^r a_j = 1$ we finally deduce

$$
p(A \oplus J_m) \geq \sum_{k_1 + \ldots + k_r = m} \frac{(nk_1)! \ldots (nk_r)!}{(nk_1) \ldots (nk_r)!} \frac{nk_1 \ldots nk_r}{(k_1 i)^n \ldots (k_r i)^n}.
$$

(3.37)

Using Stirling's formula and the fact that $\lim_{m \to \infty} \epsilon_m = 0$ we get

$$
-13-
$$
On the other hand the inequality (2.18) implies

\[\lim_{m \to \infty} \inf \frac{p(A \otimes J_m)^{1/m}}{m} \geq e^{-n}. \]

The above two inequalities establish the theorem.

Combine Theorems 2.2 and 3.1 to deduce

Theorem 3.2. Let \(A \) be an \(n \times n \) doubly stochastic matrix. Then

\[\lim_{m \to \infty} \sup \frac{p(A \otimes J_m)^{1/m}}{m} \leq e^{-n}. \]

We conclude our paper by an application of the inequality (3.40) to the problem of Marshall Hall (unpublished). The problem is to estimate from below the permanent of 0 - 1 matrix having exactly three 1 in each row and column. In what follows we consider a larger class of matrices.

Corollary 3.1. Let \(a \) be an \(n \times n \) matrix which is a sum of three permutation matrices. That is \(a \) belongs to the set \(\phi_{n,3} \). Then

\[\lim_{m \to \infty} \inf \frac{p(a \otimes J_m)^{1/m}}{m} \geq e^{-n}. \]

A lower bound known before was \(n \) [5].
REFERENCES

Title: A Lower Bound for the Permanent of a Doubly Stochastic Matrix

Authors: Shmuel Friedland

Performing Organization Name and Address:
Mathematics Research Center, University of Wisconsin, 610 Walnut Street, Madison, Wisconsin 53706

Program Element, Project, Task, and Work Unit Numbers:
- Work Unit Number 4 - Probability, Statistics and Combinatorics

Report Date: September 1978

Number of Pages: 15

Distribution Statement:
Approved for public release; distribution unlimited.

Key Words: Permanents, van der Waerden conjecture, Marshall Hall's problem.

Abstract:
It is shown that the permanent of an $n \times n$ doubly stochastic matrix is not less than $C^{-\theta n}$.