TEST RESULTS OF EARTH PENETRATORS.

Physics International Company
2700 Merced Street
San Leandro, California 94577

Final Report 25 Aug 75 – 31 Dec 76

Contract No DNA 001-76-C-0071

Approved for public release; distribution unlimited.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Destroy this report when it is no longer needed. Do not return to sender.
Three test series were conducted to observe the stability of small length-to-diameter ratio projectiles penetrating natural earth and concrete clad earth targets. Impact velocities were from 1300 ft/sec to 2000 ft/sec. A wide variety of projectile shapes were found to penetrate stability at a variety of angles of attack (yaw) and at impact obliquities of zero and twenty degrees. A self-obturating sabot was developed which launched...
20. ABSTRACT (Continued)

Projectiles at reproducible velocities but with an unpredictable angular velocity.
CONTENTS

SECTION 1 INTRODUCTION 3

SECTION 2 EXPERIMENTAL PROGRAM 4
 2.1 Launch System 4
 2.2 Test Series 1 4
 2.3 Test Series 2 11
 2.4 Test Series 3 11

SECTION 3 TEST RESULTS 25

SECTION 4 SUMMARY AND CONCLUSIONS 33

APPENDIX A PHOTOGRAPHS OF TEST APPARATUS AND RESULTS 35
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Projectile Launcher</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Projectile Outlines and Designations</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Sabot Mold with Dummy Projectile</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Experimental Setup, Series 1</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Double Flash Projectile Photo</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Experimental Setup, Series 2</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Projectile Velocity Versus c/m</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Configuration of Projectiles and Sabots for EPW 3 Tests</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>DCP (Dynamic Cone Penetrometer) Readings Relative to Point of Projectile Impacts, Test Series 3</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Optical Protractor Unit used for Setting Impact Obliquity</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>Casting of Target Slabs</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>Experimental Setup Series 3</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>X-Ray Photograph of Projectile in Flight</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>Recovered Projectile Trajectories from EPW Series III</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>Projectile-Target Frame of Reference and Angle Definition</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>Trajectory Stability, Series 1 and 2</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>Total Penetration Depth and Penetration Efficiency for Seven Projectile Shapes, Series 1 and 2</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Penetration Trajectories and Efficiencies</td>
<td>32</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

The stability of projectiles traveling through an earth medium has been a matter of continuing interest. Several investigators have conducted experimental and computational programs to measure or predict the course of projectiles in typical earths. The value of penetration calculations has been limited by an incomplete understanding of the physics of penetration and by the cost of performing computations of problems employing complex models with fine space and time resolution. Experiments had been limited by cost since work had generally been done in relatively large scales using bulky apparatus. Even though scaling relationships are incompletely understood it seemed appropriate to conduct a series of tests in natural earth media utilizing small scale models and a simple launcher. Such a series of tests could be valuable in screening potential shapes and in observing penetration properties at impact velocities higher than those feasible in larger scale with existing launchers. With these aims in mind, Physics International Company (PI) contracted to conduct a series of tests to observe the penetration stability of a group of small length to diameter ratio (L/D) shapes launched from a modified 57 mm cannon.

The tests were conducted in three series. Some of the diagnostic and launching techniques were modified between series in response to the results of the previous series.
SECTION 2

EXPERIMENTAL PROGRAM

2.1 LAUNCH SYSTEM

The launch system utilized in all three of the series conducted under this program is shown in Figure 1. The barrel of a standard 57 mm rifle was reamed smooth to 2.375 inch diameter and a 4 foot long extension with radial relief holes was added to relieve the gas pressure on the base of the launch package before it exited the muzzle. The launch tube was mounted on a welded steel framework which also carried a sabot stripper, a blast shield, skids for transport, and jacks for leveling.

2.2 TEST SERIES 1

Five projectile designs were used in this series. Sketches of the projectile shapes used in this and in later series are shown in Figure 2. It was the objective of the series to test these shapes at 2000 ft/sec muzzle velocity and at angles-of-attack (yaw) of 0 and 3 degrees. Impacts were to be at normal obliquity. The model projectiles were enclosed in plastic sabots which were cast in an aluminum mold shown in Figure 3 using dummy projectiles as shown. All of the projectiles had their centers of gravity 45 percent of the length (2.25 in.) aft of the tip. The remainder of the launch package consisted of a ¼-inch-thick steel disk in contact with the base of the projectile and a 2-inch-thick polyethylene obturator which served as a gas seal.
Figure 1 Projectile launcher.
Figure 2 Projectile outlines and designations.
Figure 3 Sabot mold with dummy projectile.
The results of this series of experiments were diagnosed by measuring the elapsed time between a break wire on the muzzle of the gun and each of two aluminum foil switches, one on each side of a sabot stripper. Two photographic stations were established to observe the projectile in flight. The stations consisted of plywood boxes painted flat black inside with two cameras at each station observing projectile flight from two viewpoints. The illumination for exposure was by electronic flash units. The flashers were triggered by fixed time delays after actuation of one of the foil switches. The first of the stations was located immediately next to the earth bank which the models would enter. The second was located in a trench separated from the first station by a bank of earth about 54 to 60 inch thick. Figure 4 illustrates the experimental setup. An example of the photographic record is shown in Figure 5.

In the course of this first series several difficulties were noted. In order to locate the center-of-gravity of the projectiles at the desired point, it was necessary to use tungsten noses and aluminum afterbodies. The noses were secured by means of a transverse pin. In several cases the pin sheared during the penetration process and the nose separated compromising the validity of the experiment. The pusher plate and the plastic obturator followed the projectile into the hole and obscured the details of penetration in the first few body lengths. Since a new interest had developed by this time in the dynamics of penetration in this shallow region, this loss of data became undesirable. Further, the photo instruments had proved to be of insufficient resolution to answer all of the important questions of projectile flight.
Figure 4 Experimental setup Series 1.
Figure 5 Double flash projectile photo.
2.3 TEST SERIES 2

For this series the apparatus was modified to substitute the use of flash X-ray photos for the optical photos of Series 1. Figure 6 illustrates the test configuration.

For these tests the weight of the pusher plate and the obturator were minimized by using a 1/8-inch-thick aluminum pusher and a 1-inch-thick polyethylene obturator. To avoid the obscuring effects of the impact of the pusher and obturator, these items were bolted to one of the four sabot sections. This modification did not prove to be successful. The opening of the sabot did not divert the heavier elements sufficiently far that they were removed by the sabot stripper. Furthermore, the asymmetry of the sabot opening process introduced an angular velocity to the projectile which resulted in an unpredictable angle-of-attack at impact.

The three shapes which were most successful in the first series (OC, FF and WF) were used in these tests together with two new shapes HF (similar to FF but with half height fins) and NF (body shape like FF but without fins). In this series the fins for FF and HF projectiles were welded to the body rather than pinned as in Series 1. For this series the weighted nose sections were threaded into the afterbodies, with only a single exception (HF-4), the projectiles remained intact throughout penetration.

2.4 TEST SERIES 3

A final test series was conducted with the goal of reducing the projectile velocity to approximately 1000 fps, eliminating the sabot pusher plate used in the previous test series, and improving projectile stability during launch and sabot stripping.
Figure 6 Experimental setup, Series 2.
Two projectile shapes, an ogive cylinder (OC) and an ogive nose with tapered body (OT), were fabricated from Bearcat steel. These projectiles were then impacted into soil and concrete-soil targets at a 20 degree oblique angle. The angle of attack was to be either 0 or 3 degrees.

A preliminary test series was conducted to determine the difficulties of reducing the projectile velocity. Simple solid projectiles with approximately the same L/D and areal density anticipated for the final tests were used for these velocity tests. Since the amount of powder required for these low velocities is so small, the 57 mm shell casings were cut down to 5 inches to allow placement of the SPM-2 powder directly around the ignitor in a paper tube container. This technique was felt to be desirable to cause rapid ignition of all the propellant grains. Several tests were then conducted in which varying powder weights were used. The projectile velocity versus C/M (charge weight to projectile weight ratio) is shown in Figure 7. The velocities from the final data tests are also included. The low scatter in velocity data was quite surprising in view of the fact that the sabot-projectile package did not contain a separate obturator to seal the propellant gases. The recorded projectile base pressures were less than 1800 psi, and the propellant grains were not completely burned during projectile launch.

The two projectile shapes used in this series with their respective sabots are shown in Figure 8. The projectiles were fabricated from AISI 5-7 (Bearcat) steel and heat treated to Rockwell C-55.
Figure 7 Projectile velocity versus c/m (charge mass/projectile mass).
Figure 8 Configuration of projectiles and sabots for EPW 3 tests (with ≈ 425 gms BEARCAT STEEL)
The sabots were made by casting epoxy in a four-piece mold. The epoxy used was "Epocast" No. 202 with No. 9652 hardener to which 7 percent by weight of microballoons was added to reduce shrinkage during curing.

Initial tests were conducted at approximately 1000 fps, however, at this subsonic velocity the sabot pieces did not separate sufficiently at the 2½-inch-diameter sabot stripper tube located approximately 9½ feet from the gun nozzle. Since relocation of the sabot stripper would cause additional cost and time delays, the velocity was increased to 1300 fps where successful sabot separation was achieved. The projectile still exhibited angular rotation caused by sabot separation but it was decided to continue with the testing and to carefully document the angle of attack upon impact.

The bank where the projectiles were impacted was cut to expose new, fresh soil. Although the soil in this area appears to be fairly variable between its clay and sand content, the "S" number determined by the DCP readings was fairly consistent. These readings in relation to the location of the projectiles is given in Figure 9.

The gun system was placed at an angle of approximately 20 degrees to the cut bank. The target area was then carefully trimmed to 20 degrees over approximately a 1-square-foot area for the soil-only tests.

For the concrete-soil tests, the concrete targets were placed approximately 2 inches from the bank and braced against the gun system. The void between the bank and concrete was then filled and tamped with moist native material. All angles were measured with an optical protractor viewed through the
Figure 9 DCP (Dynamic Cone Penetrometer) readings relative to point of projectile impacts, Test Series 3.
barrel axis. Figure 10 is a photograph of this unit. The mix of concrete consisted of the following proportions:

- Sand: 254 pounds (63 percent)
- Type III Cement: 94 pounds (23 percent)
- Water: 55 pounds (14 percent) (includes 5.7 percent sand moisture)

This mixture is different than that desired; it was necessary to add additional water and cement to achieve a workable mixture.

Compressive strength samples were taken of all pourings, however, some samples were usable due to separation planes caused by early movement of the samples. Compressive strength measurements of the samples tested were:

<table>
<thead>
<tr>
<th>Target Pour Number</th>
<th>Number of Days After Pour</th>
<th>Compressive Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>4389</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>4050</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3230</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>4030</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3530</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>4350</td>
</tr>
</tbody>
</table>

Average: 3928

The concrete was poured into forms that were 4 feet square and 2 inches thick. Six-inch square reinforcing mesh (0.225-inch-diameter wire) was centered in the form. The concrete was covered with plastic and kept moist for 5 days. Figure 11 shows the casting of the slabs.
Figure 10 Optical protractor unit used for setting impact obliquity.
Figure 11 Casting of target slabs.
The diagnostics for the tests consisted of a muzzle break switch, two velocity screens on either side of the sabot stripper, and two X-ray locations located adjacent to the soil bank (see Figure 12). The final X-ray station consisted of an orthogonal X-ray pair for determining the projectile angle of attack and angle of rotation. The horizontal X-ray stations provided accurate projectile velocity information. The final orthogonal pair were positioned within 1 foot of the target to maximize data accuracy prior to impact. The X-ray data was analyzed with the aid of grid patterns that were pre-flashed on the film to provide accurate centerline locations and spatial scaling. Figure 13 is a typical X-ray photograph.

After all of these tests were completed, polyurethane expanding foam was forced into the holes produced by the projectile trajectories. After the foam was hardened, the soil was dug away and the foam castings were removed. A photograph of the recovered trajectories is shown in Figure 14.
Figure 12 Experimental setup series 3.
Figure 13 X-ray photograph of projectile in flight.
Figure 14 Recovered projectile trajectories from EPW series III.
SECTION 3
TEST RESULTS

Figure 15 defines angular measurements used in Table 1, 2, and 3, which present results. Figure 16 shows a summary of the trajectory obtained in Series 1 and 2. Figure 17 shows a comparison of total penetration depth and penetration efficiency for the seven shapes tested in Series 1 and 2. Penetration efficiency is defined as "useful" hole volume (projectile maximum cross sectional area times penetration depth) divided by kinetic energy at impact. Figure 18 shows similar properties for Series 3.

It should be noted that penetration between nominally identical experiments varies about ±10 percent from a mean value. This value seems to be indicative of the magnitude of experimental variations which can be expected for these tests. These deviations are probably due to local variations of soil penetrability.
Figure 15 Projectile-target frame of reference and angle definition.
TABLE 1

DATA SUMMARY - EPW SERIES I

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PROJECTILE SHAPE</th>
<th>VELOCITY (ft/sec)</th>
<th>ANGLE OF ATTACK (degrees)</th>
<th>PENETRATION 1st BANK</th>
<th>PENETRATION 2nd BANK</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td></td>
<td>820</td>
<td>0</td>
<td>88</td>
<td>-</td>
<td>DATA QUESTIONABLE</td>
</tr>
<tr>
<td>OC-3</td>
<td></td>
<td>2085</td>
<td>0</td>
<td>88</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>OC-3</td>
<td></td>
<td>2046</td>
<td>3</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WF-1</td>
<td></td>
<td>1964</td>
<td>0</td>
<td>64</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WF-2</td>
<td></td>
<td>2085</td>
<td>0</td>
<td>58</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>WF-2</td>
<td></td>
<td>1021</td>
<td>3</td>
<td>28</td>
<td>-</td>
<td>PUSHER STRUCK PROJECTILE STRUCK STRIPPER</td>
</tr>
<tr>
<td>FT-1</td>
<td></td>
<td>2081</td>
<td>0</td>
<td>29</td>
<td>-</td>
<td>PROJECTILE TIP BROKEN</td>
</tr>
<tr>
<td>FT-2</td>
<td></td>
<td>2083</td>
<td>0</td>
<td>29</td>
<td>-</td>
<td>PROJECTILE TIP BROKEN</td>
</tr>
<tr>
<td>FT-3</td>
<td></td>
<td>2084</td>
<td>3</td>
<td>29</td>
<td>-</td>
<td>PROJECTILE STRUCK STRIPPER</td>
</tr>
<tr>
<td>FF-1</td>
<td></td>
<td>2118</td>
<td>0</td>
<td>48</td>
<td>12</td>
<td>TIP BROKEN - 2 FINS INTACT</td>
</tr>
<tr>
<td>FF-2</td>
<td></td>
<td>2083</td>
<td>0</td>
<td>91</td>
<td>36</td>
<td>2 FINS INTACT</td>
</tr>
<tr>
<td>FF-3</td>
<td></td>
<td>2047</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>PROJECTILE NOT LOCATED</td>
</tr>
<tr>
<td>BT-1</td>
<td></td>
<td>2100</td>
<td>0</td>
<td>62</td>
<td>-</td>
<td>36" PENETRATION BEFORE PROJECTILE TURNED 90°</td>
</tr>
<tr>
<td>BT-2</td>
<td></td>
<td>2109</td>
<td>0</td>
<td>48</td>
<td>-</td>
<td>32" PENETRATION BEFORE PROJECTILE TURNED 60°</td>
</tr>
</tbody>
</table>

Note (1): Angle of attack was not measured prior to impact.
TABLE 2

DATA SUMMARY - EPW SERIES II

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>ANGLE OF ATTACK (degrees)</th>
<th>ANGLE OF ROTATION (degrees)</th>
<th>VELOCITY (ft/sec)</th>
<th>1st BANK INCHES</th>
<th>2nd BANK INCHES</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF 2</td>
<td>2.3</td>
<td>17</td>
<td>2100</td>
<td>58</td>
<td>36</td>
<td>FINS LOST IN PENETRATION</td>
</tr>
<tr>
<td>HF 3</td>
<td>1.2</td>
<td>110</td>
<td>2008</td>
<td>62</td>
<td>40</td>
<td>FINS LOST IN PENETRATION</td>
</tr>
<tr>
<td>HF 4</td>
<td>4.1</td>
<td>331</td>
<td>2210</td>
<td>40</td>
<td>23</td>
<td>NOSE SEPARATED FROM BODY</td>
</tr>
<tr>
<td>HF 5</td>
<td>2.0</td>
<td>305</td>
<td>1919</td>
<td>48</td>
<td>23</td>
<td>FINS LOST</td>
</tr>
<tr>
<td>NF 1</td>
<td>3.7</td>
<td>270</td>
<td>1942</td>
<td>58</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>NF 2</td>
<td>2.6</td>
<td>180</td>
<td>1805</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NF 3</td>
<td>3.0</td>
<td>16</td>
<td>1926</td>
<td>61</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NF 4</td>
<td>2.1</td>
<td>48</td>
<td>2042</td>
<td>59</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>FF 4</td>
<td>1.3</td>
<td>345</td>
<td>2042</td>
<td>59</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>NF 4</td>
<td>2.8</td>
<td>365</td>
<td>1833</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>WF 5</td>
<td>6.1</td>
<td>111</td>
<td>1756</td>
<td>34</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>OC 5</td>
<td>2.8</td>
<td>35</td>
<td>1950</td>
<td>68</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>OC 6</td>
<td>2.5</td>
<td>27</td>
<td>1952</td>
<td>59</td>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

(1) TARGET BANK NORMAL TO GUN AXIS
(2) HF INDICATES HALF SIZE FINS. NF INDICATES CONICAL BODY WITHOUT FINS. WF INDICATES WIDE ANGLE CONE. OC INDICATES OJIB NOSE AND A CYLINDRICAL BODY
<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>VELOCITY (ft/sec)</th>
<th>PROJECTILE ANGLE OF ATTACK (degree)</th>
<th>ANGLE OF ROTATION (degree)</th>
<th>MASS (Ib)</th>
<th>TYPE</th>
<th>SOIL (2)</th>
<th>"B" NO.</th>
<th>CONCRETE (1) COMPRESSIVE STRENGTH (psi)</th>
<th>ANGLE (degrees)</th>
<th>PENETRATION PATH LENGTH (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC101</td>
<td>1286</td>
<td>3.0</td>
<td>24</td>
<td>429.3</td>
<td>SOIL</td>
<td>2.4</td>
<td>19</td>
<td>110½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC102</td>
<td>1304</td>
<td>4.4</td>
<td>264</td>
<td>426.6</td>
<td>SOIL</td>
<td>2.7</td>
<td>19</td>
<td>82½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC103</td>
<td>1304</td>
<td>7.9</td>
<td>318</td>
<td>438.3</td>
<td>CONCRETE-SOIL</td>
<td>3.4</td>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC104</td>
<td>1306</td>
<td>7.7</td>
<td>227</td>
<td>428.0</td>
<td>CONCRETE-SOIL</td>
<td>3.5</td>
<td>19¾</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC101</td>
<td>1306</td>
<td>3.0</td>
<td>127</td>
<td>427.0</td>
<td>SOIL</td>
<td>2.5</td>
<td>19</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC102</td>
<td>1269</td>
<td>4.3</td>
<td>186</td>
<td>424.3</td>
<td>SOIL</td>
<td>2.5</td>
<td>19</td>
<td>57½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT103</td>
<td>1299</td>
<td>9.8</td>
<td>313</td>
<td>427.1</td>
<td>CONCRETE-SOIL</td>
<td>3.4</td>
<td>20</td>
<td>68½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT104</td>
<td>1286</td>
<td>4.9</td>
<td>180</td>
<td>425.1</td>
<td>CONCRETE-SOIL</td>
<td>3.4</td>
<td>19¾</td>
<td>67½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. **Concrete Thickness** = 2.0 inches. Average compressive strength of 7 samples = 3928 psi. (Day = same date as 188782)
2. Estimated "B" number from 4 DCP readings and the formula $S = 66 (DCP)^{0.7}$
3. The sample for this pour was unusable. The mix was identical and conditions were similar so we suggest the 3928 psi average value be used.
Figure 16 Trajectory stability, Series 1 and 2. (Deviations are schematic and approximate.)
Figure 17: Total penetration depth and penetration efficiency for seven projectile shapes, Series 1 and 2.
Figure 18 Penetration trajectories and efficiencies.
SECTION 4

SUMMARY AND CONCLUSIONS

The following list summarizes the results of the experiments conducted during this program.

1. Of the seven projectile shapes tested only one, the boat-tailed projectile, did not exhibit a stable trajectory.

2. Projectiles with ogive noses and cylindrical bodies (OC) veered slightly while penetrating.

3. The trajectories of all other projectiles were very straight even at angles of attack as high as 10 degrees and obliquities of 20 degrees into a concrete clad target.

4. The ogive cylinder projectiles showed the deepest penetration.

5. The ogive nose projectiles with a narrow conical afterbody showed the greatest penetration efficiency (hole volume produced for a given kinetic energy at impact).

6. The additional stabilization provided by fins does not seem to be required for penetrators of these L/D ratios.

7. Two inches (0.4 body length) of concrete reduced penetration by about 35 percent for cylindrical (OC) projectiles and almost none for conical body (OT) projectiles.

8. Erosional patterns seem to show continuously attached flow for the conical body shapes (NF, HF, FF, WF and OT).
9. We were unable to launch projectiles with predictable angles-of-attack except by using obturators which obscured the first few body lengths of penetration data.

10. A self-obturating sabot was developed which satisfactorily launched projectiles without any following material to obscure penetration data.
APPENDIX A

PHOTOGRAPHS OF TEST APPARATUS AND RESULTS
Figure A-1 Projectile launching apparatus in place.
Figure A-2 Impact point and X-ray tubes and film holders.
Figure A-3 Truncated shell casing and powder charge.
Figure A-4 Barrel alignment sighting tool.
Figure A-5 OC projectile and sabot.
Figure A-6 Velocity switch showing projectile and sabot impacts.
Figure A-7 Impact point--concrete clad target and X-ray film holder.
Figure A-8 Penetrated concrete target.
Figure A-9 Penetrated concrete target.
DEPARTMENT OF DEFENSE

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Defense Advanced R&D Proj. Agency</td>
<td>Technical Library</td>
</tr>
<tr>
<td>Director</td>
<td>Defense Civil Preparedness Agency</td>
<td>Admin. Officer</td>
</tr>
<tr>
<td>Director</td>
<td>Defense Documentation Center</td>
<td>TC</td>
</tr>
<tr>
<td>Director</td>
<td>Defense Intelligence Agency</td>
<td>Technical Library</td>
</tr>
<tr>
<td>Director</td>
<td>Defense Nuclear Agency</td>
<td>SPAS</td>
</tr>
<tr>
<td>Commander</td>
<td>Field Command, Defense Nuclear Agency</td>
<td>FCPRL</td>
</tr>
<tr>
<td>Director</td>
<td>Interservice Nuclear Weapons School</td>
<td>Document Control</td>
</tr>
<tr>
<td>Director</td>
<td>Joint Staff Tgt. Planning Staff</td>
<td>STINFO Library</td>
</tr>
<tr>
<td>Chief</td>
<td>Livermore Division Fld. Command, DNA</td>
<td>FCPRL</td>
</tr>
<tr>
<td>Under Sec'y of Def. for R&D & Engng.</td>
<td>5655 (05)</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF THE ARMY

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Chief of Staff for R&D & Acq.</td>
<td>DAMA-CSM-N, LTC G Ogden</td>
<td>Technical Library</td>
</tr>
<tr>
<td>Chief of Engineers</td>
<td>DAEN-RUM</td>
<td></td>
</tr>
<tr>
<td>Deputy Chief of Staff for Ops. & Plans</td>
<td>DAEN-MCE-D</td>
<td></td>
</tr>
<tr>
<td>Chief</td>
<td>Dir. of Chem. & Nuc. Ops.</td>
<td>Technical Library</td>
</tr>
<tr>
<td>Chief</td>
<td>Engineer Strategic Studies Group</td>
<td>DAEN-FES</td>
</tr>
</tbody>
</table>

Project Manager

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gator Mine Program</td>
<td>E. Liddsey</td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harry Diamond Laboratories</td>
<td>DELHD-RH, James H. Swintzow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRXDO-RBH, James H. Swintzow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Picatinny Arsenal</td>
<td>B. Shulman, DR-DAR-L-C-FA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRXUPA-AD-D-A-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jerry Pental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harry Mргolin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRUPA-AD-D-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Angelotl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paul Harris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRUPA-AD-D-M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ray Hoesmer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ernie Zimpo</td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Redstone Scientific Information Ctr.</td>
<td>Chief, Documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Armament Command</td>
<td>Technical Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Ballistic Research Labs.</td>
<td>A. Ricciotti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRXBR-L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRXBR-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Roesser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRXBR-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Grabarek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. W. Apgar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tech. Lib., Edward Balcy</td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Cold Region Res. Engr. Lab.</td>
<td>G. Swintzow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LTC Pullen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commander

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Engineer Center</td>
<td>ATSEN-SY-L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Division Engineer

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Engineer Div., Huntsville</td>
<td>HNDE-SR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Division Engineer

<table>
<thead>
<tr>
<th>Position</th>
<th>Organisation</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Army Engineer Div., Missouri Rvr.</td>
<td>Tech. Library</td>
</tr>
</tbody>
</table>
DEPARTMENT OF THE ARMY (Continued)

Commandant
U.S. Army Engineer School
ATTN: ATSE-CTD-CS
ATTN: ATSE-TEA-AD

Director
ATTN: Tech. Library
ATTN: D. K. Butler
ATTN: Guy Jackson
ATTN: John N. Strange
ATTN: P. Hadala
ATTN: Leo Ingram
ATTN: William Flatheu
ATTN: Behzad Rohani

Commander
ATTN: Tech. Library

Commander
U.S. Army Materiel Dev. & Readiness Cmd.
ATTN: Tech. Library

Director
ATTN: Joseph Sunninta

Commander
U.S. Army Missile Command
ATTN: F. Fleming
ATTN: W. Jann
ATTN: J. Hogan

Commander
U.S. Army Mobility Equip. R&D Ctr.
ATTN: Tech. Library
ATTN: STSFB-MW
ATTN: STSFB-XS

Commander
U.S. Army Nuclear Agency
ATTN: Doc. Con.
ATTN: Tech. Library

Commander
U.S. Army Training and Doctrine Cmd.
ATTN: LTC J. Foss
ATTN: LTC Auveduti, Col. Enger

Commandant
U.S. Army War College
ATTN: Library

ATTN: DRCPM-NUC

DEPARTMENT OF THE NAVY (Continued)

Officer-in-Charge
Civil Engineering Laboratory
ATTN: Tech. Library
ATTN: R. J. Odello

Commandant of the Marine Corps
Navy Department
ATTN: POM

Commanding General
Development Center, Fire Support Branch
ATTN: CAPT Hartneady
ATTN: LTC Gapenski

Commander
Naval Air Systems Command
ATTN: F. Marquardt

Commanding Officer
Naval Explosive Ordn. Disposal Fac.
ATTN: Code 504, Jim Petrousky

Commander
Naval Facilities Engineering Command
ATTN: Tech. Library

Superintendent (Code 1424)
Naval Postgraduate School
ATTN: Code 2124, Tech. Rpts. Librarian

Director
Naval Research Laboratory
ATTN: Code 2600, Tech. Library

Commander
Naval Sea Systems Command
ATTN: ORD-033
ATTN: SEA-9931G

Office-in-Charge
Naval Surface Weapons Center
ATTN: M. Kleinerman
ATTN: Code XX1, Tech. Library

Commander
Naval Surface Weapons Center
ATTN: Tech. Library

Commander
Naval Weapons Center
ATTN: Carl Austin
ATTN: Code 533, Tech. Library

Commanding Officer
Naval Weapons Evaluation Facility
ATTN: Tech. Library

Director
Strategic Systems Project Office
ATTN: NSP-43, Tech. Library

DEPARTMENT OF THE AIR FORCE

AF Armament Laboratory, AFSC
ATTN: Masey Valentia
ATTN: 3 cy ATTN: John Collins, AFATL/DLYV

46
DEPARTMENT OF THE AIR FORCE (Continued)
AF Institute of Technology, AU
ATTN: Library, AFIT, Bldg. 640, Area B
AF Weapons Laboratory, AFSC
ATTN: SUL
Assistant Secretary of the Air Force Research and Development
ATTN: Col R. E. Steere
Deputy Chief of Staff Research and Development
ATTN: Col J. L. Gilbert
Commander Foreign Technology Division, AFSC
ATTN: NICD Library
HQ USAF/I
ATTN: INATA
HQ USAF/RD
ATTN: RPM
Oklahoma State University
Pld. Off. for Wpns. Effectiveness
ATTN: Edward Jackett
Commander Rome Air Development Center, AFSC
ATTN: EMILD, Doc. Library
SAMSO/HS
ATTN: RSS

DEPARTMENT OF ENERGY
Albuquerque Operations Office
ATTN: Doc. Con. for Tech. Library
Division of Headquarters Services
Library Branch, G-043
Nevada Operations Office
Division of Military Application
ATTN: Doc. Con. for Test Office
University of California
Lawrence Livermore Laboratory
ATTN: Mark Wilkins, L-504
ATTN: Jerry Goudreau
ATTN: Tech. Info. Dept. L-3
Los Alamos Scientific Laboratory
ATTN: Doc. Con. for Tom Dowler
ATTN: Doc. Con. for Reports Lib.
Sandia Laboratories
Livermore Laboratory
ATTN: Doc. Con. for Tech. Library

DEPARTMENT OF ENERGY (Continued)
Sandia Laboratories
ATTN: Doc. Con. for Walter Herrmann
ATTN: Doc. Con. for John Keizur
ATTN: Doc. Con. for William Patterson
ATTN: Doc. Con. for W. Altsmeirer
ATTN: Doc. Con. for William Caudle
ATTN: Doc. Con. for John Colp

OTHER GOVERNMENT AGENCIES
NASA
Ames Research Center
ATTN: Robert W. Jackson
Office of Nuclear Reactor Regulation
Nuclear Regulatory Commission
ATTN: Lawrence Shao
ATTN: Robert Heineman

DEPARTMENT OF DEFENSE CONTRACTORS
Aerospace Corporation
ATTN: Tech. Info. Services
Agbabian Associates
ATTN: M. Agbabian
Applied Theory, Inc.
2 cy ATTN: John G. Trulio
Avco Research & Systems Group
ATTN: David Henderson
ATTN: Pat Grady
ATTN: S. Skemp, J200
ATTN: Research Lib., A830, Rm. 7201
Battelle Memorial Institute
ATTN: Tech Library
The Boeing Company
ATTN: Aerospace Library
California Research & Technology Inc.
ATTN: Ken Kreyenhagen
ATTN: Tech. Library
Civil/Nuclear Systems Corp.
ATTN: Robert Crawford
EOG, Inc.
Albuquerque Division
ATTN: Tech. Library
Engineering Societies Library
ATTN: Ann Mott
General Dynamics Corp.
Pomona Division
ATTN: Keith Anderson
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

General Electric Company
ATTN: DASIAC
Georgia Institute of Technology
ATTN: S. V. Hanagud
ATTN: L. M. Rehfled
Honeywell Incorporated
ATTN: T. N. Helvig
Institute for Defense Analyses
ATTN: IDA Librarian, Ruth S. Smith
Kaman Avionics
Division of Kaman Sciences Corp.
ATTN: Tech. Library
ATTN: Norman P. Hobbs
ATTN: E. S. Criscione
Kaman Sciences Corporation
ATTN: Library
Lockheed Missiles & Space Co., Inc.
ATTN: M. Culp
ATTN: Tech. Library
Lockheed Missiles & Space Co., Inc.
Martin Marietta Corporation
Orlando Division
ATTN: M. Anthony
ATTN: A1 Cowen
ATTN: K. McQueig
Merritt CATS, Incorporated
ATTN: J. L. Merritt
ATTN: Tech. Library
University of New Mexico
Dept. of Campus Security and Police
ATTN: G. E. Triandafalis
Nathan M. Newmark
Consulting Engineering Services
ATTN: W. Hall
ATTN: Nathan M. Newmark
Pacific Technology
ATTN: R. Bjork
ATTN: G. Kent

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Physics International Company
ATTN: Doc. Con. for Larry A. Behrmann
ATTN: Doc. Con. for Dennis Orphal
ATTN: Doc. Con. for Douglas Mumma
ATTN: Doc. Con. for Donald Randall
R & D Associates
ATTN: Tech. Library
ATTN: Cyrus P. Knowles
ATTN: Paul Rausch
ATTN: Arlen Fields
ATTN: J. G. Lewis
ATTN: Henry Cooper
ATTN: Harold L. Brode
ATTN: William B. Wright, Jr.
The Rand Corporation
ATTN: Tech. Library
Science Applications, Inc.
ATTN: Tech. Library
SRI International
ATTN: Jim Colton
ATTN: George R. Abrahamson
Systems, Science and Software, Inc.
ATTN: Robert Sodgewick
ATTN: Tech. Library
ATTN: Edward Gaffney
Terre Tek, Inc.
ATTN: Tech. Library
TRW Defense & Space Sys. Group
ATTN: Tech. Info. Center/5-1930
ATTN: Peter K. Davis, R1/2170
TRW Defense & Space Sys. Group
San Bernardino Operations
ATTN: E. Y. Wong, 527/712
Weidlinger Assoc. Consulting Engineers
ATTN: J. M. McCormick
ATTN: Melvin L. Baron
Weidlinger Assoc. Consulting Engineers
ATTN: J. Isenberg