The Vibrational Deactivation of HF\((v = 3)\) and HF\((v = 2)\) by H Atoms

Aerophysics Laboratory
The Ivan A. Getting Laboratories
The Aerospace Corporation
El Segundo, Calif. 90245

18 August 1977

Interim Report

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Prepared for
AIR FORCE WEAPONS LABORATORY
Kirtland Air Force Base, N. Mex. 87117

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center
Los Angeles, Calif. 90009
This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract F04701-76-C-0077 with the Space and Missile Systems Organization, Deputy for Advanced Space Programs, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation by W. R. Warren, Jr., Director, Aerophysics Laboratory. Lieutenant A.G. Fernandez, SAMSO/YAPT, was the project officer for Advanced Space Programs.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Arturo G. Fernandez, Lt, USAF
Project Officer

Robert W. Lindemuth, Lt Col, USAF
Chief, Technology Plans Division

FOR THE COMMANDER

Floyd R. Stuart, Colonel, USAF
Deputy for Advanced Space Programs
REPORT DOCUMENTATION PAGE

REPORT NUMBER
SAMS0-TR-77-160

TITLE (And Subtitle)
The Vibrational Deactivation of HF(v = 1) and HF(v = 2) by H Atoms.

AUTHOR(s)
Jerry F. Bott, Raymond F. Heidner, III

PERFORMING ORGANIZATION NAME AND ADDRESS
The Aerospace Corporation
El Segundo, Calif. 90245

CONTROLLING OFFICE NAME AND ADDRESS
Air Force Weapons Laboratory
Kirtland Air Force Base, N. Mex. 87117

MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)
Space and Missile Systems Organization
Air Force Systems Command
Los Angeles, Calif. 90009

REPORT DATE
18 Aug 77

NUMBER OF PAGES
3

DISTRIBUTION STATEMENT (OF REPORT)
Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

SUPPLEMENTARY NOTES

KEY WORDS
Vibrational Deactivation, Laser-Induced Fluorescence, Hydrogen Atoms, Chemical Kinetics, Chemical Laser

ABSTRACT
The rate of HF(v = 3) removal by H atoms was measured at T = 295 K. The measurements were performed by laser-induced fluorescence in a discharge flow tube in which H atoms were produced by a microwave discharge. The absolute H-atom concentrations were measured by isothermal calorimetry with a Pt wire coil as a catalytic probe. A small fraction of the injected HF(v = 0) was pumped first to HF(v = 1) and subsequently to HF(v = 2) and HF(v = 3) by the multiline output from a pulsed HF transverse excitation atmospheric (TEA) laser.
The exponential decay times of the HF $3-0$ fluorescence with and without the microwave discharge and the measured H-atom concentrations were used to calculate a removal rate of $6.3 \times 10^{13} \text{ cm}^3/\text{mol-sec}$ for HF($v = 3$). This rate is ~ 400 times faster than the deactivation of HF($v = 1$) by H atoms and ~ 100 times faster than the deactivation of HF($v = 2$) also reported in this study. Thus, it may account for the low laser output from the higher vibrational levels that has been observed in pulsed HF lasers.

There are several vibrational deactivation processes and reactions that may contribute to the measured removal rate. The present results bear directly on the construction of potential energy surfaces used for theoretical predictions of upper level deactivation rates.
I. INTRODUCTION .. 3

II. EXPERIMENTAL APPARATUS AND PROCEDURE 5
 A. Flow Systems ... 5
 B. Laser-Induced Fluorescence 5
 C. Isothermal Calorimeter 7
 D. Materials .. 7

III. RESULTS .. 9

IV. DISCUSSION ... 17

REFERENCES .. 23
TABLES

I. Removal Rate of HF($v = 3$) by H Atoms .. 10
II. Removal Rate of HF($v = 2$) by H Atoms .. 11
III. Removal Rates of HF(v) by H atoms at $T = 295 \, K$
 Compared with HF(v) V-R, T Relaxation by HF 18
IV. Calculated Deactivation Rates of HF($v = 3$) by
 H Atoms at $T = 295 \, K$.. 20

FIGURES

1. Schematic of Apparatus .. 6
2. Removal Rates of HF($v = 3$) by H Atoms 12
3. Removal Rates of HF($v = 2$) by H Atoms 14
I. INTRODUCTION

The interest in understanding and modeling the HF chemical laser has resulted in several theoretical\(^1,2\) and experimental\(^3-5\) studies of the deactivation of HF\((v = 1)\) by H atoms. The cold-reaction HF laser operates on the reaction in which one H atom is produced for each HF molecule. Therefore,

\[
F + H_2 \rightarrow HF(v = 1, 2, 3) + H
\]

the importance of the HF\((v)\) deactivation by H atoms must be evaluated relative to HF self-deactivation rates. The discrepancy between two of the experimental H + HF\((v = 1)\) studies\(^4,5\) and the classical trajectory calculations\(^1,2\) has stimulated interest in a more accurate determination\(^6-8\) of the potential energy surfaces that are required as input to the trajectory calculations of the deactivation rates. In addition to the vibrational deactivation measurements, studies\(^5,9\) of the reactions (2a) and (2b) resulted in upper limits for the rate of

\[
\begin{align*}
H + DF &\rightarrow HD + F \quad (2a) \\
H + DF &\rightarrow HF + D \quad (2b)
\end{align*}
\]

F-atom exchange in Reaction (2b). These data may also be compared with theoretical predictions that are based on various potential energy surfaces.

In a previous study,\(^5\) the laser-induced fluorescence technique was used for measuring the room-temperature deactivation rate of HF\((v = 1)\) by H atoms. The study has been extended to include the H-atom deactivation rates of HF\((v = 3)\) and HF\((v = 2)\). The \(v = 2, 3\) levels of HF are produced by sequential absorption of photons from the 1-0, 2-1, and 3-2 transitions of a pulsed HF chemical laser. The sequential photon absorption technique was used previously to study HF\((v)\) deactivation by HF\(^{10}\) and other diatomic molecules\(^{11}\) as well as V-V transfer from DF\((v = 2)\) to CO\(_2\).\(^{12}\) Isothermal calorimetry was used for the H-atom concentration measurements.\(^5\)
The deactivation of HF($v = 3$) by H atoms can proceed by three channels:

\begin{align*}
H' + HF(v = 3) &\rightarrow H' + HF(v < 3) \\
&\rightarrow H + H'F(v < 3) \\
&\rightarrow HH' + F
\end{align*}

nonreactive deactivation (3a), reactive deactivation by H-atom exchange (3b), and (3c) the back reaction of Reaction (1) to form H_2. The channel represented by (3c) only becomes available for HF($v \geq 3$).
II. EXPERIMENTAL APPARATUS AND PROCEDURE

A. FLOW SYSTEM

The experimental apparatus used in this study is shown in Fig. 1. The fluorescence cell was slightly modified from the design of Ref. 5 and was constructed of 44-mm i.d Pyrex tubing. The walls were coated with Halocarbon wax in order to reduce H-atom recombination and loss of HF at the walls. Hydrogen atoms were produced by a 2450-MHz microwave discharge (≤50 W) in He-H₂ mixtures flowing through a quartz discharge tube of 10-mm i.d. and 20-cm length. This discharge tube was connected to the main flow tube approximately 7 cm upstream of the region where the laser-induced fluorescence was monitored. A mixture of 10% HF in helium was injected into the gas stream approximately 5 cm upstream of the fluorescence window in order to permit ~20 msec for mixing in the 300 cm/sec flow. The mass flows were measured with rotating ball flowmeters calibrated by pressure-rise measurements in a standard volume.

B. LASER-INDUCED FLUORESCENCE

The laser used to pump HF(ν = 2, 3) has been described in previous studies. It could be pressure-tuned such that HF(ν = 1, 2) only or HF(ν = 3) as well were produced in the fluorescence cell. The fluorescence region was focused onto a photomultiplier with an f/1.5 quartz lens system. An RCA 7102 photomultiplier (S-1) was used for the ν = 2 experiments. A silicon flat in front of the photomultiplier restricted the monitored fluorescence to wavelengths > 1 μm. An RCA C-31034 (GaAs) photomultiplier was used for the ν = 3 experiments; a narrow band filter restricted the fluorescence to a 200 Å spectral band centered at 8900 Å. The output signal across a 47 KΩ resistor was amplified by a Perry Model 070 amplifier (15 x amplification) and recorded with a Biomation 805 transient recorder. The recorded signals were transferred to a Nicolet Model 1072 signal averager, where 128 to 512 experiments were typically stored and averaged before being displayed on an X-Y recorder.
Figure 1. Schematic of Apparatus
C. ISOTHERMAL CALORIMETER

The construction, operation, and calibration of the isothermal probe has been described previously. The heated Pt-wire coil recombined H atoms in the present 44-mm-i.d. fluorescence cell with an efficiency of \(\sim 70 \pm 10\% \), which was slightly less than its efficiency in the 22-mm-i.d. tube of the previous experiment.\(^5\)

D. MATERIALS

HF (Matheson Co., 99% liquid phase) was purified by pumping on samples at 77 K in order to remove the noncondensibles and then distilled into a passivated 4 liter stainless-steel tank. The HF was diluted 1:10 in He to a total sample pressure of 2 to 3 atm absolute. Helium (Air Products 99.995%) was passed through a molecular sieve trap that was periodically baked out under vacuum at elevated temperature. Hydrogen (Matheson, 99.95%) was also passed through a molecular sieve for the \(v = 3 \) and some of the \(v = 2 \) experiments. In some of the \(v = 2 \) experiments, the \(H_2 \) at 1 atm was passed over \(H_2O(S) \) at \(-35^\circ C\) in order to increase the H-atom production.
III. RESULTS

Experiments were performed at 2.6 to 3.9 Torr total pressure with partial pressures of 0.02 to 0.08 Torr for \(\text{H}_2 \), 0.003 to 0.018 Torr for \(\text{H} \) atoms, and 0.0005 to 0.002 Torr for \(\text{HF} \) with the balance consisting of He. The measured fluorescence traces were plotted on semilog paper, and exponential decay times \(\tau \) were determined. In each experiment, the decay times were measured with the microwave discharge on (\(\tau_{on} \)) and with the discharge off (\(\tau_{off} \)) while the other conditions were kept constant. The measured decay times and the experimental conditions are given in Tables I and II. The decay times are described by

\[
\tau_{off}^{-1} = k_{HF-H_2} [\text{H}_2]^* + R_{off}
\]

\[
\tau_{on}^{-1} = k_{HF-H_2} ([\text{H}_2]^* - 1/2[\text{H}]) + k_{HF-H}[\text{H}] + R_{on}
\]

\[
\tau_{on}^{-1} - \tau_{off}^{-1} = (k_{HF-H} - 1/2k_{HF-H_2}) [\text{H}] + (R_{on} - R_{off})
\]

where \(k_{HF-H} \) is the total removal rate of \(\text{HF}(v) \) by \(\text{H} \) atoms [Reactions (3a), (3b), and (3c)]; \(k_{HF-H_2} \) is the removal rate of \(\text{HF}(v) \) by \(\text{H}_2 \); \(R_{on} \) and \(R_{off} \) are the quenching rates for those processes (e.g., diffusion, convection) that do not involve \(\text{H} \) and \(\text{H}_2 \); and \([\text{H}_2]^*\) is the concentration of \(\text{H}_2 \) in the cell with the microwave discharge off. The values of \(R_{on} - R_{off} \) were determined to be smaller than the uncertainties in the measured decay times for \(\text{HF}(v = 2) \) and were completely negligible in the \(\text{HF}(v = 3) \) experiments.

The values of \(\Delta \tau^{-1} = \tau_{on}^{-1} - \tau_{off}^{-1} \) obtained in the \(\text{HF}(v = 3) \) experiments are plotted in Fig. 2 versus the concentration of \(\text{H} \) atoms. As shown in (6a)
Table I. Removal Rate of HF($v = 3$) by H Atoms

<table>
<thead>
<tr>
<th>Run No.</th>
<th>$P_{\text{total, Torr}}$</th>
<th>$(H) \times 10^3$, mol/cm3</th>
<th>$(H_2) \times 10^9$, mol/cm3</th>
<th>$\tau_{\text{on, } \mu\text{sec}}$</th>
<th>$\tau_{\text{off, } \mu\text{sec}}$</th>
<th>$\Delta(1/\tau) \times 10^{-4}$, sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.65</td>
<td>3.2</td>
<td>4.0</td>
<td>28.7</td>
<td>215</td>
<td>3.0 ± 0.22</td>
</tr>
<tr>
<td>2</td>
<td>2.65</td>
<td>2.4</td>
<td>4.0</td>
<td>37.4</td>
<td>215</td>
<td>2.2 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>2.65</td>
<td>4.3</td>
<td>4.0</td>
<td>25.6</td>
<td>177</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>2.6</td>
<td>5.6</td>
<td>1.8</td>
<td>21.8</td>
<td>270</td>
<td>4.2 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>5.6</td>
<td>1.8</td>
<td>22.4</td>
<td>270</td>
<td>4.1 ± 0.2</td>
</tr>
<tr>
<td>6</td>
<td>2.65</td>
<td>5.6</td>
<td>1.83</td>
<td>22.0</td>
<td>270</td>
<td>4.2 ± 0.2</td>
</tr>
<tr>
<td>7</td>
<td>2.65</td>
<td>7.7</td>
<td>1.83</td>
<td>14.1</td>
<td>270</td>
<td>6.7 ± 0.4</td>
</tr>
<tr>
<td>8</td>
<td>2.65</td>
<td>2.2</td>
<td>1.83</td>
<td>26.2</td>
<td>260</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>9</td>
<td>2.65</td>
<td>2.0</td>
<td>1.83</td>
<td>30.7</td>
<td>260</td>
<td>2.9 ± 0.2</td>
</tr>
</tbody>
</table>
Table II. Removal Rate of HF($v = 2$) by H Atoms

<table>
<thead>
<tr>
<th>Run No.</th>
<th>P_{total}, Torr</th>
<th>(H) × 10^{10} mol/cm3</th>
<th>(H$_2$) × 10^{10} mol/cm3</th>
<th>τ_{on}, μsec</th>
<th>τ_{off}, μsec</th>
<th>$\Delta(1/\tau)$, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.8</td>
<td>9.6</td>
<td>28</td>
<td>121</td>
<td>128</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>9.6</td>
<td>28</td>
<td>113</td>
<td>124</td>
<td>730</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>7.6</td>
<td>21</td>
<td>161</td>
<td>152</td>
<td>-120</td>
</tr>
<tr>
<td>4</td>
<td>2.8</td>
<td>8.6</td>
<td>21</td>
<td>148</td>
<td>172</td>
<td>970</td>
</tr>
<tr>
<td>5</td>
<td>2.8</td>
<td>8.2</td>
<td>28</td>
<td>141</td>
<td>150</td>
<td>440</td>
</tr>
</tbody>
</table>
Figure 2. Removal Rates of HF($v = 3$) by H Atoms. Symbols represent three sets of experimental data.
the slope of the data is proportional to \((k_{HF-H} - \frac{1}{2}k_{HF-H_2})\) and has a value of \((6.3 \pm 1.5) \times 10^{-13} \text{ cm}^3/\text{mol-sec}\). The quoted error reflects the systematic uncertainties in the calibrations of the isothermal probe and flowmeters as well as those due to the experimental scatter. Since \(k_{HF-H_2}\) for HF\((v = 3)\) has been measured\(^{11}\) to be \(2.1 \times 10^{11} \text{ cm}^3/\text{mol-sec}\), it is negligible compared with the slope and, therefore, with the value of \(k_{HF-H}\). If Reaction (3c) completely dominates over (3a) and (3b), there is a small reduction in the apparent decay of HF\((3)\) because of the back reaction of \(F + H_2\). After the rapid equilibrium of F atoms is established, it can be shown that the measured decay rate would be

\[
\tau_{\text{on}}^{-1} - \tau_{\text{off}}^{-1} = \left(k_{3c} \left[\frac{k_1 - k_{-3c}}{k_1} \right] [H] \right) \tag{6b}
\]

where \((k_1-k_{-3c})/k_1\) has been determined\(^{14}\) to be 0.72. These theories will be expanded in a subsequent paper.\(^{15}\)

In the experiments in which the HF\((v = 3)\) removal rate was measured, \(\tau_{\text{on}}\) was 5 to 20 times smaller than \(\tau_{\text{off}}\). In those in which the HF\((v = 2)\) removal rate was measured, \(\tau_{\text{on}}\) was only slightly shorter than \(\tau_{\text{off}}\) at approximately the same H-atom concentrations used for the HF\((v = 3)\) experiments. These latter data were obtained with the laser detuned such that HF\((v = 1, 2)\) only were directly pumped by the laser. This prevented cascading effects from HF\((v = 3)\). The data for \(v = 2\) are presented in Fig. 3 and indicate a value of \((5.5 \pm 3) \times 10^{11} \text{ cm}^3/\text{mol-sec}\) for \(k_{HF-H}^{-1/2} k_{HF-H_2}\). Using the value of \(2.26 \times 10^{11} \text{ cm}^3/\text{mol-sec}\) for \(k_{HF-H_2}\), the removal rate of HF\((v = 2)\) by \(H_2\), we obtained a value of \((6.6 \pm 3) \times 10^{11} \text{ cm}^3/\text{mol-sec}\). Because of the fairly small differences between \(\tau_{\text{on}}\) and \(\tau_{\text{off}}\), there was more scatter in the values of \(\Delta(1/\tau)\) for the HF\((v = 2)\) than for the HF\((v = 3)\) measurements.

In any study of upper level deactivation, the V-V exchanges between the various vibrational levels must be carefully considered because they can
Figure 3. Removal Rates of HF($v = 2$) by H Atoms
act to deplete a given level or to pump it. The primary V-V process that affects HF($v = 2$) is the exchange

$$
\begin{align*}
\frac{k_7}{k_{-7}} & \quad \text{HF}(1) + \text{HF}(1) & \xrightarrow{\text{HF}(0) + \text{HF}(2)} \\
\end{align*}
$$

which can be included in R in Eqs. (4) and (5) as

$$R^{VV} = \frac{k_7 [\text{HF}(1)]^2 / [\text{HF}(2)] - k_{-7} [\text{HF}(0)]}{\text{HF}(1)}$$

The removal term $-k_{-7}[\text{HF}(0)]$ applies with or without H atoms and, therefore, cancels in (6a). The pumping term $k_7[\text{HF}(1)]^2 /[\text{HF}(2)]$ also cancels near time equal to zero as the initial concentrations of HF(2) and HF(1) were not affected by the presence of the H atoms. More importantly, if the pumping term were significant, the fluorescence traces would not decay exponentially with time. The traces decayed exponentially for the first 1 to 2 decay times.
IV. DISCUSSION

The removal rates for HF\((v = 2) \) and HF\((v = 3) \) obtained in this study are given in Table III together with that for HF\((v = 1) \) obtained in a previous study.\(^5\) HF\(^{16-18}\) self-relaxation rates are also given for comparison. Although there is a large uncertainty in the rate for HF\((v = 2) \) removal by H, the rate appears to be \(\sim 4 \) times faster than the comparable process involving \(v = 1 \). By contrast, the removal of HF\((v = 3) \) by H atoms is faster by a factor of 100 than that for HF\((v = 2) \). One of the three possible processes for HF\((v = 3) \) removal is Reaction (3c), which, in the backward direction, is a component of Reaction (1). In their review of the rate measurements for Reaction (1), Cohen and Bott\(^{14}\) recommended a room-temperature value of \(1.5 \times 10^{13} \text{ cm}^3/\text{mol-sec} \) and an initial distribution over the vibrational levels such that the rate

\[
F + H_2 \xrightarrow{k_{-3c} \text{ or } k_{3c}} HF(v = 3) + H, \quad \Delta E = 617 \text{ cal/mol}
\]

\(k_{-3c} \) was \(4.2 \times 10^{12} \text{ cm}^3/\text{mol-sec} \). The values of \(k_{3c} \) and \(k_{-3c} \) can be related by the principle of detailed balance. This should be a good approximation inasmuch as Reaction (3c) is endothermic by only 617 cal/mol, or \(\sim 1 \) kT. By using the principle of detailed balance, a value of \(1.4 \times 10^{13} \text{ cm}^3/\text{mol-sec} \) can be calculated for (3c). Although this rate is a factor of 4.5 smaller than the removal rate measured in this study, the calculated value for \(k_{3c} \) is somewhat uncertain. An uncertainty of 180 cal/mol in the spectroscopically determined bond-dissociation energy of HF\(^{19,20}\) produces an uncertainty of a factor of 1.4 in the equilibrium constant for (3c) at 295 K and, therefore, in the calculated value of \(k_{3c} \). Another factor of 1.5 uncertainty must be considered possible for the overall \(F + H_2 \) rate and the fraction of this
Table III. Removal Rates of HF(v) by H Atoms at $T = 295$ K
Compared with HF(v) V-R, T Relaxation by HF

<table>
<thead>
<tr>
<th>v</th>
<th>HF(v)-H $k(v)$, $\text{cm}^{-3}/\text{mol-sec}$</th>
<th>Ref.</th>
<th>HF(v)-HF $k(v)$, $\text{cm}^{-3}/\text{mol-sec}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a(1.4 \pm 0.4) \times 10^{11}$</td>
<td>5</td>
<td>1.1×10^{12}</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>$(6.6 \pm 3) \times 10^{11}$</td>
<td></td>
<td>6×10^{12}</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>$(6.3 \pm 1.5) \times 10^{13}$</td>
<td></td>
<td>1.3×10^{13}</td>
<td>18</td>
</tr>
</tbody>
</table>

a Quigley and Wolga\(^4\) reported a smaller value as an upper limit to this rate.
reaction that goes into HF(v = 3). Therefore, \(k_{14} \) could be as large as \(3 \times 10^{-13} \text{ cm}^3/\text{mol-sec} \).

The other two possible contributors to the measured removal rate of HF(v = 3) are channels (3a), nonreactive and (3b), reactive deactivation. The nonreactive deactivation rates of HF(v) by H atoms can be expected to increase with \(v \). The results of trajectory calculations \(^1,\)\(^\text{2} \) indicate that the rates may increase by a factor of \(\sim 3 \) from \(v = 1 \) to \(v = 2 \) and \(\sim 2 \) to \(v = 3 \). These increases are consistent with the present results for HF(v = 1) and HF(v = 2) removal rates but cannot explain the fast HF(v = 3) rate.

Wilkins \(^2\) performed trajectory calculations for H + HF(v = 3) removal by H atoms on London-Eyring-Polanyi-Sato (LEPS) potential-energy surfaces designed to have barriers of 1.5, 2.5, and 40 kcal/mole for the exchange reaction

\[
H' + FH \rightarrow H'F + H
\]

The results of these calculations are given in Table IV. For the low barriers, the deactivation occurred by both reactive and nonreactive collisions (3a) and (3b). The deactivation occurred solely by nonreactive collisions in the calculations with the 40 kcal/mol barrier. All of the calculated rates are slower than the measured value.

Recently, \textit{a priori} quantum mechanical calculations were performed by Border and co-workers \(^6 \) on the H + FH potential energy surface. They calculated a barrier height of 49 kcal/mole for the exchange reaction (9), but estimated that it might be as low as 40 kcal/mole. Preliminary results of similar calculations by Wadt and Winter \(^7,\)\(^8 \) also indicate a high barrier (35-40 kcal/mol). They found that the angular dependence of the theoretical surface differed markedly from the LEPS potential-energy formulation. Experimental measurements of the removal rates of DF by H atoms \(^9 \) have been interpreted as support for those quantum mechanical calculations. The \(v = 3 \) level of HF lies 38.3 kcal/mol above the bottom of the well and
Table IV. Calculated Deactivation Ratesa of HF(ν = 3) by H Atoms at T = 295 K

<table>
<thead>
<tr>
<th>Barrier Height, kcal/mol</th>
<th>k, cm3/mol·sec</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.4×10^{13}</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>1.6×10^{12}</td>
<td>21</td>
</tr>
<tr>
<td>40.0</td>
<td>2.5×10^{12}</td>
<td>21</td>
</tr>
</tbody>
</table>

a The calculated rate k represents the sum of k_{3a} and k_{3b}.
32.5 kcal/mol above \(v = 0 \); thus, \(\text{HF}(v = 3) \) molecules have vibrational energy comparable to the estimates of the barrier.

In a classical trajectory calculation, Smith and Wood\(^{22} \) investigated the relaxation of vibrationally excited molecules in collisions where an atom exchange reaction is possible. In particular, they studied \(\text{H} + \text{H}_2(v = 1, 2) \), \(\text{Cl} + \text{HCl}(v = 1, 2) \) and \(\text{H} + \text{CIH}(v = 1, 2) \) and found that the vibrational energy lowers the threshold and activation energy in the three cases, although the extent of the lowering depends on the particular mass combination. Collisions in which the energy barrier was crossed had a wide distribution of product vibrational energies, whereas those in which the barrier was not crossed were highly adiabatic. In some of the \(\text{A} + \text{BC} \) collisions above the barrier, \(\text{B} \) was closer to \(\text{A} \) than \(\text{C} \) at one or more points in the trajectory even when the final products remained \(\text{A} \) and \(\text{BC} \). Vibrational excitation of \(\text{BC} \) above the barrier not only permits atom exchange with consequent loss of vibrational energy but also permits these multiple interactions, which increase the possibility for conversion of vibrational energy to rotational or translational energy.

The difficulty of product determination in the present experiment is much greater than that of the measurement of the total removal rate of \(\text{HF}(v = 3) \). The present results do not establish the contribution of the three possible channels to the total rate. If the recommended rate for Reaction (1) is correct and the exothermicity of (3c) is \(\sim 617 \) cal/mole, then channel (3c) accounts for \(\sim 1.4 \times 10^{13} \text{ cm}^3/\text{mol-sec} \), which leaves \(\sim 5 \times 10^{13} \text{ cm}^3/\text{mol-sec} \) of the measured rate to be ascribed to channels (3a) and (3b). The trajectory calculations on LEPS surfaces do not account for so fast a rate. Clearly, more work is needed in order to establish the mechanism of the observed removal rate of \(\text{HF}(v = 3) \) by \(\text{H} \) atoms.

In previous efforts to model pulsed laser performance,\(^{17, 23-25} \) large deactivation rates for the upper vibrational levels had to be used. This upper-level deactivation can be due to \(\text{HF} \) or \(\text{H} \) or both. The removal rate of \(\text{HF}(v = 3) \) by \(\text{HF}(v = 0) \) obtained by Osgood and co-workers\(^{10} \) contains
contributions from both V-V and V-R, T processes. With a computer modeling study, Cohen and Bott17 concluded that the V-R, T rate for HF(v = 2) deactivation by HF(v = 0) is $\sim 6 \times 10^{12}$ cm3/mol·sec, or six times that for HF(v = 1). Chen and co-workers24 found that their experimental results could be modeled with the HF-HF, V-R, T rates scaled to the upper vibrational levels as v^2. Preliminary results obtained by Kwok16 indicate a $v^2 \cdot 3$ dependence. Therefore, the HF(v = 3) -HF V-R, T deactivation rate may be ~ 1 to 2×10^{13} cm3/mol·sec. This rate, although fast, is still slower than the results of the present study for the rate of HF(3) removal by H atoms (Table III). Since H atoms and HF are found in equal proportions in cold-reaction lasers, they may play a significant role in determining the amount of power observed from upper vibrational level laser transitions. The effect on chain-reaction lasers is less well-defined since it depends upon the initial F$_2$ dissociation.
REFERENCES

THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of The Aerospace Corporation is conducting experimental and theoretical investigations necessary for the evaluation and application of scientific advances to new military concepts and systems. Versatility and flexibility have been developed to a high degree by the laboratory personnel in dealing with the many problems encountered in the nation's rapidly developing space and missile systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat transfer, reentry physics, chemical kinetics, structural mechanics, flight dynamics, atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmospheric optics, chemical reactions in polluted atmospheres, chemical reactions of excited species in rocket plumes, chemical thermodynamics, plasma and laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum and radiation effects on materials, lubrication and surface phenomena, photosensitive materials and sensors, high precision laser ranging, and the application of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and propagation phenomena, including plasma electromagnetics; quantum electronics, lasers, and electro-optics; communication sciences, applied electronics, semiconducting, superconducting, and crystal device physics, optical and acoustical imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal matrix composites and new forms of carbon; test and evaluation of graphite and ceramics in reentry; spacecraft materials and electronic components in nuclear weapons environment; application of fracture mechanics to stress corrosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation from the atmosphere, density and composition of the atmosphere, aurorae and airglow; magnetospheric physics, cosmic rays, generation and propagation of plasma waves in the magnetosphere; solar physics, studies of solar magnetic fields; space astronomy, x-ray astronomy; the effects of nuclear explosions, magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and magnetosphere; the effects of optical, electromagnetic, and particulate radiations in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California