AN ELECTRICAL SURGE ARRESTOR (ESA) MODEL FOR ELECTROMAGNETIC PULSE ANALYSIS

C. T. Kleiner, E. D. Johnson, L. R. McMurray and F. T. Suzuki

Presented to
IEEE Transactions on Nuclear Science
December 1977

THE DISTRIBUTION OF THIS REPORT IS UNLIMITED

Rockwell International
Autonetics Group
3370 Miraloma Avenue
P.O. Box 4182
Anaheim, California 92803
AN ELECTRICAL SURGE ARRESTER (ESA) MODEL FOR ELECTROMAGNETIC PULSE ANALYSIS

C. T. Kleiner, E. D. Johnson, L. R. McMurray and F. T. Suzuki
Rockwell International Electronics Operations, Anaheim, CA 92803

I. SUMMARY

Electrical Surge Arrestors (ESAs') have been used extensively for lightning and EMP protection. These components are characterized by (a) presenting an open circuit (high impedance) below the gap breakdown potential, (b) becoming a virtual short-circuit above the gap breakdown and (c) displaying a significantly higher level of apparent gap breakdown for very fast input voltage rise-times (dv/dt). This paper describes a mathematical model for a spark gap surge arrestor which has been used successfully to characterize ESA response to the following stimuli:

1. Below DC Gap Breakdown
2. At or above Gap Breakdown
3. At high apparent Gap Breakdown voltage as a function of increased rise-time
4. Damped Sinewave Input (below and at Gap Breakdown)
5. Exposed to prompt gamma radiation using a Flash X-Ray source and an electrical input

II. MODEL PARAMETERS AND EQUATIONS

Figure 1 illustrates the equivalent circuit for the Electrical Surge Arrestor model. The linear portion of the model is defined by the L, R_{PL}, C_g and C_e elements. The nonlinear characteristics of the model are illustrated in Figure 2, and basically represents the complex reaction of initial streamer/arc formation followed by plasma formation and includes the Thermonic potential observed during the ON or conduction phase of ESA operation. The various model parameters, nonlinear equations which utilize the parameters will be defined and illustrated by model application and comparison to test results. The various test circuits are also shown for the benefit of other investigators wishing to characterize ESA's in a manner described herein.

Definition of Model Parameters and Equations

1. Linear Section
 - L = Lead Inductance (usually in nano henries)
 - R_{PL} = Flux loss (l^2q) associated with L (usually in K ohms)
 - C_s = Stray Capacitance (reflected capacitance at the ESA terminals from all other sources, leads, etc.)
 - C_g = Gap Capacitance (measured or calculated for the Gap)

Equations:

$W = W_{IN} - W_{OUT}$

$W_{OUT} = \int \frac{W}{R_{PL}} dt$ or $\int P_{ml} dt$

(whichever is less)

where:

R_g = Instantaneous Resistance of the gap (ohm)
V_g = Instantaneous Voltage across the gap (volts)
I_g = Instantaneous Current through the gap (amps)
W = Instantaneous Energy in the gap (joules)
W_{IN} = Instantaneous Energy generated as input to the gap (joules)

*This work was performed on the Wing VI In-Place EMP Program, Air Force Contract F04704-76-C-0008, under the direction of SAMSO (MNNH) Project Officer Captain R. I. Lawrence.
The following controls are employed:

No. 1 If \(V_T = V_{DB} \), then initiate timer at \(t_0 \) (time at which the condition for streamer formation has been achieved)

No. 2 At \(t = t_0 + \tau_{SF} \) initiate computation of \(W \) and subsequent modification of \(R_g \) (see Figure 2 characteristic curve)

No. 3 Continue to monitor \(W \) until \(W < W_{min} \). Also monitor \(R_g \) and limit \(R_g \) to \(R_{g_{min}} \) by comparing \(R_g(W) \) to \(R_{g_{min}} \)

No. 4 Return \(R_g \) to \(R_{g_{max}} \) when gap is fully extinguished \(I_g = I_{g_{min}} \)

(b) Thermionic Effect: The phenomenon that accounts for the high ON voltages observed in ESA's (over 100 volts), whereby the emitting ESA block effectively becomes a cold cathode, while the collecting ESA block becomes the plate, in what is essentially a Thermionic reaction, namely, the plasma creates a function which is represented mathematically by the following equations:

\[
I_{RF1} = I_{S1} \left(\exp \frac{V_R}{M_1} \right) - 1 \tag{6}
\]

\[
I_{RF2} = I_{S2} \left(\exp \frac{-V_R}{M_2} \right) - 1 \tag{6}
\]

where:

\(V_R \) = Thermionic junction potential (volts)

\(I_{S1}, I_{S2} \) = A pseudo-saturation current for the Thermionic Rectifier (and are also functions of temperature and effective plasma area)

\(M_1, M_2 \) = Multiplier for empirical fit (M has a range of 50 to 500 depending on the particular ESA) (non-dimensional)

In addition, there is a slight tendency for these "thermionic rectifiers" to "store" charge similar to a semiconductor rectifier, hence, the net current in each Thermionic Rectifier is formulated as follows:

\[
I_{R1} = I_{RF1} + I_{RF2} \tag{7}
\]

\[
I_{R2} = I_{RF1} + I_{RF2} \tag{8}
\]

where:

\(\tau_R \) = Thermionic electron recombination time (which is believed to be on the order of a few nanoseconds)

\(\theta = kT/q = 0.026 @ 27^\circ C \) (T is set at 300\(^\circ\)K\(\))\(\tag{9}\)

A set of typical ESA model data (Antenna ESA) is shown in Table I.

Although the model accounts for numerous nonlinear effects, it nevertheless is a very simple conceptual representation of the phenomenon that can be attributed to spark gap ignition and plasma's in general. The next section will show how a particular Electrical Surge Arrester was...
characterized and tested to validate the subject model.

III. ESA CHARACTERIZATION

Although several types of ESAs were modeled and characterized (Audio, Power and Antenna ESAs), the lower power device (Jewlyn Part No. 27-10425-11) was selected for presentation here since it was also characterized for the effects of a prompt gamma pulse produced by a 2-MeV Flash X-ray. This test was performed to determine if the presence of a prompt gamma pulse would effectively aid ESA firing and, hence, tend to lower the effect of high coincident dv/dt inputs (or ESG overshoot) without lowering the ON voltage. This was found to be the case and is believed to be the first published data on this effect. The device was characterized for both the linear and nonlinear components of the model.

Table I. Typical ESA Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>180</td>
<td>mhos</td>
</tr>
<tr>
<td>Rg</td>
<td>2100</td>
<td>ohms</td>
</tr>
<tr>
<td>Cg</td>
<td>3.15</td>
<td>pfds</td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td>pfds</td>
</tr>
<tr>
<td>Kt</td>
<td>1^-2</td>
<td>ohm-Joules</td>
</tr>
<tr>
<td>Pm</td>
<td>1000</td>
<td>Watts</td>
</tr>
<tr>
<td>g</td>
<td>.1</td>
<td>volts</td>
</tr>
<tr>
<td>Vd</td>
<td>185</td>
<td>Volts</td>
</tr>
<tr>
<td>W</td>
<td>.1</td>
<td>Joules</td>
</tr>
<tr>
<td>Vmax</td>
<td>10^-6</td>
<td>Volts</td>
</tr>
<tr>
<td>R0</td>
<td>1^-12</td>
<td>Ohms</td>
</tr>
<tr>
<td>M</td>
<td>500</td>
<td>nes</td>
</tr>
<tr>
<td>Rf</td>
<td>1</td>
<td>nes</td>
</tr>
<tr>
<td>Rf</td>
<td>5</td>
<td>nes</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>use</td>
</tr>
<tr>
<td>Thermonic</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Rf</td>
<td>.1</td>
<td>nes</td>
</tr>
</tbody>
</table>

The linear characteristics can be obtained quite readily by using a network analyzer and solving for the values of \(L, C, R, \) and \(V_p, L_p. \) The result is shown in Figure 3.

The nonlinear characteristics are considerably more difficult to obtain.

The following tests were conducted to obtain the nonlinear characteristics:

1. Sawtooth Oscillator Test

The first test that can be performed is shown in Figure 4 where the ESA is used as the nonlinear element which produces a sawtooth oscillation. Resistor, \(R_1, \) must be sufficiently large so that the 'holding current' will not sustain a very low electron leakage and prevent oscillation. This determines one of the critical parameters, namely, the minimum power to sustain the arc. This may not be the minimum power required to completely describe the interaction of the plasma with the surrounding medium however.

Figure 3. Linear Characterization of the Low Power ESA

The dynamic resistance of the arc can appear quite high even though the capacitor, \(C, \) is a very low impedance source at the switch point and hence, would be expected to discharge rapidly giving rise to a high current pulse through the ESA; this is not the case for this or other ESA's. The reason for this apparent high discharge impedance in this sawtooth oscillator configuration is postulated to be due to the relatively high resistance of \(R_{gap} \) and the relatively high impedance of the onsets of the Thermionic conduction \(\frac{B}{gap} \)

2. Fast Rise Time Test

When the ESA is subject to a high voltage, fast rise-time input, two characteristics become apparent. First, the firing potential increases and second, the ON voltage is only somewhat higher than during the sawtooth operation. The dynamic resistance becomes much lower which satisfies the functional relationship between \(\frac{R_{gap}}{M_{gap}} \) (both resistors being inverse to arc current density). The high dv/dt input results in a voltage breakdown vs rise-time characteristics as shown in Figure 5. There are two regions of the curve which are worthy of discussion. Region I shows a fairly gradual increase in apparent gap breakdown with increasing dv/dt. This increase is attributable to the interaction of the arc formation and energy dissipation coupled with the effect of the reactive linear elements \((L, C, L_p, \) and \(C_p) \) of the ESA. In Region II the apparent breakdown of the ESA vs dv/dt increased more rapidly. This is attributed to the time required for streamer formation. This occurs prior to arc formation. The net effect of this ESA response to very high values of dv/dt (or high frequency) reduces ESA effectiveness for the high frequency components of EMP. As a result, most ESA's include limiters and low bandpass filters (as shown in Figure 6).
3. Damped Sine Wave Test

In practice a damped sine wave is frequently used to characterize component and/or subsystem response to EMP. As a result, the ESA and corresponding model were also characterized using various damped sine wave input stimuli. The result of this test and model simulation is illustrated in Figure 7. Note that the ESA’s can open after the initial shorting if the sustaining energy is insufficient to cause the arc to sustain. This is particularly true for lower frequencies (~1 MHz and below) and “soft” EMP sources.

4. Ionization from 2 MEV FXR

In a situation where an antenna ESA can be simultaneously exposed to a high dv/dt pulse and a high γ pulse, there is a distinct possibility that the ESA may, in fact, be triggered by the γ pulse (provided of course, that this occurs virtually simultaneously with the EMP pulse). In view of the difficulty associated with synchronizing two short pulses (~20-30 nsec each) from a different source of high intensity EMI, an indirect but correlatable experiment was performed. The approach which was taken utilizes the sawtooth oscillator circuit (shown in Figure 8) as a self-contained EMP source and exposes the ESA unit to γ using a 2 MEV FXR. This test configuration is shown in Figure 8 with the attendant curves showing decreasing firing potential vs dose rate. From this experiment, it has been possible to characterize the ESA model with the following simple assumption.

Soft does not necessarily mean “Soft” to EMP or having a low energy content.
The streamer formation is overridden by a minimum energy contributed by the ionizing pulse. This energy was obtained experimentally on two samples and has not been calculated extensively for large sample size types of ESA's. When this energy is exceeded, the conditions for arc formation are enabled and the results for a combined high dv/dt and sufficiently high γ are shown in Figure 9 for comparison. Of the two samples, one would trigger as low as 10^5 R/sec (Si) while the other required 3×10^5 R/sec (Si). The exact cause for this wide dispersion is unknown and certainly is indicated worthy of additional investigation. The most significant observation however, indicated that the Thermo-ionic ON voltage seemed virtually unaffected by γ which is to be expected.

IV. CONCLUSIONS

The ESA model presented in this paper is relatively easy to use (in an appropriate computer program) and permits a detailed evaluation of ESA, Limiter and Filter assemblies to a variety of EMP stimulus. The model accounts for the extremely nonlinear behavior of the ESA gap including intermittent firing, variation in ON impedance and other related phenomenon. The model has been more than adequate for EMP assessment and together with other EMP related models permits nonlinear transient response evaluation with minimal run time (on the order of 10 to 20 per run using a GFE CDC 7600 computer).
At present, the model does not provide a readily traceable path between ESA device design parameters and the response observed in test or associated with parameter variations. Some of the more subtle parameters of the model appear to have a fairly wide dispersion. Most of these effects are expected to influence the higher frequency components of EMP and should not be significant for well-limited/filtered assemblies using ESA's. Where ESA's stand alone (as protection against lightning), these parameters can be extremely critical; and one could expect to see a wide variation in high frequency response even among the same type and series of ESA's.

At present, the ESA model has been implemented using the SECURE code which is the baseline software EMP simulation package used for the In-Place EMP program.

V. ACKNOWLEDGMENTS

The authors would like to express their appreciation to Mr. Gene Laport, who conducted the dv/dt experiments and Mr. James T. Blandford, who conducted the 2-MEV FXR experiments. In addition, Mr. G. Page and Mr. R. Fratino provided invaluable review during the process of performing this work. All of the aforementioned individuals are with Electronics Operations of Rockwell.

VI. REFERENCES

1. "EMP" Radiation and Protective Techniques" by:

