New Low-Dimensional Molecular Metals:
Single Crystal Electrical Conductivity of Nickel Phthalocyanine Iodide.

by
C.J. Schramm,
D.R. Stojakovic,
B.M. Hoffman,
T.J. Marks

Prepared for Publication
in
Science

Northwestern University
Department of Chemistry
Evanston, Illinois 60201

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

260 805
New Low-Dimensional Molecular Metals:
Single Crystal Electrical Conductivity of Nickel Phthalocyanine Iodide

AUTHOR: C.J. Schramm, D.R. Stojakovic, B.M. Hoffman, and T.J. Marks

CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Dept. of the Navy
Arlington, VA 22217

DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
F

KEY WORDS
Phthalocyanine
Molecular metal
Electrical conductivity
Resonance Raman

ABSTRACT
(see page 1)
NEW LOW-DIMENSIONAL MOLECULAR METALS: SINGLE CRYSTAL ELECTRICAL CONDUCTIVITY OF NICKEL PHTHALOCYANINE IODIDE.
Abstract

Single crystals of NiPcI₄₀ (Pc = phthalocyanine), which are composed of one-dimensional stacks of (NiPc)⁺⁻⁻⁻EDGE
The highly anisotropic and sometimes spectacular electrical, magnetic, and optical characteristics of molecular materials with strongly one-dimensional interactions have made them of great current interest to chemists and physicists (1-5). As part of our efforts to obtain a better understanding of, and chemical control over, the fundamental properties of such materials, we recently synthesized an extensive new class of highly conductive molecular solids, containing stacks of metallophthalocyanine (MPc) molecules (Figure 1A)-(6). These were made via a preparative procedure which utilizes iodine oxidation to afford lattices composed of one-dimensional arrays of planar donor molecules (in this case MPc units) with fractionally occupied electronic valence shells (partial oxidation or mixed valence) and chains of polyiodide counterions (6-13). The general structural pattern of such lattice is schematized in Figure 1B.

Our initial studies of the partially oxidized phthalocyanines revealed a greater chemical flexibility in terms of metal-ion constituents and range of stoichiometries than in any previously reported class of conductive molecular materials. Electrical conductivities of pressed microcrystalline powder samples were comparable to those of other "molecular metals" (1-5), and we predicted that single crystal conductivities would be metal-like in the MPc stacking direction. We here report the synthesis and physical properties of single crystals of one member of this new series of highly conductive compounds: NiPCI1.0. The earlier predictions about such materials
are confirmed: At room temperature the mobilities of the individual charge carriers in NiPcI_{1.0}, expressed as the mean free path, are comparable to or greater than any previously known stacked molecular conductor (1-5) and the temperature dependence of the electrical conductivity is indeed metallic.

Needle-like crystals of NiPcI_{1.0}, exhibiting a silver-gold metallic lustre in reflection, were prepared by slowly diffusing together solutions of I₂ and sublimed NiPc (12). The resonance Raman spectrum of the crystals with 5145 Å Ar⁺ excitation exhibits the characteristic symmetric stretching fundamentals of I₃⁻ at ν = 107 cm⁻¹ along with the expected nν (n = 2, 3, 4, 5...) overtone progression (6, 7, 14). These data confirm the partially oxidized formulation NiPc(I₃⁻)₁₂ shown in Figure 1b. Single crystal electron paramagnetic resonance studies of NiPcI_{1.0} provide evidence that the partial oxidation is predominantly ligand-centered, rather than metal-ion centered (12). Further metrical details of the crystal structure, provided by single crystal X-ray diffraction and diffuse scattering measurements, will be presented elsewhere (12).

Figure 2 presents typical electrical conductivity data, σ_{11}(T), data (four-probe, phase-locked 27 Hz. ac apparatus (15)) for NiPc I_{1.0} along the NiPc stacking direction (crystallographic c-axis). At room temperature, conductivities in the range 250-650 ohm⁻¹ cm⁻¹ are observed. These values are comparable to those for the well known "organic metal" TTF-TCNQ (1-5, 16). However, because of the very large cross-sectional area of the NiPc molecules, when
comparing NiPcI\textsubscript{1.0} to other materials, it is important to consider the properties of the individual charge carriers (10). Within the framework of one-electron band theory (3, 17), the conductivity can be related to \(\lambda \), the mean free path of a carrier along the stacking direction (the average distance travelled between scattering events) and to \(A \), the cross-sectional area per conducting stack, by the equation

\[
\sigma_{\parallel} = \frac{2e^2 \lambda}{\pi \hbar A}
\]

For NiPcI\textsubscript{1.0} at room temperature, we find values for \(\lambda \) to be in the range 3.3-8.2 \(\text{Å} \) or 1.0-2.3 intermolecular spacings. This result can be compared to values in other highly conductive stacked molecular systems of 2.1-2.8 spacings for TTT\textsubscript{2}I\textsubscript{3} (18), 1.6-2.5 spacings for HMTSF-TCNQ (19), 0.4-0.6 spacings for TTF-TCNQ (16), \(~0.6\) spacings for K\textsubscript{2}Pt(CN)\textsubscript{4}Br\textsubscript{0.3}.3H\textsubscript{2}O (2) \(~0.15\) spacings for Qn(TCNQ)\textsubscript{2} (20) and \(~0.06\) spacings for the related macrocyclic system Ni(octamethyltetrabenzporphyrin)\textsubscript{1.0} (10, 11). The mean free path for the most highly conductive NiPcI\textsubscript{1.0} crystals still, however, is less than that in Ni metal, ca. 60 \(\text{Å} \) or ca. 26 interatomic spacings (21).

Figure 2 shows that as the temperature is decreased from ambient values the conductivity is metallic, increasing with decreasing temperature until a maximum is reached at a temperature \(T_m \approx 90^\circ\text{K} \) which varies somewhat from crystal to crystal. At the maximum, calculated values of \(\lambda \) are in the range 4-9 spacings which maybe compared with \(\lambda \) of 10-15 spacings for TTF-TCNQ at its temperature of maximum conductivity(60\(^\circ\text{K})

For \(T > T_m \) there is no hysteresis in the conduc-
tivity-temperature curves and \(\sigma || (T) \) obeys the relationship (1, 3, 18, 19):

\[
1/ \sigma || (T) = a + bT^\gamma
\]

(2)

For all crystals examined, a least-squares fitting to equation (2) yields \(\gamma = 1.9 \pm 0.1 \) and a plot of \(\log [1 - (\sigma(295 K)/\sigma(T))] \) versus \(T \) yields a superimposable family of curves; this has been shown to provide assurance of the reliability of the measurements and of a well-defined scattering mechanism (18). The value of \(\gamma \) obtained is distinctly different from the value \(\gamma = 1 \) found for simple metals and is similar to that found for several other molecular metals, 2.0 - 2.4 (18, 19).

Upon cooling below \(T_m \), the conductivity abruptly decreases and then continues to slowly decrease with further cooling (Figure 2). This behavior suggests an interpretation in terms of a Peierls transition (1-5) or a first-order phase transition. Raman spectral studies down to 4°K do indicate that the lattice charge distribution, i.e., the average degree of NiPc partial oxidation, remains unaltered through this transition. Pronounced hysteresis in dc conductivity observed upon passage through \(T_m \) is suggestive of contributions from stress at the contacts, and indeed microwave conductivity studies in collaboration with Prof. T. Poehler suggest that the transition is at lower temperatures in unstressed crystals.

Thus, the temperature dependence of the conductivity of NiPcI_{1,0} is metal-like and the room temperature mean free path compares favorably with that of the most highly conductive materials composed of molecular stacks. On a broader plane, this study and related
work (10) confirm the idea that the partial oxidation of metallomacro-
cycles is a chemically versatile synthetic route to a wide array of new
molecular metals.

C. J. Schramm, D. R. Stojakovic, B. M. Hoffman, and T. J. Marks

Department of Chemistry and
The Materials Research Center
Northwestern University
Evanston, Illinois 60201
References and Notes

22. This research was supported by grants from the Northwestern Materials Research Center (NSF DMR'72-0319AO6), the Paint Research Institute (53Co to T.J.M.), and the U.S. Office of Naval Research (to T.J.M.). T.J.M. is a Camille and Henry Dreyfus Foundation Teacher-Scholar.
Figure Captions

Fig. 1A. The molecular structure of a metal phthalocyanine. B. Schematic representation of the crystal structure of NiPcI₁₀ and similar materials. The view is perpendicular to the stacking direction.

Fig. 2. Plot of the conductivity ratio, $\sigma_{\perp}(T)/\sigma_{\parallel}(295K)$, versus temperature for a typical crystal of NiPcI₁₀ in which $\sigma_{\parallel}(295K) = 350 (\Omega \text{ cm})^{-1}$.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Arlington, Virginia 22217</th>
<th>Attn: Code 472</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Arlington, Virginia 22217</td>
<td>Attn: Code 1021P</td>
<td>6</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>536 S. Clark Street</td>
<td>Chicago, Illinois 60605</td>
<td>Attn: Dr. Jerry Smith</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>715 Broadway</td>
<td>New York, New York 10003</td>
<td>Attn: Scientific Dept.</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>1030 East Green Street</td>
<td>Pasadena, California 91106</td>
<td>Attn: Dr. R. J. Marcus</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>760 Market Street, Rm. 447</td>
<td>San Francisco, California 94102</td>
<td>Attn: Dr. P. A. Miller</td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td>495 Summer Street</td>
<td>Boston, Massachusetts 02210</td>
<td>Attn: Dr. L. H. Peebles</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>Washington, D.C. 20390</td>
<td>Attn: Code 6100</td>
<td>1</td>
</tr>
<tr>
<td>The Asst. Secretary of the Navy (R&D)</td>
<td>Department of the Navy</td>
<td>Room 4E736, Pentagon</td>
<td>Washington, D.C. 20350</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Department of the Navy</td>
<td>Washington, D.C. 20360</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
</tr>
<tr>
<td>No. Copies</td>
<td>No. Copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dr. R. M. Grimes
University of Virginia
Department of Chemistry
Charlottesville, Virginia
22901 |
| 1 |
| Dr. W. Hatfield
University of North Carolina
Department of Chemistry
Chapel Hill, North Carolina
27514 |
| 1 |
| Dr. M. Tsutsui
Texas A&M University
Department of Chemistry
College Station, Texas
77843 |
| 1 |
| Dr. D. Seyferth
Massachusetts Institute of Technology
Department of Chemistry
Cambridge, Massachusetts
02139 |
| 1 |
| Dr. C. Quicksall
Georgetown University
Department of Chemistry
37th & O Streets
Washington, D.C. 20007 |
| 1 |
| Dr. M. H. Chisholm
Princeton University
Department of Chemistry
Princeton, New Jersey
08540 |
| 1 |
| Dr. M. F. Hawthorne
University of California
Department of Chemistry
Los Angeles, California
90024 |
| 1 |
| Dr. B. Foxman
Brandeis University
Department of Chemistry
Waltham, Massachusetts
02154 |
| 1 |
| Dr. D. B. Brown
University of Vermont
Department of Chemistry
Burlington, Vermont
05401 |
| 1 |
| Dr. T. Marks
Northwestern University
Department of Chemistry
Evanston, Illinois
60201 |
| 1 |
| Dr. W. B. Fox
Naval Research Laboratory
Chemistry Division
Code 6130
Washington, D.C. 20375 |
| 1 |
| Dr. G. Geoffrey
Pennsylvania State University
Department of Chemistry
University Park, Pennsylvania
16802 |
| 1 |
| Dr. J. Adcock
University of Tennessee
Department of Chemistry
Knoxville, Tennessee
37916 |
| 1 |
| Dr. J. Zuckerman
University of Oklahoma
Department of Chemistry
Norman, Oklahoma
73019 |
| 1 |