RESEARCH ON SOME PROBLEMS IN INFORMATION PROCESSING

E. Wong

FINAL REPORT

U. S. ARMY RESEARCH OFFICE

GRANT DAAG29-74-G-0087

16 December 1973 - 30 June 1977

Approved for Public Release; Distribution Unlimited.

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
Research on some problems in information processing

Electronics Research Laboratory
University of California
Berkeley, CA 94720

Final report - 16 December 1973 to 30 June 1977

The research in this grant was conducted in two principal areas: (a) Stochastic models for image processing; (b) Management of information and databases. Significant progress was achieved in both areas, and a concise description is included.
This is the final report for "Research on Some Problems in Information Processing," DAAG29-74-G-0087.

As proposed, the research on this grant was conducted in two principal areas:

(a) Stochastic models for image processing;
(b) Management of information and databases.

Significant progress was achieved in both areas, and a concise description of the principal findings is given below. Inasmuch as both of these problem areas continue to be investigated under ARO sponsorship, additional details can be found in the progress reports of grants DAAG29-75-G-0189 and DAAG29-76-G-0245.

One of the difficulties in image processing is the lack of good theoretical models for two-dimensional signals and noise with a concommitant lack of a processing methodology well-founded on theory. A major reason for this is the relatively undeveloped theory of stochastic processes with a multidimensional parameter (i.e., random fields). We have made significant progress in this area by developing a theory of martingales with a two-dimensional parameters. In addition to fundamental results of a mathematical nature, recursive image processing techniques based on the theory have also been obtained.

Beginning in 1974, we undertook to design and implement a major database management system based on the relational data model. Our goal was to achieve both data independence and powerful capabilities in data manipulation and control with an acceptable level of efficiency. The resulting system known as INGRES is now fully operational and has been widely tested in actual use. The impact of INGRES on research in database management both here and elsewhere has been considerable. It
has provided a vehicle for testing important new concepts, and has
stimulated additional areas for research. As a pioneering system of
its type, it has also served as a bridge between research and practice.

Published Papers

"The design and implementation of INGRES," M. Stonebraker, E. Wong and
P. Kreps, ACM Trans. on Data Base Systems, vol. 1, no. 2, pp. 189-222,

"Decomposition — a strategy for query processing," E. Wong and
K. Youssefi, ACM Trans. on Data Base Systems, vol. 1, no. 2, pp. 223-241,

"Weak martingales and stochastic integrals in the plane," E. Wong and

"An approach to implementing a geo-data system," A. Go, M. Stonebraker and
C. Williams, presented at the Workshop on Data Base for Interactive Design,
Waterloo, Canada, September 1975.

"INGRES — A relational data base system," D. Held, M. R. Stonebraker and

"Differentiation formulas for stochastic integrals in the plane,

"A sequential approach to heart-beat interval classification," E. T. Tsui

"Recursive filtering for two-dimensional random fields," E. Wong, IEEE
Trans. on Information Theory, IT-21, pp. 84-86, Jan. 1975.

"Transformation of local martingales under a change of law," J. H.

"Martingales and stochastic integrals for processes with a multi-dimensional
parameter," E. Wong and M. Zakai, Z. Wahrscheinlichkeitsrechnung und

"A likelihood ratio formula for two-dimensional random fields," E. Wong,

Personnel

Robert Epstein, Ph.D. candidate
C. D. Williams, M.S. candidate
Eugene Wong, Professor

Moshe Zakai, Visiting Professor, Israel
Chris Zegelin, B.S.E. candidate