<table>
<thead>
<tr>
<th>OP</th>
<th>AD-A042044</th>
</tr>
</thead>
</table>

UNCLASSIFIED

TR-13

END

DATE FILMED

8-77

CALIFORNIA UNIV BERKELEY DEPT OF CHEMICAL ENGINEERING

F/G 7/3

VISCOELASTIC PROPERTIES OF HOMOGENEOUS BLOCK COPOLYMERS. (U)

MAY 77

H SHAN, D SONG, D R HANSEN

N00014-75-C-0955

END
Technical Report No. 13

VISCOELASTIC PROPERTIES OF HOMOGENEOUS BLOCK POLYMERS

by

M. Shen and D. Soong
Department of Chemical Engineering
University of California
Berkeley, California 94720

and

D. R. Hansen
Shell Development Company
Houston, Texas 77001

May 15, 1977

Technical Report to be published in Polymer Engineering and Science

Approved for public release: Distribution Unlimited

Prepared for
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217
Viscoelastic Properties of Homogeneous Block Copolymers

The molecular theory of Rouse-Bueche-Zimm has been modified to predict the viscoelastic behavior of homogeneous block copolymers. The model consists of beads and springs whose magnitudes correspond to the types of blocks in the polymer. Maximum relaxation times can be computed by this model. Viscoelastic data for poly(styrene-b-α-methylstyrene-
b-styrene), poly(α-methylstyrene-b-styrene-b-d-methylstyrene) and poly(styrene-b-α-methylstyrene) were determined by stress relaxation methods. The results compare favorably with those predicted by the theory.
VISCOELASTIC PROPERTIES OF HOMOGENEOUS
BLOCK COPOLYMERS

by

M. Shen and D. Soong
Department of Chemical Engineering
University of California
Berkeley, California 94720

and

D. R. Hansen
Shell Development Company
Houston, Texas 77001

ABSTRACT

The molecular theory of Rouse-Bueche-Zimm has been modified to predict the viscoelastic behavior of homogeneous block copolymers. The model consists of beads and springs whose magnitudes correspond to the types of blocks in the polymer. Maximum relaxation times can be computed by this model. Viscoelastic data for poly(styrene-b-a-methylstyrene-b-styrene), poly(a-methylstyrene-b-styrene-b-a-methylstyrene) and poly(styrene-b-a-methylstyrene) were determined by stress relaxation methods. The results compare favorably with those predicted by the theory.
INTRODUCTION

It is well known that most block copolymers show microphase separation as a consequence of their positive free energy of mixing between the polymeric blocks\(^1\). These heterophase polymers have been found to exhibit many unique properties that are dramatically different from those of the homogeneous polymers\(^2\). However, a limited number of block copolymers have shown no microphase separation, for example the styrene/\(\alpha\)-methyl styrene system\(^3\). The viscoelastic properties of these homogeneous block copolymers are amenable to theoretical treatment by the bead-and-spring model enunciated by Rouse\(^6\), Bueche\(^7\), and Zimm\(^8\) (the RBZ model). In this paper, we shall discuss the molecular theory of viscoelasticity for homogeneous block copolymers\(^9\)-\(^13\). The results of the calculations are compared with the experimental data on the diblock and triblock copolymers of styrene and \(\alpha\)-methyl styrene\(^13\),\(^14\).

THEORY

The RBZ model represents the polymer molecule by replacing the N submolecules with N+1 beads held together with N entropy springs. When the polymer coil is disturbed by a velocity gradient, the springs are stretched. The restoring force of these entropy springs is proportional to displacement, the spring constant being given by \(3kT/b^2\) where \(b^2\) is the average square end-to-end distance of the submolecule. As the beads move through the medium, a viscous drag is exerted on them whose magnitude is determined by the friction coefficient
As the flow ceases, the recovery of the polymer chain is effected without acceleration, so that the viscous and the elastic forces are exactly equal to each other.

For homopolymers, all of the beads in the model have identical spring constants and frictional coefficients. In the case of block copolymers, both of these parameters are expected to be different for different blocks in the polymer. For example, the equations of motion for an SAS triblock copolymer can be written as:

$$\dot{\mathbf{x}} = -\sigma_S D^{-1} \mathbf{z} \mathbf{x} \quad (1)$$

In eq. 1, \mathbf{x} and $\dot{\mathbf{x}}$ are column vectors of bead positions and velocities respectively, \mathbf{z} is the nearest neighbor matrix, and $\sigma_S = 3kT/b_S^2f_S$ where k is Boltzmann constant, T is the absolute temperature, b_S^2 is the mean square end-to-end distance and f_S is frictional coefficient. D^{-1} is the inverse of the following matrix

$$D =
\begin{bmatrix}
1 & -\delta_A & -\delta_A & -\delta_A & \cdots & -\delta_A \\
-\delta_A & 1 & -\delta_A & -\delta_A & \cdots & -\delta_A \\
-\delta_A & -\delta_A & 1 & -\delta_A & \cdots & -\delta_A \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-\delta_A & -\delta_A & -\delta_A & \cdots & 1 & -\delta_A \\
-\delta_A & -\delta_A & -\delta_A & \cdots & -\delta_A & 1 \\
\end{bmatrix}
$$

where

$$\delta_A = b^2_{AA}/b^2_{SS} = m_A^2/ m_A^2 m_S^2$$

$$f = \frac{a^2_{SS} m_A^2}{a^2_{AA} m_S^2}$$
In eq. 3, \(m \) is the number of monomer units per submolecule, \(a \) is the characteristic length, \(\zeta \) is the monomeric friction coefficient, and \(b^2 = ma^2 \). Subscripts \(A \) and \(S \) refer to \(A \)-blocks and \(S \)-blocks respectively.

To solve eq. 3, we define a new set of coordinates \(\bar{z} \) related to \(z \) through

\[
\bar{z} = A z
\]

where the \(A \) matrix is defined by \(Z = A^T A \). Operating on both sides of eq. 1 with \(A \), we get

\[
\dot{x} = \sigma A D^{-1} A^T A x
\]

\[
= -\sigma A S x
\]

where

\[
S = A D^{-1} A^T
\]

is a symmetrical tridiagonal \(N \times N \) matrix which differs from the well known Rouse matrix\(^6\) \((R = A A^T) \) by the extra operation \(D^{-1} \). For a homopolymer, all of the elements in our \(D \) matrix are unity, and the \(S \) matrix is reduced to the \(R \) matrix.

The eigenvalue spectrum \((\lambda_p \text{'s}) \) of the \(S \) matrix is readily obtained by numerical methods on a computer\(^9\). In order that the results are not functions of the matrix sizes (number of beads), we use the following expression in computing from the eigenvalues the normalized retardation times:

\[
\tau_p \text{(normalized)} = 1/(N + 1)^2 \lambda_p
\]
The model is readily adaptable to calculate the relaxation spectrum for any block configuration. The only change required is to make appropriate modifications of the D matrix. For instance, the D matrix for a diblock copolymer is14:

$$D = \begin{bmatrix}
1 & \ldots & \delta \\
\delta & \ldots & \delta \\
\delta & \ldots & \delta
\end{bmatrix}$$

The same computer routine can then be used to perform all the required calculations.

COMPARISON WITH EXPERIMENT

In order to compare with the experimental data on triblock and diblock copolymers of styrene and α-methylstyrene, we shall identify S-block with polystyrene and A-blocks with poly(α-methylstyrene). We further need literature values of ζ's and a's for the respective blocks. In their recent work Osaki and Schrag15 have found that the number of monomer units is 11 for PS(m_S) and 16 for PaMS(m_A). On the basis of this information, we shall assume $m_A/m_S = 1.4$. In addition it has been reported that the characteristic length for PS(a_S)16 is 7.4×10^{-8} cm, while for PaMS17 $a_A = 8.0 \times 10^{-8}$ cm. The monomeric friction coefficients in eq. 3 are $\zeta_S = 1.15 \times 10^2$ and $\zeta_A = 2.08 \times 10^4$ dynes-sec/cm at their respective glass
transition temperatures (100°C and 167°C). The glass transition temperature is chosen as the reference state for comparing the monomeric friction coefficients because it is preferable to compare the ζ's at equivalent states of molecular motion as would be the case in a homogeneous copolymer. Using these values in eq. 3, we find that
\[\delta_A = 423. \]

A matrix with 140 beads was used to compute the maximum relaxation time for 100% S beads. In calculating \(\tau_M \) for the copolymers the molecular weight must remain fixed for a meaningful comparison. For simplicity the monomer molecular weight of styrene will be set to equal to that of α-MS. Thus

\[N_S + N_A \left(\frac{m_A}{m_S} \right) = 140 \] \hspace{1cm} (9)

where \(N_A \) and \(N_S \) are the number of PS and PaMS beads. Therefore the total number of beads in the chain \((N_A + N_S) \) will decrease as the weight percent of α-MS increases.

\[\text{wt. % α-MS} = \frac{N_A m_A}{(N_S m_S + N_A m_A)} \] \hspace{1cm} (10)

The computed maximum relaxation times are given in Table 1. They are reduced by the maximum relaxation computed for PS \((\tau_m^0)\) for ease of comparison.

In order to compare with the theoretical results, block copolymers of styrene (S) and α-methylstyrene (A) were chosen for experimentation. Five triblock copolymers of poly(styrene-
b-α-methylstyrene-b-styrene) or SAS are synthesized by the anionic technique13. In addition, one each of poly(α-methylstyrene-b-styrene-b-α-methylstyrene)13 or ASA, and poly-(α-methylstyrene-b-styrene)14, or AS, were used. Stress relaxation techniques were used to generate viscoelastic master curves by the Time-Temperature Superposition Principle13,14. Distribution of relaxation times can be readily computed from the master curves by well known methods16. One such example for the SA block polymer14 is shown in Fig. 1.

To assure the homogeneous nature of these block copolymers, dynamic mechanical experiments were carried out. If the samples indeed show no microphase separation, then only one primary glass transition will be observed. A representative curve for SA sample4 is shown in Fig. 2. Here we see that there is only one loss tangent peak rather than two. Similar data have been reported for the other block copolymers13,14. Fig. 2 also shows the dynamic storage moduli data for the sample4. There is a precipitous drop in the modulus near 135°C, indicating the onset of the primary glass transition of the polymer.

From the distribution of relaxation times given in Fig. 1, it is simple to compute the linear viscoelastic parameters16. We have taken advantage of this technique to calculate the G' and tan δ for the AS block copolymer as a function of log time, then using the WLF shift factor data to transform the abscissa to temperature. The solid line shows in Fig. 2 that there is good agreement with the dynamic mechanical data.

The experimental maximum relaxation times of the block copolymers were determined from the viscoelastic master curves
by using Procedure X of Tobolsky and Murakami. Because the maximum relaxation times are strong functions of temperature and molecular weight, these effects must be compensated for in order to make a valid comparison. We shall use $T_1 + 29^\circ C$ as the reference temperature and 1.2×10^5 as the reference molecular weight. The relationship $d\ln \tau_m / d\ln M_w = 3.4$ was used to extrapolate the maximum relaxation times to the reference molecular weight. These experimental values of τ_m are given in Table 1. The maximum relaxation times were again normalized by τ_m for pure polystyrene. Since literature values for τ_m of pure polystyrene differ somewhat from each other, an average value of $\log \tau_m^0 = 2.36$ (seconds) was used. As seen in Table 1, most of the normalized experimental and computed maximum relaxation times are in reasonable agreement for the SAS, ASA and AS block copolymers. The samples showing significant discrepancies are SAS with 5% and 42% α-methylstyrene. However, we note that the value of τ_m for the only ASA value in the figure is substantially higher than that of the SAS of comparable composition, as predicted by the theory.

ACKNOWLEDGEMENT

This work was supported by the Office of Naval Research, and by the Union Carbide Corporation.
REFERENCES

Table 1. Comparison of Experimental and Theoretical Maximum Viscoelastic Relaxation Times for Block Copolymers of Styrene and \(\alpha \)-Methylstyrene13,14.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Wt% (\alpha)-MS</th>
<th>(\log (\tau_m/\tau_m^0))</th>
<th>Expt'1</th>
<th>Theor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td>5</td>
<td>0.50</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>0.59</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.01</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>0.89</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1.76</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>73</td>
<td>2.26</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>50</td>
<td>1.75</td>
<td>1.75</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1. Distribution of relaxation times for poly-(a-methylstyrene-b-styrene) calculated from the viscoelastic master curve14 by the second approximation method16.

Figure 2. Dynamic mechanical data at approximately 1 Hz as a function of temperature for poly(a-methylstyrene-b-styrene)4. Solid lines are curves computed from the stress relaxation data14 by using the distribution of relaxation times given in Figure 1.
Fig. 1

REFERENCE TEMP.: 129°C

Log $H_2(\tau)$ (Dynes/cm²)

SA DIBLOCK COPOLYMER

Log τ (Sec)
Fig. 2

Log G' (Dynes/cm2)

SA DIBLOCK COPOLYMER

Log $\tan \theta$

Temperature (°C)