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1. INTRODUCTION

Artificial graphitic materials have been used for more than the
past decade in reentry vehicle nosetips. The exacting requirements im-
posed in their use necessitate accurate stress analysis techniques. An
integral part of every stress analysis is the stress-strain relationship
or material model.

The stress analysis problems inherent to reentry vehicle nosetip

design were discussed by Jones {1-1] in 1967 along with numerous specif=

=
4wl D e - : : j
o e MR = el TaSmin Feoe i emsic

ic problems by other authors in the same conference proceedings volume.

Since that time, periodic reviews of nosetip stress analysis technology

e i B % T R . NGS5k T i, 3k

have been made. The most recent review by Jones and Koenig [1-2] is
addressed tu the matarial mndelirg characteristics necessary for graphite
and carbon-carbon. Two of the significant deficiencies of current mate-
rial modeling that they point out are (1) biaxial softening and (2) dif-
ferent moduli under tensile loading than under compressive loading.

These characteristics are described along with other characteristics of

graphite and carbon-carbon in the following paragrapns.

1.1 BIAXIAL SOFTENING
Biaxial softening is characterized by the development of slightly

larger strains in biaxial tension than in uniaxial tension, as shown in

Figure 1-1. This behavior of generally decreasing Poisson's ratios is

in contradiction to what might be anticipated on the basis of conven-

tional Poisson effects (where v increases). This phenomenon was apparent-
1y first observed by Jortner [1-3 thru 1-6] for graphite and {s attri-
buted to plastic volume changes resulting from internal tearing or micro-

cracking. Jones and Nelson [1-7] developed a materiel model for descrip-

o .N\}RW‘MM.-.‘FV‘\--L Ut @ s \h\,‘d'(..n:ir e M ek eap il M R e L ’ v ) - L 5"'\]



TR B S T

T
-

T IR IR O R

| BIAXIAL
HARDENING

(v INCREASING)
//—-— 0}30'

/§<—UNIAXIAL

/
/,’

/‘\ o‘i.:o‘
BIAXIAL

SOFTENING OO
( v DECREASING)

9

-

€

FIGURE 1-1 BIAXIAL SOFTENING OF GRAPHITE

tion of the deformation behavior of ATJ-S graphite under biaxial tension,

Their model i1s used in the SAAS III program to obtain predicted strains
for Jortner's biaxial test specimen shown in Fig. 1-2. The predicted
strains are shown along with Jortner's experimentally observed strains
in Figure 1-3 for room temperature behavior at a constant principal
stress of 3550 psi. The Jones and Nelson strain predictions are within
3% of the equal biaxial tension stfains and are identical to the two
uniaxial tension cases.

Actually, the Jones-Nelson model is more a general model for non-
linear behavior of orthotropic materials than just a biaxial softening

model. Thus, the Jones-Nelson model should be considered for use 1in
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modeling other materials. Specifically, carbon-carbon will be shown to
be a nonlinear orthotropic material, and the basic Jones-Nelson model

will be proposed for analysis of carbon-carbon,

1.2 DIFFERENT MODULI IN TENSION AND COMPRESSION

Many composite materials behave differently under tensile and com-~
pressive loads. Both the elastic moduli (stiffnesses) and the strengths
in principal material property directions of these orthotropic materials
are different for tensile loading than for compressive loading. This
characteristic behavior is shown schematically in the stress-strain
curve of Figure 1-4, This phenomenon is but one of several differences
that make composite materials more difficult to analyze (and hence de-
sign) than the more common structural materials such as aluminum.

Both fiber«reinforced and granular composite materials have differ-
ent moduli in tension and compression as displayed in Table 1-1. Uni-
directional glass fibers in an epoxy matrix have compression moduli 20%
lower than the tension moduli [1-8]. For some unidirectional boron/epoxy
fiber-reinforced laminae, the compression moduli are about 15-20% larger
than the tension moduli [1~9]. In contrast, some unidirectional graphite/
epoxy fiber-reinforced laminae have tension moduli up to 40% greater than
the compression moduli [1-9]. Other fiber-reinforced composites such as
carbon-carbon have tenstion moduli from two to five times the compression
moduli [1-10]. Thus, no clear pattern of larger tension than compression
moduli or vice versa exists for fiber-reinforced composite materials. A
plausible physical explanation for this puzzling circumstance has yet to
be made.

For granular composite materials, the picture is no clearer. ZTA

graphite has tension moduli as much as 20% lower than the compression
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TABLE 1-1

TENSION AND COMPRESSION MODULI RELATIONSHIPS
FOR SEVERAL COMMON COMPQOSITE MATERIALS

FIBROUS REPRESENTATIVE
MATERIAL OR MODULI

GRANULAR RELATIONSHIP
GLASS/EPOXY FIBROUS E, = 1.2E,
BORON/EPOXY FIBROUS E. ® 1.25t
GRAPHITE/EPOXY FIBROUS Et = 1.4Ec
CARBON/CARBON FIBROUS Ey = 2-5EC
ZTA GRAPHITE GRANULAR Ec n 'I.ZEt
ATJ-S GRAPHITE GRANULAR Ey = '|.2Ec

FIGURE 1~4 STRESS-STRAIN CURVE FOR A MATERIAL WITH
DIFFERENT MODULI IN TENSION AND COMPRESSION
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moduli [1-i11]. On the other hand, ATJ-S graphite has tension moduli
as much as 20% more than the compression moduli [1-12].

Many other materials have different tension and compression moduli.
Which modulus is higher may depend on the fiber or granule stiffness
relative to the matrix stiffness. Such a relationship would influence
whether the fibers or granules tend to contact and hence stiffen the
composite. A general physical explanation of the reasons for different
behavior in tension and compression is not yet available., Investigation
of the micromechanical behavioral aspects of composite materials may
lead to a rational explanation of this pheromenon. Until such an expla-
nation is availabie, the apparent behavior can be used in analyzing the
stress-strain behavior of materials. That is, even without knowing why
the materials behave as they do, we can model their apparent behavior,

Actual stress-strain behavior is probably not as simple as shown in
Figure 1-4. Instead, a nonlinear transition region may exist between
the tension and compression linear portions of the stress-strain [1-13].
The measurement of strains near zero stress 18 difficult to perform
accurately, but the stress-strain behavior might be as shown in Figure
1-5 wherein replacement of the actual behavior by a bilinear model is
offered as a simplification of the obviously nonlinear behavior. For
most materials, the mechanical property data are insufficient to justify
use of a more complex material model. However, one possible disadvantage
of the bilinear stress-strain curve approximation is that a discontinuity
in slope (modulus) occurs at the origin of the stress-strain curve,

Given that the uniaxial stress-strain behavior is approximated by a
bilinear representation, the definition remains of the actual multiaxial

stress-strain, or constitutive, relations that are required in structural

s 4 e u._.:N-.ﬁK. » :‘( l"o-"ul 1..' L aa G B A ey

Mo o sl d Y AT T PRI, Ry s lal el Cih

i e e, s it o\ o -

PO

o Tt e P e i b e mn .




i (,',*

wessmevn BILINEAR APPROXIMATION
==e~ee ACTUAL BEHAVIOR

gy R P e e =i s

FIGURE 1-5 COMPARISON OF BILINEAR MODEL WITH ACTUAL BEHAVIOR

¥ analysis, Over the past ten years, Ambartsumyan and his co-workers

K

[1-14 thru 1-17], in the process of obtaining solutions for stress analy-

Cmem =

sis of shells and bodies of revolution, defined a set of stress-strain 1

e e

relations that will be referred to herein as the Ambartsumyan material

model. Jones [1-18] applied the model to the problem of buckling under

blaxial loading of circular cylindrical shells made of an isotropic mate- {
rial. However, in application of the Ambartsumyan material model to
orthotropic materials, certain deficiencies, such as a nonsymmetric

compliance matrix in the stress-strain relations [1-19], are apparent.

S i e T SN P
SOM

. Jones [1-20] also applied modified bilinear stress-strain relations

-

to buckling of shells with multiple layers of orthotropic materials hav-
4 ing different moduli in tension and compression. His modifications con-

sist of weighting tension and compression compliances according to the
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proportions of the principal stresses in order to obtain & symmetric
compliance matrix. Isabekian and Khachatryan [1-21] made the Ambartsumyan
material model have a symmetric compliance matrix by enforcing certain
relations between the material properties. Both Jones' and Isabekian

and Khachatryan's relations are used in the modified Jones-Nelson model,
but only Jones' weighted compliance matrix material model is used in the
present report.

When the different moduli in tension and compression characteristic
is combined with the biaxial softening characteristic, the Jones-Nelson
material model leads to predicted versus experimental strains shown in
Figure 1-6. There, the predicted strains in the mixed tension and com-
pression quadrant are within 3 to 9% of the measured strains at room
temperature for the data shown. Similar, but less accurate, results
(from 9-12% error) are shown for 2000°F in Figure 1-7. The experimental
data in Figure 1-7 are much less accurate than the data in Figure 1-6
because of testing difficulties at elevated temperatures. Thus, the
Jones-Nelson graphite material model is validated by favorable compari-

son with a well-defined set of biaxial experimental data.

1.3 CHARACTERISTICS OF GRAPHITE

Graphites used in reentry vehicle nosetips are macroscopically

homogeneous, transversely isotropic, and generally fail in a brittie
manner, The typical stress-strain curve shown in Figure 1«8 {s none
linear to failure. A typical initial modulus versus temperature rela-
tionship is also shown in Figure 1-8. There, the modulus actually in-
creases from its room temperature value until a temperature of about
3500°F is reached and subsequently decreases to nearly zero as graphite

approaches sublimation. In addition, at all temperatures, the axial
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modutus is lower than the modulus in the circumferential and radial
directions.

Graphite, as mentioned previously, exhibits the biaxial softening
phenomenon and has different moduli and stress-strain curves in tension
than in compression. These characteristics were successfully modeled
by the Principal Investigator in Air Force Contract F33615-73-C-5124.
However, the temperature-dependent characteristic has not yet been

coupled to the other characteristics nor has an actual nosetip been

analyzed.

1

I, TN M g om0 1o v 3 R A TR A ) s i R A
{ . I S T U - . o

PRATIS TRV 150 [T L TR

ki A e Al ST ORI |

T PR FAPRDIRT-IIN, DRt A O WIS S

g,

e am By




:
f
L
)
¢
f
i
}
}

1.4 CHARACTERISTICS OF CARBON-CARBON
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Carbon~-carbon materials used in reentry vehicle nosetips are macro-
scopically inhomogeneous because of large fibers in the axial direction
of the nosetip. These materials can be characterized as orthotropic
if the fibers are in orthogonal directions, but are anisotropic if fibers
at other than 90° angles are inserted. Carbon-carbon fails in a pro-
gressive manner as illustrated in Figure 1-9. There, the material is
stressed in the direction of axial fibers which apparently slip relative
to the matrix material as stress is applied. The initial modulus versus
temperature relationship is also shown for the circumferential and radial
directions in Figure 1-9. The three curves shown are interpretations of
the same experimental data by different people. Thus, considerable dis-
agreement exists as to the actual modulus versus temperature relation-
ship. The axial modulus for this particular carbon-carbon material is
about twice the circumferential modulus. Such a relation (quite dif-
ferent from graphite) is not unexpected when the large fibers in the
axial direction are considered.

Carbon-carbon, 1ike graphite, exhibits different moduli in tension
than in compression; however, the differences are strikingly greater
for carbon-carbon than for graphite. No evidence currently exists that
carbon-carbons exhibit the biaxial softening phenomenon. Some of the
specific mechanical properties of carbon-carbon are given by Legg,
Starrett, Sanders, and Pears [1-22].

The most evident difference of carbon-carbon from graphite is its
three-dimensional woven character as upposed to the fine-grained struc-

ture of graphite. The fibers in carbon-carbon are placed in three mutu-

12

VST T T IO T T




g

70°

= CIRCUMFERENTIAL
S AND RADIAL

3500°

4500°

5500°

i 10° psi
EaxiaL ~ 2-Eg

cm e —

‘ 3
o T,10° °F
P
'*; FIGURE 1-9 CARBON-CARBON BEHAVIOR

TR
N . i . , - . . e
L . T3 B T it o« Ay et s 30 s D 0 K A e e kot M R AR b me
AR R TR TR T T . il O T A L T e A i B i L, , )
L A R I L TS

s oacil

R s S NP ST )

S e B g e . e, b0, 2 A R e e




4 ally perpendicular directions. Thus, carbon-carbon is a highly ortho-

tropic material in the r-6 plane of a nosetip (as opposed to the isotropy

of graphite in this plane). Geiler [1-23] used a linear elastic model

in the ASAAS program due to Crose [1-24] to account for the circumfer-

Geiler obtained apparently good results.

T T e

entially varying orthotropy.
However, the ASAAS program would be very difficult to adapt to nonlinear

analysis because of the already highly coupled, time consuming internal

! workings of the computer program.
A related characteristic of carbon-carbon is that the size of the

fibers 1is not negligible in comparison to the size of the billets in

N
X which it is manufactured or in comparison to the critical dimensions of

the nosetip into which the billets are machined. {(Note the Z-direction

fibers are the white streaks in the axial direction of the nosetip in
Figure 1-10,) Another way of saying the same thing is that the fiber

b spacing is of the same order of magnitude as the distance over which the
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stresses change rapidly. Thus, we would anticipate possible difficulties
in applying a macromechanical or continuum mechanics model to carbon-
carbon materials. Not encugh work has been done, however, to resolve

or even clarify the macromechanics versus micromechanics issue.

1.5 STATEMENY OF THE PROBLEM

Two principal efforts are involved in this research: one on graph-
ite material modeling and the other on carbon-carbon material modeling.

The graphite modeling i1s essentially a continuation of efforts begun
under Air Force Contract F33615-73-C-5124. In that centract, graphite
multiaxial stress-strain behavior was successfully modeled under both
biaxial tension and mixed tension and compression load at room tempera-
ture and at 2000°F. The remaining tasks include (1) incorporating a
temperature-dependent character in the material model (previously men-
tioned results are for a constant temperature), (2) validating the model
by comparison with further experimental data, and (3) exercising the
model in a thermostructural analysis of an actual reentry vehicle nose=
tip. Upen completion of these tasks, the graphite material model should
be ready for routine use in Air Force reentry vehicle nosetip analysis.

The carbon-carbon modeling is a new effort with the objective of
applying the basic concepts of the successful graphite model to the analy-
sis of carbon-carbon stress-strain behavior. Generally, carbon-carbon
stress-strain curves are more jagged than those of graphite. Thus, some
modifications to the graphite model are anticipated. The first step in
carbon-carbon modeling is to describe and evaluate the stress-strain
curve characteristics. Next, a revised model will be formulated based
on these characteristics and on discussions with researchers who have

teen dealing with carbon-carbon for some time (at Southern Ressarch
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Institute, McDonnell-Douglas, AFML, SAMSO, Prototype Development Asso-
ciates, and Weiler Research, Inc.). The model will then be correlated
with available experimental data in a validation stage. If the model
does, or can be refined enough to, give good correlation with experi-
mental data, then the model will be evaluated for implementation in AFML

and SAMSO nosetip thermostructural analysis computer programs.

1.6 STATEMENT OF RESEARCH

The present research is divided in two najor phases, graphite and
carbon~-carbon, each of which are further divided as follows:

Phase G - Graphite

G-I - Model Formulation
G-I =~ Correlation

G-III - Nosetip Demonstration
G-IV - Implementation

G-V - Reporting

Phase C ~ Carbon-Carbon

C-1 - Data Evaluation
C-Il - Model Formulation
C-III = Correlation

C-IV - Implementation
c-v

Reporting

These phases are described in the following paragraphs.

1.6.1 PHASE G - GRAPHITE

Phase G-I ~ Model Formulation

The graphite material model has but one essential characteristic to

be incorporated prior to use in actual nosetip analysis. That charac-
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teristic is temperature-dependent material behavior. A new scheme must
E“ be devised to express the material model as a function of temperature

based on data at a finite number of temperatures. Basically, the objec-

é tive is a material property versus temperature interpolation scheme.

i However, this scheme is complicated by the presence of many more mate-
é rial property characterization constants in the present model than in
g previous models for which such interpolation is well-known.

) Phase G-11 - Correlation

The graphite material model will continue to be correlated with

available experimental data. A1l known biaxial data generated on con-

stant temperature tube specimens by Jortner of McDonnell-Douglas has been

tion with data on specimens with a nonconstant temperature, i.e., a

E

Ef successfully correlated. The next logical step is to attempt correla-

|

;’

| temperature gradient. The data for the wedge-shaped disc shown in Figure
b

!

§

e 1-11 generated in the Temperature/Stress Test developed by Southern
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Research Institute [1-25] is most appropriate. Limited correlation
studies will be performed with that data. Calculated temperature pro-
filges (verified by measurement) through the disc will be used in con-
junction with the temperature-dependent material model fo predict

disc diameter changes. These predictions will be compared with Southern
Research Institute measurements to further validate the material model.

Phase G-IIl - Nosetip Demonstration

The final stage in the development of the material model is to exer-
cise the model in thermostructural analysis of a reentry vehicle nose-
tip. Although "experimental" data are Timited (obviously only flight
tests with Timited instrumentation can be considered experiments in the
present context), the comparison of predictions of the present model with
previously used models 1s essential. Without such comparisons, the real
worth of the present graphite material model for reentry vehicle nosetip
stress analysis cannot be established.

The finite element data cards for the nosetip and its thermal (and
mechanical) loading will be chosen by AFML and supplied to Southern Meth-
pdist University in the SAAS III format. These data cards shall have
been previously verified to work on SAAS III by another contractor for
an all-elastic analysis or an elastic-plastic bilinear analysis. Accord-
ingly, the nosetip demonstration will involve a single variable, the
material model. A1l other variables will be provided to SMU in ready-
to-run form.

Phase G=IV - Implementation

The graphite material model developed and validated in previous
phases and in Air Force Contract F33615-73-C-5124 will be incorporated

in a version of the SAAS III computer program [1-26]. That program is
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the basic finite element computer program operational at Southern
Methodist University. Duplicate computer decks, listings, test cases,
and output will be provided to AFML should an operational deck be de-
sired. In view of Southern Methodist University's mission of graduate
education and research, 1imited manpower, and small computer, the graph-
ite material model will not be implemented in any program other than
SAAS III.

Phase G-V ~ Reporting

The graphite material modeling efforts, correlation studies, and

nosetip analysis are duscribed in the present Technical Report.

1.6.2 PHASE C -~ CARBON-CARBON

Phase ¢-1 ~ Data Evaluation

Carbon-carbon materials have many different manufacturing processes
and hence many different characteristics, as alluded to earlier. The
objective of the data evaluation phase i1s to examine the available mate-
rial property data and isolate the significant characteristics that must
be modeled to accurately predict thermostructural response. This objec-
tive will be met by review of published data, review of published mate-
rial modeling efforts, and consultation with AFML, SAMSO, Southern Re-
search Institute, McDonnell-Douglas, Prototype Development Associates,
and Weiler Research, Inc. The latter consultation should take place both
in this phase and in subsequent phases. Because of this consultation
and the expectation that important material properties will 1ikely be
found to not have been measured, data evaluation will be regarded as a
phase continuing throughout the remainder of the program.

Phase C-1I - Model Formulation

The basic material wmodel used for graphite and described in Reference
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1-7 will be fit to the thermostructural characteristics of carbon-carbon.
Should a more complicated relationship be necessary, studies will be ini-
tiated to determine an appropriate relationship.

The behavior of carbon-carbon will be studied in this initial effort
from the standpoint of the axisymmetric macromechanics or continuum me-
chanics analysis in SAAS III [1-26]. 1In addition to the basic SAAS III
analysis with the new material model, an essentially onc-element model
with the new material model will be used in modeling feasibility studies
such as were carried out in Air Force Contract F33615-73-C-5124, Neither
the asymmetric linear elastic analysis of ASAAS [1-24] nor micromechan-
ical analyses will be attempted. Evaluation of the need for and benefit
from more geometrically sophisticated models will be made in conjunction
with the data evaluation phase. That is, we must be certain the quality
and sophistication of the data merit the increased expense of, e.g.,
asymmetric micromechanical analyses.

Carbon-carbon will be modeled in uniaxial on-axis and off-axis
stress states for which material property data exist. Moreover, limited
biaxial stress state data will also be modeled to the level of sophisti-
cation possible within the scope of two-dimensional or axisymmetric macro-
mechanics theory,

Phase C-III - Correlation

The material model developed in the previous phase will be used to
obtain stress-strain predictions for situations in which carefuily ob-
tained experimental results are available. These experimental data will
be selected in cooperation with AFML. These experiments will include
uniaxial on-axis and off-axis tests, the most logical starting point for

any material medeling effort. In this manner, the material model will
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either be validated by comparison with experimental data or will be in-
vaiidated and improvements will be made.

Phase C~IV - Implementation

The carbon-carbon material model developed and validated in previous
phases will be incorporated in a version of the SAAS III computer pro-
gram [1-26]. That program is the basic finite element computer program
operational at Southern Methodist University. This research program is
not 1ikely to advance the state of the art of carbon-carbon modeling to
the point where the model 18 judged completely ready for widespread Air
Force use in reentry vehicle nosetip stress analysis. Instead, the
present effort is best described as a bold step toward that goal with
some hope of a reasonable model being obtained within the next year.
Southern Methodist University expects that further work on carbon-car-
bon modeling will be necessary befare the real question of implementation
of the carbon-carbon model in Air Force computer programs arises.

Phase C-V_- Reporting
The carbon-carbon material modeling studies, fncluding data evalua-

tion and characterization, model formulation, and correlation activities,

are described in the present report.

1.7 SCOPE OF REPORT
The actual accomplishments during the contract are presented in the

following sections, First, the Jones-Nelson nonlinear material model is

reviewed in Section 2. Also, that model is extended to temperature-de-

pendent material behavior and to treatment of extrapolated stress-strain

curves in what is called the Jones-Nelsoi--Morgan model, Then in Section

3, the graphite modeling efforts are described. first, the correlation
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1 studies for the Southern Research Institute thermal stress disk test are ‘
&‘\'( “

;f discussed. Then, the AFFDL 50 MW nosetip correlation studies are de- j
it {
§ scribed. The carbon-carbon modc1ing efforts are discussed in Section 4. {

é' The general modeling is first described and then a characteristic of :
%' carbon-carbon in bending tests is treated. The current contract efforts E
: are summarized in Section 5.
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2, JONES-NELSON-MORGAN NONLINEAR MATERIAL MODEL

2.1 INTRODUCTION

First, the basic Jones-Nelson nonlinear material model is briefly
reviewed in Section 2.2, and some new aspects of its behavior are de-
scribed. In particular, procedures are developed for temperature inter-
polation of temperature-dependent material behavior. Then, methods of
extending the range of applicability of the material model are discussed
in Section 2.3. The major accomplishment in that section is the develop-
ment of an extended stress-strain curve version of the Jones-Nelson model
which is called the Jones-Nelson=Morgan nonlinear material model. Final-
1y, the JNMDATA computer program is described in Section 2.4. This pro-
gram is used to convert the various measured stress-strain curve data
directly to the parameters of the Jones-Nelson and Jones-Nelson-Morgan
material models suitable for use in the SAAS IIIM finite element stress
analysis computer program which is a modification of the SAAS III pro-
gram [2-1]. The JNMDATA program is a very useful aid in the modeling of
a material because the results are obtained automatically and are pre-

sented visually for rapid evaluation of the model.

2.2 JONES-NELSON NONLINEAR MATERIAL MODEL

The Jones-Nelson nonlinear material model was developed under USAF

Contract F33615-73-C=5124 and reported in AFML-TR-74-259 [2-2]. Several
other related and more accessible publications are condensed from Ref.

2-2, namely Refs. 2-3 thru 2-6. That work will be summarized in Section
2.2.1 for the sake of convenience in reading this report. The necessary
further details will be referenced where required., Then, a new discus-

sion of how to implement the model is presented in Section 2.2.2, There,
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the recent experience in application of the model is reflected. Finally,
the model is extended in Section 2.2.3 to interpolation of temperature-

dependent material behavior at temperatures between available data.

2.2.1 BASIC APPROACH

The basic problem is the stress analysis of nonlinear elastic bodies
whose stress-strain behavior is described with, for the example of an

orthotropic axisymmetric body under axisymmetric load, the equations:

e “1 N\
() 1 ez e rd
€ B OE E, r
v v
rz 1 _.z0
TR R R ||
1 = ’ (2'])
v v
e ro 1
" B K|
Trz 0 0 0 El" Ty
N J (. rz _J\ J

where the directions denoted with the subscripts r, z, and 6 are princi-
pal material directions. The material properties in the compliance ma-

trix of Eq. (2.1) are

m
n

Young's modulus in the r direction
E, = Young's modulus in the z direction

Ee = Young's modulus in the 6 direction

v, = -EZ/EP for the loading 9. =0 (a1l other stresses zero)

1

v . = —ce/er for the loading g, =0 (a1l other stresses zero)
Vao = -eo/sz for the loading g, =0 (a1l other stresses zero)

G, = Shear modulus in the rz plane
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The reciprocal relations of orthotropic elasticity

<

~

i
i

rz' r vzr/Ez er/Er ) VOP/EO vze/Ez - vOz/Ee (2.2)

can be used to express alternative definitions for the Poisson's ratios
in terms of the seven independent material properties in Eq. {2.1). The
material properties in Eq. (2.1) are a function of stress level because
the material is nonlinearly elastic. However, we do not examine the
unloading behavior nor any subseguent reloading hehavior of the body.

The basic stress analysis problem could be more complicated than is
represented with Eq. (2.1). For examp1e. the material could have prin-
cipal material directions at some angle to the r-z-8 coordinate system.
Or, the material could have different stress-strain behavior in tension
than in compression, The stress-strain relations for multimodulus mate-
rials are derived by Jones and Nelson [2-2, 2-5] and are applied to stress
analysis of graphitic materials in Ref. 2-6. The foregoing considerations
are obviously more complicated than what is represented with Eq. (2.1).
However, those equations will suffice for our discussion of the Jones-
Nelson material model.

The basic premise of the Jones-Nelson nonlinear material model is
that the mechanical properties of a material, e.g., the material prop-
erties in Eq. (2.1), are expressed in terms of the strain energy of the
body with the approximate equation

C.
Mechanical Property, = A1[1 - Bi(U/Uoi) " (2.3)
where the A1 are the elastic values of the material property, the 81 and
Ci are related to the initial curvature and rate of change of curvature,

respectively, of the stress-stiain curve [2-2, 2-4] (slightly different
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interpretations exist when the mechanical property is a Poisson's ratio),
and U is the strain energy density of an equivalent elastic system at

each stage of nonlinear deformation:

U= (o, +to,e, + o.¢ )/2 (2.4)

.o
rér T 925 0% © 'rz¥rz

The strain energy density U is normalized by Uoi in Eq. (2.3) so that Bi
and Ci are dimensionless. Typical stress-strain curves, the correspond-
ing mechanical property versus strain energy curves, and the associated
mechanical property equations for a Young's modulus and a Poisson's ratio
are shown in Fig., 2-1.

The nonlinear stress-strain model is actualiy much more complicated
than Eq. (2.3). When mixed tensile and compressive stresses are excited,
the strain energy used in Eq. (2.3) could be a weighted combination of
the strain energy of compression and that of tension. Moreover, all
coefficients have different values in tension than in compression. The
choice of which properties, tension or compression, should be used is
made in the Ambartsumyan superposition manner [2-7] after rotating the
stress-strain relations to principal stress directions as described in
Ref. 2-2.

The stress-strain relations, Eq. (2.1), and the mechanical property
versus energy equations, Eg. (2.3), are a set of indeterminate relations
which are solved with the iteration procedure shown in Fig. 2-2. That
is, the stresses and strains depend on the mechanical properties (through
Eq. 2.1) which, in turn, depend on the stresses and strain [through Egs.
(2.3 and (2.4)]. The determination of mechanical properties and, con-
sequentiy, the stress-strain relationships is based on both the propor-

tions of the principal stresses and on the magnitude of an energy func-
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FIGURE 2-1 REPRESENTATION OF STRESS-STRAIN RELATIONS
FOR DIRECT MODULI AND POISSON'S RATIOS
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[EXPRESS MATERIAL PROPERTIES IN TERMS OF TOTAL ENERGY U FROM UNIAXIAL DAIAJ

4

FORM COMPLIANCE MATRIX IN PMD WITH
INITIAL LINEAR TENSION VALUES OF MATERIAL PROPERTIES

!

[CALCULATE STRESSES, STRAINS, AND STRAIN ENERGY|

| CALCULATE NEW MATERIAL PROPERTIES just

1

| FORM ALL-TENSION AND ALL-COMPRESSION COMPLIANCE MATRICES IN PMD |

| ROTATE COMPL IANCE MATRICES TO PsD}

| FORM MULTIMODULUS COMPLIANCE MATRIX IN PSD |

&

lCALCULATE NEW STRESSES, STRAINS, AND STRAIN ENERG?]

!

EVALUATE REL aU = (U,-U, | /U,

! ]

IF|REL AU| < SPECIFIED VALUE, STOP [?-}REL AU| > SPECIFIED VALUE

PMD = PRINCIPAL MATERIAL DIRECTIONS
PSD = PRINCIPAL STRESS DIRECTIONS

FIGURE 2-2 ITERATION PROCEDURE FOR NONLINEAR MULTIMODULUS MATERIALS
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tion. Each step in the iteration procedure is described in Refs, 7-2
and 2-5.

Two different cnergy functions - total strain energy and weighted
strain energy - can be used in the Jones-Nelson material model. The
total strain energy is defined in Eq. (2.4). On the other hand, in the
weighted strain energy, the total strain energy is separated into two
components: (1) the contributicn from the tensile principal stresses
and (2) the contribution from the compressive principal stresses. Then,
the effective energy level, Uw' in terms of the tension and compression

components of the total strain energy is

< 2 2
Uw = (Ut + U, )/ (2.5)

This energy Uw is used to determine both the tension and compression

material properties.

2.2.2 IMPLEMENTATION OF THE MATERIAL MODEL

Much of the work in implementing the Jones-Nelson nonlinear mate-
rial model is in calculating appropriate values of A, B, and C in the
governing equation, Eq. (2.3). To reach the point where these calcula-
tions can be made, we must first determine the secant values of the me-
chanical properties and the corresponding values of strain energy from
uniaxial stress-strain curves of the material under investigation. For
example, the values of the secant shear modulus &and corresponding values
of U can be determined from a shear stress - shear strain curve such as
shown in Fig. 2-3. There, for two shear stress levels, the correspond-
ing shear strains are found firom the experimentally determined shear

stress - shear strain curve. Then, G.]2 and U are calculated from
sec
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i U= migrya/2 (2.7)
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Similarly, the remaining secant mechanical properties and their corres-
ponding strain energies are found from the appropriate stress-strain

‘g curves in principal material directions.

Next, all secant mechanical properties are plotted versus the strain

;{ ' energy as in Fig. 2-4. Now, we can begin to calculate or otherwise find

;1 the values of A, B, and C in Eq. (2.3). First, the constant A is the

N f‘,', 4
e initial (elastic) value of the mechanical property. That is, it is the
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initial slope of the stress-strain curve in Fig. 2-3 or the intercept of

»
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the mechanical property versus energy curve in Fig. 2-4. The value of A

is higher than you would expect from the normal procedure of placing a
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FIGURE 2-4 REPRESENTATIVE MECHANICAL PROPERTY VERSUS U CURVE

straightedge on a stress-strain curve such as Fig. 2-3. We draw this
conclusion on the basis of many observed fits of the material model to
stress-strain curves with simultaneous fits to a corresponding mechani-
cal property versus energy curve. That is, the curve on a plot of me-
chanical energy versus energy "heads" for a much higher intercept at
U=0 than you would expect from looking at the stress-strain curve alone.
This conclusion 1s not surprising when viewed in the context that the
mechanical property is the slope (first derivative) of the stress-strain
curve and hence is a more sensitive indicator of the behavior when
plotted against energy than when visually determined from a necessarily
somewhat inaccurate stress-strain curve.

The constants B and C are determined from data at two points on the
material property versus U curve as shown in Fig. 2-4, The values of the
mechanical property and the values of U at these two data points are sub=
stituted in Eg. (2.3). Two equations in the two unknowns, B and C, re-

sult. These two equations are solved simultaneously for B and C to get
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C = ] (Ug) (2.8)
Qq U——
3
A-(M.P.), [ U, \ O |
B = -—A——“‘- D;‘ (2.9)

where (M.P.)2 and (M.P.)3 are the values of the mechanical property at
the two data points chosen from the mechanical property versus U curve,
The values U2 and U3 in Egs. (2.8) and (2.9) are the strain energies at
the two chosen data points. The proper choice of data points from the
mechanical property versus U curve is an important part in the applica~-

tion of the material model to a specific material and will be discussed

next.

The use of Eq. (2.3) to approximate each mechanical property
corresponds to the mathematical procedure of three-point interpolation.
At the three data points used in determining A, B, and C, the approximate
values of the mechanical property are the same as the actual values. In
the region between these three points, Eq. (2.3) is a reasonable approxi-
mation of the mechanical property versus strain energy data. Thus, an
interval of strain energy for which Eq. {(2.3) is a valid representation
of the mechanical property 1s defined by the positions of points 1 and
3 1in Fig., 2-4. This interval of strain energy 1s bounded on the left by
V=0, the strain energy at point 1, and on the right by the strain energy
at point 3. The approximate mechanical property versus U curve must pass
through point 2 so the shape of this curve between points 1 and 3 is de-

termined from the position of point 2. Obviously, more information than
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) Just data to calculate B and C is gained about the mechanical property i

approximation from the data points 1, 2, and 3 in Fig. 2-4. The func-

tions of these points can be summarized as follows:

T

(a) Point 1 is used to determine the constant A in Eq. (2.3) and
is the left bound of the interval of strain energy for which {
the approximate mechanical property versus U curve is valid,

(b) Point 3 is used in determining B and C in Eq. (2.3) and is

oz e ir E A Sy 4 g A

the right bound of the interval of strain-energy for which the

approximate mechanical property versus U curve is valid.

T ey

Point 2 is also used in determining B and C in Eq. (2.3), and

5
—
0
~—

the shape of the approximate mechanical property versus U curve

is defined by the position of point 2 in the interval between

points 1 and 3.

“ The choice of data points used to determine B and C is quite impor-

tant. If B and C are calculated from data at points 2 and 3 on the actual

e R TR AT TS T ST P e

mechanical property versus strain energy curve (solid line) in Fig. 2-5,

i~

| —— ez

the dashed-dotted curve labeled 2-3 is the result. This curve is a rea-

sonable representation of the actual data in the interval 0 < U < Uq

4 where Uy is the value of the strain energy at point 3. For strain ener-
Ei; gies larger than U3. the "2-3" curve does not and is not supposed to re-
4

! present the mechanical property versus strain energy behavior accurately.

‘ fl The mechanical property equation is valid over a larger interval of

P P S -1

strain energy if a point further out than point 3 on the actual mechani-
i cal property versus U curve is used in the calculation of B and C. For

example, when point 4 is used in determining B and C, Eq. (2.3) is valid

-3 et - £
PSS

in the interval 0 < U < U4 where U4 is the value of the strain energy

R

at point 4. Both the "2-4" curve (B and C determined from data at points

el
-
—

S

33

- -

-;'M:,'mu,-"-; PIUTRPTPITVE - SR ¥ Aot e ih e S AR Gl
Py - . :

Bovini iy e i Wb e




T o e T, e

— s

- Val

ST
—t

)

e o

MECHANICAL
PROPERTY

¥

STRAIN ENERGY, U

FIGURE 2-5 REPRESENTATIVE MECHANICAL PROPERTY VERSUS U BEHAVIOR
AND POSSIBLE APPROXIMATIONS

2 and 4) and the "3-4" curve (B and C determined from data at points 3
and 4) in Fig. 2-5 are reasonable approximations of the actual mechanical
property versus strain energy data for 0 ¢ U < U4. However, in the in-
terval 0 < U < U3 neither the "2-4" nor the "3-4" curve are as good a
representation of the actual data as the "2-3" curve. Thus, the me-
chanical property equation is valid over a large interval of strain ener-

gy when point 4 is used in finding B and C, but the accuracy of the ap-

proximation in smaller subintervals of the overall interval i1s sacrificed.

Although the "2-4" and "3-4" curves are valid nver the same interval
of strain energy, the two curves have different shapes in the interval
because different combinations of data points are used in determining B
and C. The "2-4" curve must pass through point 2 whereas the "3-4" curve

must pass through point 3. (Both curves must pass through points 1 and
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4.) Because the mechanical property at point 3 is less than the mechani-
cal property at point 2 and because U3 is greater than U2, the “3-4"

curve is steeper than the "2-4" curve for 1) < U2 and flatter for U > U3.

In the interval U2 <l < U3 the two curves have basically the same shape.
As a result, the "2-4" curve is a better approximation in the interval

D<U < U2 and the "3-4" curve is a better approximation in the interval

U3 < U< U4. Obviously, in the interval U2 < U < U3, both approximations
L} are about equally guod; the "2-4" approximation is better for the strain i
:{ energies nearer U2, and the "3-4" approximation is better for the strain
energies nearer U3. The interval U3 < | <« U4 in Fig. 2-5 15 larger than
the interval 0 < U ~ U, so the "3-4" approximation is better than the g

"2-4" approximation over a large portion of the overall interval of valid-
ity 0 < U « U4. Thus, the interior data point used to determine B and

C should be chosan so that the approximate mechanical property versus U

PEPPI

curve takes on the shape desired by the user of the material model and

represents the actual data accurately over the desired subinterval of

- wls
————

the overall range of validity of the approximation.

With the criteria discussed above as a guide, the actual determina-

o it el

tion of the constants A, B, and C seems quite easy. However, measured

stress-strain data and corresponding mechanical property - strain enerqy

data are somewhat random by nature and do not usually plot as smooth

Lo curves. When A, B, and C are determined without regard for the random

! nature of the data, ceveral pitfalls arise which are not obvious at first.

These problems can occur if a single set or constants (A, B, and C) for

v oE T

e 3

a single mechanical property is calculated by hand or if many sets of

‘.

constants for many mechanical properties are calculated with the aid of

-
—r

' . ;,f’?é’_ﬁ‘fw

a computer.

P
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The procedure for determining A, B, and C can be quite tedious when

ﬁ performed by hand calculation. The measured stress-strain data must |
3 first be converted to mechanical property - strain energy data. Then, 3
I: a value for the con<tant A must be determined. By definition, A is the '
initial elastic value of the mechanical property, but obviously this ini- 4
tial value cannot be determined from the data at the origin of the stress- i
ia strain curve {o/e = 0). Hence, the initial slope of the measured stress-
g strain curve, i.e., the tangent modulus at the origin of the stress-

A strain curve, 1s often used as the value of A, An alternative approach
?; for finding A is to calculate the value of the mechanical property at S
- the data point corresponding to the lowest measurable stress-strain level 1
and then to arbitrarily use this value of the mechanical property as the )

value of A. Thus, in this approach, a point on the mechanical property

& versus U curve for which the strain energy is small is translated to the

v ﬁ mechanical property axis. One consequence of determining A in this manner
is that the value of A is less than the value obtained by using the ini-

.|(I
-fj tial slope of the stress-strain curve. Another consequence i{s that data

{
.
[
b
. at this point cannot be used in the calculation of the constants B and
C. After A is found, the actual mechanical pruperty - strain energy
p data is plotted, and points to be used in determining B and C are chosen.
f ) Once B and C are calculated, the approximate mechanical property versus

L
L n U is plotted to ensure that a reasotiable representation of the actua)

?5 data is obtained.

For materials with more than one stress-strain nonlinearity, the use }
of hand calculations in determining the constants for each mechanical f
property is inefficient becavse of the large amount of time involved.

As a result, the procedure for determining A, B, and C should be auto-
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v mated so that the calculations are performed by a computer and 3o that

' the curves are plotted by an associated mechanical plotter. In the

JNMDATA computer program written for this purpose, the measured stresses

and strains are input data. The corresponding mechanical properties and

strain energies are calculated in the program, and the value of the me- j

chanical property at the first input data point is used as the value of

A. The user of the program is able to specify which data points, other
than the first one, are used in determining the constants 8 and C. After
the constants B and C are calculated, the program is designed so that

the actual mechanical property - strain energy data and the approximate

o

mechanical property versus strain energy curve are plotted on the same

e I

page. Also, the measured stress-strain data and the stress-strain curve

implied from Eq. (2.3) and calculated in the program are plotted in a

‘:‘WF "' T T TR TR sy

A

similar fashion. Checks of the input data are performed in the program

as a precautionary measure to avoid the pitfalls which arise in thoosing

b

;IE data points to determine B and C. These pitfalls, due mainly to the

; ! random nature of the measured stress-strain data, are mentioned briefly

g in a preceding paragraph and are discussed in detail in the following

?' paragraphs.

§ 4 One of the pitfalls which arises if B and C are determined from an ?
; F. arbitrarily chosen combination of data points is that the value of the g
5‘: constant C can be indeterminant. If B and C are chosen from data points j
ﬁ'_ 2 and 3 in Figure 2-6a, the mechanical property at point 2, (M'P')Z’ is %
; :5 greater than A, and the mechanical property at point 3, (M.P.)3. 1s less %
f‘;: than A. As a result, the argument of the logarithm in Eg. (2.8) 14 ncga- g
lk} tive so C cannot be determined. If a mechanical property versus strain !
; pf energy curve passed through points 2 and 3 in Fig. 2-6a, the correspond-
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3 ing stress-strain curve, also shown in Fig. 2-6a, would be initially con-
i cave upward and then would become councave downward. This type of stress-
i strain behavior is highly unusual and will probably never be encountered.
However, measured stress-strain data often has the characteristic that

at least one data point is out of line with the rest of the data. If

i this data point is one of the points used to determine B and C, the sit-
E_ uation shown in Fig. 2-6a where (M.P.)2 is greater than A and (M.P.)3 is
less than A is encountered. When this situation arises, the process of
finding the values of B and C, whether performed by hand or with the aid

of a'computer, should be stopped and new data points chosen.

) The concave downward then concave upward stress-strain behavior in
Fig. 2-6b, 1ike the stress-strain behavior in Fig. 2-6a, will probably

never be encountered. However, a point at which the mechanical property

li, is less than A, such as point 2 in Fig. 2-6b, and a point at which the
mechanical property is greater than A, such as point 3 in Fig., 2-6b,

could easily be chosen as the two data points to determine B and C. If

- -

two such points are used, the argument of the logarithm in Eq. (2.8) is

=
—_ -

again negative. The constant C is again indeterminant so the process of
calculating B and C should be stopped, and new data points should be cho-
sen.

g The initially linear, then nonlinear, and finally linear stress-

‘) strain behavior in Fig. 2-6¢ is also highly unusual but is shown to 11-

S T e B T e -
2 — . e e———

Tustrate a probiem which occurs when D and C are determined from another

combination of data points. The mechanical property at point 2 in Fig.

Pl

RN 2-6¢ is not equal to A, but the mechanical property at point 3 is equal

E &i to A. When these data points are used in finding the values of B and C,

f gi the denominator of the argument of the logarithm in Eq. (2.3) is zero so

i

5- ;«
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C cannot be calcuiated. Thus, this combination of points must be avoiaed
in choosing data points to use in determining B and C.

A different type of problem arises if the mechanical property at
point 2 is equal to the mechanical property at point 3 but is not equal
to A as in Fig. 2-6d. Because of random measured data, this situation
can occur when points 2 and 3 are chosen close to each vther. For this
conmbination of data points, the constant C is zero so the approximate
mechanical property is not dependent on the strain energy. The value of
B is A - (M.P.)R. The approximate mechanical property is a constant but
is neither equal to A nor to the mechanical property at point 2 or point
3. That is, the stress-strain behavior in Fig. 2-6d is approximated by
a straight lire with slope less than A but greater than the value of the
mechanical property at point 2 or point 3. Thus, the condition that the
approximate mechanical property curve must pass through the three data
points used to determine A, B, and C is violated. The unusual stress-
strain curve with two linear portions of different slope in Fig, 2-6d
cannot be represented exactly. Only an approximation of the behavior, in
which the two linear portions are modeled as being nonlinear, can be ob-
tained when Eq. (2.3) is used to approximate the mechanical property.

To obtain this mechanical property approximation, point 2 in Fig. 2-6d
must be located on the nunlinear portion of the stress-strain curve so
that values for B and C can be found.

Pitfalls similar to those discussed above can arise even when common
types of stress-strain behavior are modeled if the points used to deter-
mine B and C are chosen indiscriminately. The stress-strain behavior of
many materials is represented by the initially linear and then nonlinear

stress-strain curve in Fig. 2-7a. However, Eq. (2.3) cannot be used to

40
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approximate the corresponding mechanical property behavior if points 2
and 3 in Fig. 2-7a are used in determining 8 and C. The mechanical prop-
erty at point 2 is equal to A but not equal to the mechanical property

at point 3. The constant C is indeterminant because the argumert of

the logarithm in Eq. (2.8) is zero. Hence, the procedure for calculating
B and C must be stopped. This problem is avoided by choosing point 2' on
the nonlinear portion of the stress-strain curve to be used to determine
B and C instead of point 2. The implied stress-strain curve resulting
from this approximation is nonlinear at all levels of stress and strain
and i1s a reasonable approximation of the stress-strain curve in Fig.
2-7a, but the measured linear then nonlinea: stress-strain behavior can-
not be modeled exactly with Eq. (2.3).

Even for linear stress<strain behavior shown in Fig., 2-7b, B and C
must be determined carefully. Obviously, the value of the mechanical
property at points 2 and 3 in Fig. 2-7b 1is equal to A, but if B and C
are deternined with Eq. (2.8) and Eq. (2.9), the argument of the loga-
rithm in Eq. (2.8) is indeterminant (C¢/0) so C cannot be calculated.
However, linear stress-strain behavior is implied from Eq. (2.3) if B
is zero and C 1s finite. Thus, the problem of C being indetzrminant
i¢ solved by skipping the calculations in Eqs. (2.8) and (2.9) and assign-
ing B the value of zero and C sume srhitrary but finite value.

With B and C determined from a proper choice of data points on the
mechanical property versus strain ensrgy curve, the machanical property
equation is a valid approximation of the actual mechanical property data
over a specfied range of strain energy. However, under many loading
conditions, a value of the mechanical property is desired for a strain

energy larger than the maximum value of U for which the actval mechani-
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FIGURE 2-8 UNIAXIAL STRESS-STRAIN BEHAVIOR AND CORRESPONDING _ﬁ

‘&f MATERIAL PROPERTY VERSUS U BEHAVIOR 1
ql‘ cal property versus U curve 1s defined. For example, the mechanical _%
gﬁ property versus U curve in Fig. 2-8 1s defined for strain energies in 3
Et the range 0 < U < U , . This curve is obtained from the uniaxial stress- ‘
gﬁ. strain curve also in Fig. 2-8 which is not defined for stresses greater i

g than o,  and strains greater than e Hence, £ .. 1s net defined for

o ma max 3

i?i strain‘energies greater than Umax ® Upax cmax/z‘ A problem arises if a :

§21 value of the mechanical property is nerded for a strain energy greater i

g than Umax' Thus, the actual mechanjcal property versus straip energy 1

§ curve must be extrapolated in some way. Two extrapolation procedures 3

i

5- for the material model are described in Scction 2.3,

;\ “ X

%i; 2.2.3 TEMPERATURE INTERPOLATION OF DEFORMATION BEHAVIOR 1

) k

%‘f : Many materials have temperature-dependent deformation behavior, k

i

% . Typically, that deformation behavior is measured at discrete values of

g *. temperature over sume pertinent range of temperatures. We propose to 4

LT

iy ? use such data in finite element stress analysis of bodies subjected to

P

ﬁ %ﬁ temperature gradients, Then, the basic problem is: given two stress- %

%
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strain curves at two temperatures with associated mechanical property
versus strain energy curves for which we known A, B, C, and Uo’ fina

the correct property for an intermediate temperature at a specified ener-
gy level alony with the associated point on the stress-strain curve for
the intermediate temperature. Repeated answering of this question for
vany energy levels would lead us to a mechanical property versus energy
curve and a stress-strain curve for the intermediate temperature. These
curves must lie appropriately between the respective two original curves
for the temperatures between which we interpolated the deformation be-
havior.

At least three approaches are possible: parameter interpolation,
property interpolation, and stress-strain curve interpolation. Each of
these approaches 1s defined and discussed in this section. Moreover,
the consequences of using each approach are discussed relative to what
1s perceived to be the desired result. The word perceived is used
because the actual variation of mechanical properties with temperature
1s often not known except, as stated hefore, at discrete temperatures.
That s, the actual, smooth varfation with temperature of properties or
stress-strain curves is not known so we have little with which to compare
our results.

The basic example for ali three approaches will involve the inter-
polation of ATJ-S graphite properties at 1403°F when we are given the
properties at 70°F and 2000°F. We examine only the deformation behavior

in the Isotropic plane, i.e., o, versus Eg and F.G versus U (or o, versus

G r

€ and Er versus U). The stress-strain curves are shown for 70°F and

2000°F in Fig. 2-9 and are taken from an SoRI report [2-8]. The boxes

in Fig. 2-9 are the SoRI data points and the curves are those obtained
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with the JNMDATA program which will be described in Section 2.4. The
associated mechanical property versus strain energy curves are displayed
in Fig. 2-10 for which the mechanical property constants in Eq. (2.3)

are given in Table 2-1,

TABLE 2-1 ATJ-S GRAPHITE MECHANICAL PROPERTY CONSTANTS
FOR Er = Ee VERSUS ENERGY

T A,psi B ¢ Uo.psi

70°F 2,000,000. | .182 337 1.
2000°F | 2,000,000. | .0651 | .583 1.

2.2.3.1 Parameter Interpolation

In parameter interpolation, the values of the parameters (mechani -
cal property constants) A, B, C, and U0 for the intermediate temperature
T are found by linear interpolation of the corresponding parameters at
the bounding temperatures T, and Toe For example, if T = (T] + T2)/2,
then

A= (A] + A2)/2 B = (B.I + Bz)/Z

C= (Cy + Cy)/2 U, = (Uo] + uoz)/z

We might expect the resulting mechanical property versus energy and
stress-strain curves to lie midway between the respective interpolated
curves. However, they do not. In fact, at a temperature of 1403°F for
which A = 2,000,000 psi, 8 = ,101, C = .507, and U, = 1 psi (from 1inear
interpolation), at stresses above 7,000 psi in Fig. 2-11 the resulting
stress~strain curve 1ies below the 70°F curve and not fairly close to
the 2000°F curve as we would hope. Moreover, at U = 40 psi, the result-

ing E, 1s less than E, for 70°F. Part of this undesirable result may
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stem from the simultanecusly constant A's, decreasing B's, and increasing
C's (but not from the constant Uo)‘ At any rate, parameter interpolation
is obviously undependable since the resulting interpolated curves may not

even lie between the curves being interpolated!

2.2.3.2 Property Interpolation

In property interpolation, the mechanical property for the inter-
mediate temperature T is found by linear interpolation of the mechanical
properties at the bounding temperatures T] and T2 for a specified ener=

gy level. That is, if for example T lies midway between T1 and TZ‘ then

Mechanical PropertyT = %-(Mechanica1 PropertyT] + Mechanical PropertyTz)
(2.10)

The resulting mechanical property versus energy curve lies precisely mid-
way between the two curves being interpolated, by definition. However,
the resulting stress-strain curve may be closer to the higher of the two
curves being interpolated. When T = 1403°F, the interpolated stress-
strain curve in Fig. 2-13 is "about the right distance" from the two
curves from which 1t is indirectly interpolated. Also, the interpolated
mechanical property versus energy curve is precisely where it must be
when we assume that the mechanical properties are a linear function of
temperature between the discrete temperature values at which the mechani-
cal behavior is measured. We delay an appraisal of the value of this
method until after the next sub-section on stress-strain curve interpo-

lation,
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2.3.3.3 STRESS-STRAIN CURVE INTERPOLATION

In stress-strain curve interpolation, the coordinates of points on

the interpolated stress-strain curve are found from the information
4 known for the stress-strain curves at the bcunding temperatures., Actual-

ly, we are assuming that the stress-strain curves vary linearly with

ii temperature between the curves at input discrete temperature levels.

For example, the stress-strain curve for a temperature midway beiween

s the two temperatures at which the stress-strain curves are prescribed
1ies, by definition, precisely midway between the two prescribed stress-

L strain curves. However, since there is no direct equation for the

?h stress-strain curves, we must construct the interpolated stress-strain
curve by calculation of stresses and strains for a succession of energy

levels.

The calculation procedure is straightforward, but several steps are

necessary for each energy level:

ot B AT P e e

(1) Calculate Ey and E, at T] and T,, the bounding temperatures

{
(the 1 and 2 subscripts will be used hereafter in association j

S e

with Ty and Ty, respectively),

(2) Calculate the corresponding strains £ and fin by realizing that

IR R e e e T R . . - St e i

9 = Big

' ap = Bpep :

&. but w
kY

ro 1 i :

| U= 5 ae) =5 (E]c])a] )

o] o ) R i

U= 70585 = 7 (Epepley :

SO ".

o 1/2

£y = (2U/E)) -

TR V7 .
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i (3) Calculate the corresponding stresses oy and o, from

1/2

0y = E]r:.| (ZUE])

1

: 0, = By, = (2UE,) /2
i (4) Interpolate (o].e]) and (02,52) along a straight line joining

them to get (oT.aT):

!

: AT q

o S P Y (o ~oq) + g 1

& o AT )

{' LT h Tz - i] (EZ - L]) * E-' ;

i (5) Calculate the mechanical property at T: !
i

g
" ET = _T
N T

o

P The foregoing five steps are repeated for increasing energy levels until

the stress-strain and mechanical property versus energy curves are suf-

ficiently weil defined.

With this approach, the Op = £q CUrve lies midway Letween the two
stress-strain curves if T« (T, + Tz)/z. Also, the interpolated mechani-
cal property versus energy lics closer to the lower specified curve than
to the upper curve. However, for the ATJ-S graphite example at 1403°F,
the resulting stress-strain curve is indistinguishable from that obtained
o with property interpolation in Fig. 2-13 (slight numerical differences
w - exist, but they are -» visually detectaile at the scale of Fig., 2-13),

' Moreover, the vesulting mechanical property versus eneryy curve is indis-

tinguishable from that obtained with property interpolation in Fig. 2-14, ;

2.2.3.4 Summary

e -
e A

Three different approaches to interpolation of deformation behavior

:
ol .-
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are discussed. One, parameter interpolation, is found to be iraccurate
and unreliable. The other two, property interpolation and stress-strain
curve interpolation, are found to be equivalent. The two methods are
both applied to the case where the temperature is midway between the two
input temperatures. Although the interpolated mecnanical property versus
energy curve is precisely midway between the two input curves for propere
ty interpolation, the interpolated stress-strain curve might theoretical-
ly be a 1ittle too high. On the other hand, the interpclated stress.
strain curve is precisely midway between the two input curves for siress-
strain curve interpolation, but the interpoiated mechanical property ver-
sus energy curve might theoretically be a 1ittle too low. The two methods
are alsoc applied to an actual case for ATJ-S graphite where the tempera-
ture is 1403°F and stress-strain data are known at 70°F and Z000°F. 1In
this practical case, the differences between the twy interpolation ap-
proaches are negligible. That 1s, property interpolation leads to an
interpolated stress-strain curve which is also linearly interpolaved
between the respective input stress-strain curves. And, stress-strain
curve interpolation leads to an interpolated mechanicai property versus
energy curve which is also linearly interpolated between the respective
input mechanical property versus energy curves. Thus, the two approaches
are equivalent for practical purposes. The property interpciacion ap-
proach is used in the SAAS IIIM program and the steps involved in proper-
ty interpolation are simpler than those for stress-strain curve interpola-

tion.

52

PR POy el VR ISP IERITRRT Wy N e
el e L . o . \

I e T T R R

!

€
1
¥
o
-

—

Tt

o

o e, -

o~




ﬁ:-;
ﬁ 2.3 EXTRAPOLATION PROCEDURES FOR MATERIAL MODELS

h 2.3.1 INTRODUCTION

The strain energy can exceed the defined range of the machanical

!i property versus U curve for two reasons. First, the nonlinear model is
applied to materials subjected to multiaxial stress states in which the
o strain energy is higher than in the uniaxial stress states where the

‘ properties are measured. All the stresses and strains of a multiaxial

- stress state contribute to the value of U, and, thus, the multiaxial %

strain energy is often larger than the maximum U attainable from a

uniaxial stress state. The second reason for the existence of strain

energies outside the defined range of the mechanical property versus U

i

curve is that orthotropic materials have drastically ditferent load capa- ]

cities and hence drastically different strain energy capacities in dif-

———

s

ferent directions. The strain energy capacities for loading in the 2-

v.;,_,-.
=

direction and for shear loading are generally much lower than the strain

energy capucity for loading in the 1-direction. For example, the repre-

Er

sentative Tongitudinal stress - longitudinal strain curve in Fig. 2-15

. m——

1s associated with strain energies as high as 250 psi, However, the

L e

R T I Y Trar—

maximum value of U which can be used to define the mechanical property

E2 from the transversa stress - transverse strain curve in Fig., 2-8

sec
is only 40 psi. Thus, strain energies corresponding to some uniaxial

loading conditions, such as loading in the 1-direction or off-axis load-

ing, can be much larger than the U for which E2 is defined.

max
sec
The mechanical property versus U curve can be extended past its de-

e e e v i

TN MCS A Y e e

A fined range by the two extrapolation procedures described in this section.

¥ 4
e

b The procedure desrribed in Section 2.3.2 consists of using Eq. (2.3) for

T 5

SRR

all values of strain energy including those which exceed the maximum

T T NI N,
¢
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AL )
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FIGURE 2-15 NORMAL STRESS - NORMAL STRAIN BEHAVIOR
OF AN ORTHOTROPIC MATERIAL

strain energy for which the actual mechanical property data are defined.
When the extrapolation procedure in Section 2.3.2 fails, the extrapola-
tion procedures described in Section 2,3.3 are used. There, extensions
of the defined stress-strajn curve are involved as opposed to the direct
extension of the mechanical property versus strain energy curve in Sec~
tion 2.3.2. The stress-strain curve is extended by following the trend
of the defined portion of the curve until the slope attains some preas-
signed value, i.e., until g% = (%g—)" For strains larger thap ¢*, ihe
strain at which %%-= <%%—)*, the stress-strain curve is extended as a
straight 1ine with slope (%g-)* to represent the behavior of ductile fi-
ber-reinforced composite materials. Equation (2.3) is used to represent
the mechanical property - U behavior for strain energies corresponding
to points on the stress-strain curve to the left of e*. Another expres-

sion which will be developed in Section 2.3.3 is used to define the me-

chanical property for strains larger than c*,
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2 2.3.2 EXTENDED MECHANICAL PROPERTY VERSUS STRAIN ENERGY CURVE APPROACH !

i The simplest means of extrapolating the mechanical property versus

e rsias

strain energy curve is to use the mechanical property equation for all ;

TR

values of U including, because of extrapolation, those beyond the defined

range of strain energy. A representative mechanical property v rsus U

adn A0

curve is shown in Fig, 2-16. This curve 1s defined for strain energies

= Doy

less than or equal to Umax' Also shown in Fig. 2-16 is an extended ap-

ek M

proximate mechanical property versus U curve corresponding to Eq. (2.3).

For this curve, B and C arc determined from Lhe data point with strain
energy equal to Umax and another point with strain energy close to Umax'

This approximate curve 1s an accurate interpolation of the actual data

i mi LT it e T R e AT

b for strain energies between zero and Umax as discussed earlier. In addi-

tion, this curve has the same shape as the actual mechanical property

P N BN - 1~ - UV SR S

versus U curve in the neighborhood of Umax and is a reasonahle extension

of the actual data for strain energies greater than Unax* Thus, if data

at the point corresponding to U = Umax and data at another point near the
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R s
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FIGURE 2-16 ACTUAL AND EXTRAPOLATED MECHANICAL PROPERTY VERSUS U BEHAVIOR
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i Timit of the defined mechanical property versus U curve are used to deter-

ud

e g

§ mine the constants B and C, the use of Eq. (2.3) is potentially a valid ;
i g
;- means of extrapolating the actual mechanical property - U data. K

J

However, the use ot £q. (2.3) as an extrapolation is restricted.

At some large value of U, the approximate mechanical property curve in

ff Fig. 2-16 crnsses the U-axis, i.a., the extrapolated value of the mechan-

ical property becomes negative. The strain energy at which the mechani-

cal property is zero is designated as U in Fig., 2-16. If a mechanical

o=l L.

property is legs than or equal to zero, a thermodynamic constraint on the

r——

mechanical properties of a material is viclated. This constraint, imposed

A TR T S I e T S TS

ou the properties to avoid the creation of energy, is that the work done

ST

by the stresses applied to a material must be positive. Lempriere [2-9]

interprets this constraint as meaning that hoth the stiffness and com-

e e e T T T L TR o T e e e e s e

AT

pliance matrices of an orthotropic material must be positive definite.

T
- v

These matrices are positive definite only if the mechanical properties

E], E2, and G]2 are positive. Thus, the mechanical properties of a mate-

rial cannot be defined with Eq. (2.3) for strain energies greatev than

— e

or equal to U. The value of U can be determined from Eq. (2.3) and de-

—— T

pends only on the constants B and C:

[ ey
[}

] <-‘B-) ‘ (2.11)

For a constant value of B, the value of U increases when C decreases.

b st & 3 s .

The stress-strain behavior implied from Eq. (2.3) must be a reason-

Pt [

able extension of the actual stress-strain behavior of the material. For

=
.

P

the implied stress-strain curves in Fig. 2-17, the stresses reach a maxi-

!,
L
3 E
} i mum value and then decrease with increasing strain. As the strain in- b
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creases without bound, the stress approaches zero asymptotically. Also,
the strain energies determined from the implied stress-strain curves in

Fig. 2-17 approach bui never reach the value U, i.e.,
1
C
) (2.12)

Hence, U is the maximum strain energy which can be associated with both
the mechanical property equation and its implied stress~strain curve.

The stress-strain curve implied frem the mechanical property equa-
tion is not necessarily representative of the actual stress-strain be-
havior of fiber-reinforced naterials in the range 0 < U < U, The schema-
tic implied stress-strain curve shown in Fig. 2-18 reaches a maximum at
the point (&, £). The portion of the curve to the left of (&, &) is
representative of actual stress-strain behavior. The implied stress-
strain behavior to the right of (5, &) where the stress decreases as the

strain increases has not been observed for fiber-reinforced composite

(o R

~
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‘:—*

€

FIGURE 2-18 REPRESENTATIVE IMPLLIED STRESS-STRAIN BEHAVIOR

CORRESPONDING TO JONES-NELSON EQUATION
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materials. Thus, the extended mechanical property versus strain energy
curve approach cannot be used as an extrapolation for strain energies as

large as U, but must be restricted to strain energies less than U where
U=1/28¢8 (U<T0) (2.13)

2.3.3 EXTENDED STRESS-STRAIN CURVE APPROACH

An extension of the mechanical property versus strain energy curve
by the use of the mechanical property equation is indirectly an exten-
sion of the actual stress-strain curve; i.e., the measured stress-strain
curve is extended past its defined range with an implied stress-strain
curve similar to the one in Fig., 2-18. However, for strain energies
greater than ﬁ, the stress-strain behavior must be extrapolated with some
procedure other than the extended mechanical pruperty versus strain ener-
gy curve approach. A reasonable extrapolation is to extend the measured
stress-strain curve directly, then convert the extrapolated stress-strain
data into extrapolated mechanical property versus strain energy data,
and finally develop an expression for the extrapolated mechanical property
data 1n terms of the strain energy. Several extensions of the stress-
strain data are discussed in this section. Linear extensions of the
stress-strain behavior with zero slope and with nonzero slope are dis-

cussed in Section 2.3.3.1 and 2.3.3.2, respectively.

2.3.3.1 Linear Stress-Strain Curve Extensions wilth Zero Slope

One linear extension of the defined stress-strain curve involves
estlmating the stress level at which the noniinear curve has zero slope.
The stress-strain curve in Fig. 2-19a is defined up to point P. The
trend of the defined stress-strain curve is followed, and the curve is

arbitrarily extended until the slope becomes zero at point Q. The :tress
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FIGURE 2-19 LINEAR STRESS~STRAIN CURVE EXTRAPOLATION WITH ZERQ SLOPE
BY ARBITRARY EXTENSION OF STRESS-STRAIN DATA
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and strain associated with point Q are o* and e*, respectively. For

strain energies less than e* (U < U* = 1/2 o*e*), the mechanical proper-

ty is expressed as a function of the strain energy with the Jones-Nelson

meclianical property expression in Eq. (2.3). The constants B and C are

determined from data at points P and . For strains greater than e*,

the stress-strain curve is considered to be linear with zero slope, and

the mechanical property and strain energy can be expressed as:

Mechanical Property = %1 £ > g% (2.14)
U= g*g/2 £ > e¥ (2.15)

Equations (2.14) and (2.15) are combined to obtain an expression for the

mechanical property as a function of U:

g% 2
Mechanical Property = 5 U> U (2.16)

Thus, when the stress-strain curve is extended horizontally from the

point of zero slope, the expression for the mechanical property for all

strain energies is:

Mechanical Property = ﬁ

The mechanical property versus strain energy curve in Fig. 2-19b

corresponding to Eq. (2.17) approaches the U-axis asymptotically so the

mechanical property is always positive. Hence, the herizontal stress-

strain curve extension is a definite improvement over the extended me-~
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chanical property curve which crosses the U-axis as a strain energy of U.
The wajor problem in extending the stress-strain curve horizontally
in the foregoing manner 1s the determination of the point Q in Fig. 2-19a.
The stress o* associated with point Q is determined by using engineering
judgment to estimate the stress level at which the extended stress-strain
curve becomes horizontal. Obviously, the exact stress level at which the
curve becomes horizontal is ambiguous and depends on how the curve is
extended. Many different choices of o* could be made. After g* is
chosen, a complicated trial and error procedure bhased on mathematical
constraints on the mechanical property expressions in Eq. (2.17) is used
to determine e*. The objective of this procedure is to determine the
strain (e*) at which the slope of the implied stress-strain curve is zero.
A value of e¢* is chosen, and then the constants B and C are determined
from data at point P and the point (o*, e*). Associated with each mechan-
jcal property equation is an implied stress-strain curve which is obtained

by substitution of the definitions of the mechanical property and strain

- ¢
%m A|—1 , B(gﬁ--—) ] (2.18)
0

For a specific value of strain, the corresponding stress is the root of

energy in Eq. (2.3) as

the nonlinear equation:

4\ C
o . A[1 . B(%LU_) ] 0 (2.19)
- 0

The slope of the implied stress-strain curve, obtained by differentiation

of Eq. (2.18) and given by
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(2.20)

I

(ol

is then evaluated at (o*, =*). Then, the strain «* is adjusted and the
constants B and C are recalculated until the slope in Eq. (2.20) is zero.
The numerical technique of interval halving described in the Appendix is
used in adjusting e* so that the search for the point of zero slope is
orderly and converges rapidly.

The procedure for finding point Q 1s ambiguous and quite complica-
ted, In addition, this horizontal extension of the stress-strain curve
may lead to a poor representation of the measured stress-strain data,

As a result, this method of extending the stress-strain curve horizon-
tally 1s used only when very little stress-strain data are available and
when the trend of the stress-strain data 1s such that any of the other
extensions to be discussed subsequently is not valid.

The mechanical property expression in Eq. (2.17) 1s also valid for
another linear stress-strain curve extension with zero slope which is
less complicated than the one just described. Moreover, this extension
is more representative of the measured stress-strain data for fiber
reinforced composite materials., This extrapolation involves adding a
1inear extensian with zero slope to the implied stress-strain curve which
is the best representation of the defined stress-strain data as shown in
Fig. 2-20a. The constants A, B, and C in Eq. (2.17) are chosen so that
the best approximztion of the mechanical property versus strain energy
data is obtained, Then, the implied stress-strain curve corresponding
to this approximation 1s used not only as a representation of the stress-
strain data but also as an extension of the stress-strain data from the

last data point to the point (o*, &*) in Fig. 2-20a. The point (g*, c*)
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N WITH BEST FIT EXTENSION OF STRESS-STRAIN DATA
i
L b 64
e
=
L T A bttt a1 4 AR D T M 0 ot b B

s e

]
4
‘§
3




w - - - EET PPN P e s e g vy 1y g .,
s , ¢ qrma ey e me e r
h 1 2 LS/ v L4 4 RAELNLGR LN HIEACR LISk R ittt £ b 10 0 PN U el it A 4 [0y { s s ?.mnrm
! /’%

is the point on the extended stress-strain curve at which a change in the !
extrapolated stress-strain behasior occurs. For this extrapolation, b
(u*, ¢*) in Fig. 2-20a corresponds to the point (3,&) in Fig. 2-18; i.e., |

the slope of the implied stress-strain curve in Fig. 2-20a is zero at

{o*, €*). The implied stress-strain curve is not a reasonable extension Q
of fiber-reinforcad composite material behavior for strains greater than
e¥y 50 the stress-strain curve is extended as the horizontal line o = o*

in Fig. 2-20a,

This method of extending the stress-strain curve with a straight

Tine of zero slope is reasonable and simple because the constants 4, B,

and C in £q. (2.17) ure determined by fitting only the defined data and

da

|
'..
Lﬁ because the point (o*, ¢*) 1s easfly determined. The point (o*, e*) is
fv' the point at wnich a in Eq. (2.20) 1s zero and is determired with an

interval halving tep”nique which 1s described in the Appendix.

- The mechanical property versus strain energy curve in Fig., 2-20b
corresponding vo the zero slope linear extension of the implied stress-

strain curve {s similar to the mechanical property versus strain energy

C a—— o
R

curve corresponding to tne horizontal extension in which o* {is estimated
from the trend of the data. Both mechanical property curves approach the

. U-axis asymptotically at large strain energies. However, the curve in

o il e e SN i i RS

! Fig. 2-20b is a good representation of the defined data, whereas the

L curve in Fig., 2-19 is not.

e e

o | The Tinear stress-strain curve extensions with zero slope discussed
. in this section are reasonable, but their use 1s Timited. The mechanical

e property approaches zero for large strain energies although it 1s never

zero nor negative., This behavior leads to problems when the mecharnical

property expression is used in stress analysis problems. The iteration

;
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procedure designed for use in the solution of stress analysis problems
diverges at large strain energies when the zero slope linear extension
of the stress-strain data is used. The limit of validity for the hori-
zontal extensions depends on the particular loading condition under ir-
vestigation. Thus, an extrapolation which can be used regardless of the
value of the strain energy is not obtained with the linear extensinn of

zero slope approaches.

2,3,3.2 Linear Stress-Strain Curve Extensions with Nonzero Slope

The stress-strain data can be extrapolated by using a linear exten-
sion with nonzero slope. This extension can be used for all strain ener-
yies and can be accomplished in several ways. One approach is to approx-
imate the stress-strain data (mechanical property - U data) with the Jones-
Nelson mechanical property expression in £q. (2.3) and to arbitrarily
specify the slope that the 1inear extension should have. The implied
stress-strain curve as shown in Fig. 2-21a is nitially used as the ex-
tension of the measured stress-strain data. When the slope of the im-
plied curve reaches the prescribed value, the stress-strain behavior is
represented by a straight line with the prescribed slope. This linear

stress-strain curve extension 1s expressed as:

*
0=(g?—: £t 0y € > e* (2.21)

*
where (EE?) is the prescribed slope and % is the stress at which the

Tinear extension intersects the stress axis. The constant 9, is easily
determined once the point (o*, e*) in Fig. 2-21a is found. The point

(o*, £*) at which the linear extension begins is calculated from the

slope expression in Eq. (2.20).
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f.

The constants A, B, and C in the mechanical property expression are
chosen so that a good representation of the measured stress-strain data
is obtained. This representation of the data is not altered by the addi-
tion of the linear extension. In addition,*the secant mechanical proper-

ty in Fig. 2-21b approaches the s]ope(%ﬁ—) of the linear extension for

large strain encrgies; i.e.,

*
do

Tim - B = (H}-) (2.22)
U »w

*
The slope (%‘%) is nonzero so the extrapolation procedure of using the

1inear extension with nonzero slope can be used for all strain energies
greater than U*, Actually, the linear extension with zero slope de-
scribed in*the preceding section is analogous to this linear extension
with(%?—) = 0.

Another approach very similar to the one just described is to use
the Jones-Nelson mechanical property expression to fit the stress-strain
behavior only over the defined range. At the last data point in Fig.
2-22a, the stress-strain behavior is extended as a straight line with
slope equal to the slope of the implied stress-strain curve at the last
data point. For continuity between the implied stress-strain curve and
the linear extension of the stress-strain behavior, the implied stress-
strain curve must pass through the 1ast measurcd data point. Thus, this
data point is used in calculating the constunts B and C in Eq. (2.3).
For this extrapolation appruach, the strain energies Umax and U* in Fig.
2-22b coincide. This approach of using a linear extension from the last
defined data point is somewhat questionable in that the material may be

represented as stiffer than it actually is at high strain energies.
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The mathematical technique of extrapolation is of course inexact.
The best of the linear extensions with nonzero slope cannot be determined
because comparison with measured stress-strain data is obviously not
available or else the extrapolation would not be necessary. However, a
choice between the *two approaches is best made on an individual material
basis., Both approaches should be used in the material model to predict
material behavior under multiaxial or uniaxial loading conditions for
which extrapolation is needed and for which measured data are avaiiable.
The approach which leads to the best correlation between predicted and
measured behavior should be used in the model for that particular mate-
rial. The various material models in Section 2.2 and 2.3 are collectively

referred to hereafter as the Jones~Nelson-Morgan nonlinear material model.

2.4 THE JNMDATA COMPUTER PROGRAM

The basic objective of the JNMDATA computer program is to automate
the use of the Jones-Nelson-Morgan nonlinear material model. In partic-
ular, the Janes-Nelson-Morgan material model parameters are calculated
from input measured stress-strain curve data points, the associated me-
chanical property versus strain energy curves are plotted, and the im-
plied stress-strain curves are plotted. In both types of plots, the
actual input data are also plotted so that a vivid comparison of the
material model approximation to the data is available.

The actual stress-strain curve data points in Fig. 2-23a are con-
verted in the JNMDATA program to mechanical property versus strain energy
data points and are plotted in the form of Fig. 2-23b. However, these
two types of data are tedious to plot by hand. Thus, the plotting fea-
ture of the program for these two types of information is quite attrac-

tive. Moreover, different Jones-Nelson-Morgan model fits to the data can
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be obtained as in Fig. 2~5 depending on the specific data points used tn

I ERRTTIT &

calculate the Jones-Nelson-Morgan parameters. The Jones-Nelson-Morgan
model parameters are calculated in the program after the data points to
be used are specified in the input data. Thus, the many model fits to
the data with many combinations of points can be calculated and plotted
as, for example, in Fig. 2-24. The best fit of all the possible fits is
ﬁ the one for wiich both the stress-strain data and the mechanical property

{4 versus strain energy data are simultaneously best approximated with the

A respective curves,

Generally, the problem is to obtain :he best fit to the material

" property data for a single material., That material is usually more com-
| plicated than an isotropic material and has different stress-strain be-

- havior at different temperatures. Thus, the process of obtaining these

¥ best fits for all properties at all temperatures involves a lot of work

# even with the JNMDATA program (and would be almost unthinkable without

such an automating tool). Many successive computer runs are necessary

e

—— merr

in order to achieve the best fits. The two specified data points for
each property at each temperature as in Figs. 2-4 and 2-5 are changed in
rach computer run along with the specified initial slope of the stress-
strain curve until both the mechanical property versus strain energy

y curves and the associated implied stress-strain curves fit the data by
B passing through them as in Fig. 2-24.

The basic steps in the JNMDATA computer program are shown schemati-
‘. cally in the simple flow chart of Fig. 2-25 and are described as:

" (1) Read input stress-strain curve data as individual pairs of

Ll
T

stress and corresponding strain values along with the identi-

fication of the points to be used in the model.

by
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FIGURE 2-25 JNMDATA COMPUTER PROGRAM FLOW CHART

(2) Calculate the Jones-Nelson-Morgan model parameters from the

data at the specified points.

(3) Punch material property cards for the Jones-Nelson-Morgan

model in the SAAS IIIM format for direct use.

e

(4) Plot all the mechanical property versus strain energy curves
for each mechanical property along with all the associated
input data.

R (6) Plot all the implied stress-strain curves for each mechanical

property approximation along with the associated input stress-

I | strain data.

l The program output in the form of plots is inspected to see if the model

)

E'ﬁ fits for the specified set of data points to be used are good fits of

g Z% the input data. 1f not, then the set of data points is revised based

§ } on experience and reinput to another run of the program. When one prop-
E Qf erty is satisfactorily fit, then that property can be omitted from sub-
o 5

% b 74

L NI NI A redis et e - - i g o peeee S0 e AL H T WP o i oo bl B e s

4

it

e A T il P i S e 3 S it " etk St e e 1 A, . AL B B MY e S i W 0 % et




‘“ BT R R RN Coeale s g Nt g s e g e, Bl .._..,‘,“7_7-.:‘ ”1

b
i
[

sequent computer runs. That is, for most materials, many properties are

approximated - some better and soconer than others. For example, a trans- %
i

versely isotropic material with different moduli in tension and compres-

sion under axisymmetric load has five independent mechanical properties

45

» and Err ) and five independent prop-

3 in tension (E. 4 E, » Vg s Vyq
3 t t t t t 45
g ~erties in compression (Erc, Ezc, vrec, vzec, and Erzc)' Each of these

properties is plotted as in Fig. 2-24 except for the Poisson's ratios

o ot .
. which are plotted as v versus strain energy, €tpransverse YETSUS Enoinats

b and o ] versus e as in Fig. 2-26. Plots of individual

- norma transverse
mechanical properties can be made as long as sufficient data are avail-

3 able, e.g., if v is desired, the corresponding direct modulus E

p rOt ry

1 must also be calculated and plotted. Thus, the satisfactorily approxi- .

i mated mechanical properties can be omitted from the subsequent computer

%ff runs so less time and money is expended. The computer charges are very
%,4 low per run (typically about $10 on the SMU COC CYBER 72), but the elapsed )
b ;
%jﬁ time to generate the plots is significant. At SMJ, the mecchanical prop- :
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erty versus strain energy curve and its associated stress-strain curve

~are plotted in five minutes. Thus, a full set of curves for a trans-

versely isotropic multimodulus material is plotted in sixty minutes (5

45 45 } ,

s E s B L E.,and E and 7 1/2 minutes
rz,’ r’ oz, rz.

Accordinyly, any needed changes

minutes each for Er R EZ
t t

each for v s V , and v
rOc

y V ).
ret 20t zec

are made more quickly (less elapsed calendar time) if only the affected
curves are replotted. This time constraint would be much Tess important
for an oscilliscope-type plotter than for SMU's pen on paper (Zeta) plot-
ter. Moreover, an interactive graphics terminal would be even more eftec-
tive because changes could be made, their effects observed, and new
changes made - all in rapid sequence.

In all calculations from input data, the potential data pitfalls
discussed in Section 2.2.2, Implementation of the Material Model, are
taken into account. That is, the program has "trapdoors" or "fixes" as
appropriate for each of the pitfalls mentioned., In fact, several of the
pitfalls were discovered during the development of the JNMDATA prugram.
One such pitfall, a "low" first stress-strain curve data point is seen
in Fig. 2-24 which is the with grain tensile stress-strain curve at 3000°F
for ATJ-S(WS) Graphite from Fig. 5 of the SoRI Graphite Data Book [2-8].
Similar low first points are seen in Figs. 3, 4, 6, 7, 8, 9, and 10 of
the SoRI Reference. We avoid these pitfalls by inputing an appropriate
initial slope which is higher than the slope to the 16w first point and
in fact higher than the slope to the second data point.

An interesting result from the JNMDATA program is that we now realize
that the actual initial slope of a stress-strain curve is usually higher
than the slope we graphically "pick off" the plotted stress-strain curve,

For example, the slope we would pick off the o, Vversus e, curve at 70°
C C
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(Fig. 12 in the SoRI Graphite Data Book [2-8]) is

stope = & = 201081 - 4 752610%ps1

"wT e ad ST

The stope from the properly fit mechanical property versus energy data is
3.6x106psi! Thus, our eyes deceive us when we attempt to visualize slope
in the form of secant modulus to a stress-strain curve. The JNMDATA pro-
v gram is useful in remedying this situation hecause of the ability to plot

the mechanical property (slope) directly.

o

EA% In summary, the JNMDATA computer program is an exceptionally useful
adjunct to the Jones-Nelson-Morgan nonlinear material model. The tedious
calculations for the model are auiomated and the associated mechanical
property versus strain energy curves and implied stress-strain curves

}5 are plotted. With this tool, rapid and highly visible material modeling

g can be performed.
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3. MODELING OF GRAPHITIC MATERIALS

The use of the Jones-Nelson and Jones-Nelson-Morgan nonlinear mate-
rial models for analysis of the behavior of graphitic materials is divid~
ed in three major parts. First, the Jones-Nelson model is applied to
analysis of the Southern Research Institute thermal stress disk test.
There, the model 1s used to predict the disk deformations which are then
compared with the measured deformations. Second, the Jones-Nelson-Morgan
model is applied to analysis of a nosetip subjected to the Air Force
Flight Dynamics Laboratory 50 MW test environment. Finally, the appii-
cation of Jones-Nelson and Jones-Nelson-Morgan modeling tc graphitic
materials is summarized.

3.1 THERMAL STRESS DISK TEST CORRELATION
3.1.1 INTRODUCTION

ATJ-S graphite is a transversely isotropic granular composite mate-

rial which 1s made in cylindrical billet form as shown in Fig. 3-1 along

Z
PLANE OF ISOTROPY
FIGURE 3-1 GRAPHITE BILLET COORDINATE SYSTEM
78
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with the coordinates used in this section. The flake-like graphite parti-

IR

cles are aligned in planes of isotropy during billet compaction in the z-

direction. The resulting material stress-strain behavior is highly tem-

coT

! perature-dependent as dispiayed for the r-u plane in Fig. 3-2. There,
% the hoxes are actual experimental data reported by Starrett and Pears
g [3-1] and the curves are the Jones-Nelson nonlinear material model [3-2
thru 3-6] fits to the data. In Fig. 3-2, the tension behavior becomes
N stiffer as the temperature approaches 2000°F and even stiffer at 3000°F.
However, the stress-strain curve at 3000°F is slightly lower for high
strains than at 2000°F, The compression behavior for the r-9 plane mono-
tonically becomes more flexible as the temperature increases from 3000°F
i to 5000°F, Moreover, at every temperature, the stress-strain behavior is
E different under tension loading than under compression loading.

The objective of this section is to extend the qualification of the
Jones-Nelson nonlinear material model [3-2 thru 3-6] from mechanical load-
ing problems for hcmogeneous bodies to thermal loading problems for non-

homogeneous bodies. The previous level of qualification of the model is

—
e .

to uniaxial off-axis mechanical loading problems [3-3 and 3-6] and to
biaxial mechanical loading problems in principal material directions for
ATJ-S graphite [3-2 and 3-6]. The multimodulus character (different modu-
‘1 11 or stiffnesses in tension than in compression) is treated by Jones and
ﬁ. Nelson [3-5 and 3-6], but nonhomogeneous bodies due to temperature-depend-
ﬁ ent behavior have not been addressed with this model. Part of the moti-
vation for this extension of the model is the use of ATJ-S graphite in
Iy reentry vehicle nosetips where substantial temperature gradients exist.

These temperature gradients lead to thermal stresses for which the asso-

PN
—t

ciated nonlincar deformations must be predicted in order to rationally
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and accurately design nosetips and other structural elements,

The simplest vehicle to accomplish the objective of qualifying the
model for thermal lcading problems is the Southern Research Institute
(SoRI) thermal stress disk test [3-7]. In this test, an annular disk is
rapidly heated at its outer diameter resulting in an outside to inside
diameter temperature gradient. The outside portion of the disk tends to
expand more than the inside so thermal stresses are generated. In the
circumferential direction, the stresses are compressive near the outer
diameter and tensile near the inner diameter. The level of both the com-
pressive and tensile stresses is important because the original purpose
of the SoRl thermal stress disk test was to quickly and easily fail disks
of many different graphites so their relative merits can be assessed.

The failures almost invariably occur in the region of tensile stress.
Accordingly, the compressive stresses must be high enough to generate
(self-equilibrating) tensile stresses which will cause failure. The ten-
sile stresses are too low for the simple flat annular disk and the rim

disk in Fig. 3-3. That 1s, not enough disk material 1s in compression

I
///A;///@ 7

FLAT DISK RIM DISK
SLANTED WEDGE DISK WEDGE DISK

FIGURE 3-3 ANNULAR DISK CROSS SECTIONS
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to force high enough tensile stresses for fracture to occur. However,
the disks with a wedge-shaped cross section in Fig. 3-3 do have high

enough tensile stresses to cause fracture. The slanted wedge disk has

an inclined inner diameter surface to provide a well-defined target for
the laser diameter measuring device which will be discussed later. The
inner diameter of the wedge disk in Fig. 3-3 is, however, sufficiently i
well-defined to provide a gopd target. Thus, the simple wedge disk is

X used in the theoretical-experimental correlation studies.

This section is divided in two major subsections: (1) measurement
of temperatures and deformations and (2) predicted deformations, stresses,
j; and strains. In the measurements section (Section 3.1.2), the overall
ﬁi test setup is described along with the character of the individual mea=

‘ surements which are made. In the predictions section (Section 3.1.3),

the Jones-Nelson nonlinear material model and its extensions for the pre-

k sent problem are described along with the modeling of ATJ-S graphite.

Moreover, the predicted diameter changes are compared with the measured

%

iel values. Finally, the stress state in the disk is displayed and discussed.
3.1.2 MEASUREMENTS OF TEMPERATURES AND DEFQRMATIQNS

3.1.2.1 Overall Test Setup

The SoRI thermal stress disk test [3-7] is basically a tension test
in which the loads are induced solely by thermal deformation. Radial
temperature gradients are generated in the disk by induction heating as
shown in Fig. 3-4. The power from the induction heating coils is con-
centrated in the outer periphery of the disk (about 85% in the outer .10
inch) while the inside remains relatively cool. Many factors enter in

the proper matching of the power supply to the test specimen, but the

-~T

-—
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major considerations include coil design, specimen material, specimen
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FIGURE 3-4 SCHEMATIC OF SoRI THERMAL STRESS DISK TEST
design, and specimen-to-coil proximity. The disk is made with its dia-
meter in the graphite plane of isotropy shown in Fig. 3-1. The disk is
not fastened to the test fixture, but is positioned horizontally as in
Fig. 3-4 and rests on a smooth surface.

Several measurements are made during a single test run for an indi-
vidual specimen. These measurements are (1) a temperature measurement
at the inner diameter, (2) a temperature measurement at a point near the
outer diameter, and (3) measurements of the diametral deformations along
two orthogonal axes of the internal hole. Each of these measurements is
discussed in the following subsections,

3.1.2.2 Inner Diameter Temperature Measurement

The temperature at the disk inner diameter is measured with a thermo-
couple probe. The fine thermocouple wires (10 x 10'3 inches) are not
welded together but instead are spring pressed on the disk so the graphite

makes the junction. This procedure 1s used to avoid a weld bead which
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invariably leads to distortion of the parent material thermal characteris-
tics and to errors of several hundred degrees at the heating rates used
in this test.

The thermocouple probe is calibrated by obtaining a 'steady state
reading between 1200°F and 2000°F for a graphite specimen and comparing
that reading with the reading from an optical pyrometer which is corrected
for emittance. The error due to the graphite junction is on the order of
70°F at 1500°F. Then, typical rapid heating runs are made and the thermo-
couple probe reading is compared to a micro-optical reading which is cal-
ibrated to a hand-held optical pyrometer. Thus, the basic calibration is
for a range from the upper bound at the steady state reference to the
lower bound at the calibration to the hand optical pyrometer through the
micro-optical recorder. The temperature at the inside diameter is known
to within 5°F on any run.

3.1.2.3 Quter Diameter Temperature Measurement

The temperature at the disk outer diameter is measured with a micro-
optical recorder as a function of time. Thus, the temperature reading is
subject to the errors normally associated with optically measuring the
temperature of a gray body plus the errors peculiar to the particular
specimen and to this system. The latter errors include those peculiar to
transient measurements plus those resulting from the existence of a 200°F
temperature gradient over the field of view of the recorder. That is,
the recorder is focused on a spot as in Fig. 3-4 on the top surface of
the disk since the outer diameter surface is covered by the induction
coils. Since the spot is necessarily of finite width (about 45 x 10'3
inches) and is located in a region of high radial thermal gradient (about

4°F per 10'3 inch), 1inaccuracies in temperature measurement inevitably
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occur,

Various calibration efforts for this measurement are discussed by
Pears and Starrett [3-7]. They conclude that the micro-optical recorder
can be used to measure temperatures up to about 5500°F on the disk outer
surface and could be extended to even higher temperatures. The inherent
accuracy of the readings is about + 50°F up to 5000°F. However, the
recorder slewing speed is approximately the same as the temperature rise
in many tests so the final outer diameter temperature measurements are
often ignored.

3.1.2.4 Diametral Deformation Measurements

The changes in the disk inner diameter are measured along x- and
y-axes in Fig. 3-4 by use of 2 laser tracking device. The laser beams
are focused and located with a complex prism system described by Pears
and Starrett [3-7]. Basically, the two-orthogonal diameter change mea-
surements are different because the electronic circuitry is slightly dif-
ferent (each corresponding component of the two circuits is different
within the manufacturers' tolerances). The output of the x- and y-mea-
surements 1s recorded on the same recorder with offset initial points.
These initial points are located by use of a tick mark placed on the
recorder when the induction coils are turned on. The tick mark is not,
however, recorded precisely when the coils are turned on. Pears and
Starrett [3-77] conclude that the maximum diameter change error for a sin-
gle experiment 1s 72 x 10"6 inches plus the timer error which in these
correlations is eliminated by adjustment of the zero time mark,.

3.1.2.5 Summary

The inner diameter temperature measurements are used to determine

the approximate temperature distribution in the disk. That is, the the-
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oretical temperature distributions at various times are shifted in time

until the measured time when the predicted inner diameter temperature

@ agrees with the measured inner diameter temperature. The outer diameter

e e i L Lahe e baadna J

temperature is recorded at such a speed that the results are not meaning-
e ful. Otherwise, they could be used to further adjust the temperature
ke distributions in the manner discussed for the inner diameter temperature
‘ measurements. The diametral deformation measurements are the primary
measurements and are half of the basis for comparison of measured and
predicted deformations.

3.1.3 PREDICTED DEFORMATIONS, STRESSES, AND STRAINS

The predicted deformations, stresses, and strains of the wedge-

LATR ek 2 iatb b RN it o -

shaped annular disk are obtained with the Jones-Nelson nonlinear material

model which is described in the next subsection. Then, the Jones-Nelson
P model of ATJ-S graphite 1s displayed and discussed. Next, the predicted
?“_ inner diameter changes are compared with measured values. Finally, the

P stresses and strains in the disk are described.

' i 3.1.3.1 Jones-Nelson Nonlinear Material Model
N
E' The Jones-Nelson nonlinear material model is described in References :
i" 3-2 thru 3-6. Here, we merely reiterate the details essential to our use ]
f‘ of the model. Basically, the various secant moduli and Poisson's ratios, :
é#i all of which are called mechanical properties, in the orthotropic stress- 3
& 1
F& strain relations are approximated with ,
- C @
i a
f§ Mechanical Property1 = A1 [} - B1(U/U ) 1:] (3.1) y
P 04 1
Lt i
i‘i where the A1 are the elastic values of the 1th mechanical property, the j
?iﬁ 81 and C1 are related to the initial curvature and initial change of cur- §
[{ 2
i E vature, respectively, of the stress-strain curve [3-3] (slightly different
N 5
- 30
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interpretations exist for Poisson's ratios), and U is the strain energy

density of an equivalent elastic system at each stage of nonlinear defor-

mation:

U= (Ur&r *o,e, togE, b Tr‘er‘z)/z (3.2)

The strain energy density U in Eq. (3.1) is normalized by U0 so that
i

81 and C1 are dimensionless.
The Jones-Nelson model is actually much more complicated than Eq.

(3.1). For example, in states of mixed tension and compression, the

strain energy could be the total strain energy; the tension strain energy,

Uy for some properties and the compression strain energy, Uc. for other
properties, or some weighted combination of the tension energy and the

compression energy. The strain energy density used in this section is

e (12 2
Uw (Ut + UC)/U (3.3)
where Uw is the weighted strain energy. Moreover, all coefficients in

Eq. (3.1) have different values in tension than in compression.

combination of mechanical properties is determined in an iteration pro-

cedure wherein the stresses in principal stress directions are a key fac-

tor [3.5],
3.1.3.2 ATJ-S Graphite Mechanical Properties

The nonlinear stress-strain behavior in the plane of isotropy is

depicted in Fig. 3-2. Since the disk is stressed primarily in the r«0

plane, we are concerned mainly with the properties in that plane. How-

ever, many other properties are necessary to perform an analysis. The

values of Ai’ B1, and C1 are given as a function of temperature for all

pertinent mechanical prugerties in Table 3-1 (the value of U0 is 1 psi
i

for all properties). Also, the coefficients of thermal expansion are
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: TABLE 3-1 !
b JONES-NELSON NONLINEAR MATERIAL MODEL PARAMETERS |
: FOR ATJ-S(WS) GRAPHITE AS A FUNCTION OF TEMPERATURE 1
g
[ MECHANICAL
: e, 2.00x10%psi 182 337
P €, 1.50x10%psi 226 322
: t
E; g, 110 0. 1.
|
ﬁ; V2o, .090 0. 1.
F 45 6
g o Er, 1.55x10%ps1 200 .330 W
L E, 3.0010%s1 | .47 125 f
::-\:i C .;
i E, 2.10x10%s1 | .481 134 i
4 Cc E
by 1
o vrec .065 0. 1 .
} H Vzec .065 0. 1. i
' £4S 2.40x10%ps1 470 130 3
X ra i
L el 6 {
" . 7.00%10°psT ~0651 7583 .
P
f E 1.60x10%st | 165 .336
A '
3 e, 130 0. 1. ;
£ £4S 1.83x108psi 120 460 3
f 0 rz +83x107ps ' : |
L 2000°F t 6
e E, 3.00x105ps1 333 .203
- c
S E 1.90x108psi 281 .221
| e
; f;- vrec .082 0. 1.
| ¥ v .082 0. 1. !
P 28 i
= g4S 2.84x105ps4 350 .210 %
£k rz F
i) ¢
& |
E 88 4
3 4
b
N ;
- ]
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TABLE 3-1, continued

TemperaTURE | MECHARICRL A B c
r, 2.10x10%ps 0510 660
£, 1.45x10%ps1 0254 921
vrat .140 0. 1.
vzet 116 Q. 1.
oo Eﬁit 2.11x10:psi 0380 790
£y 3.60210%ps1 350 .198
£y 1.80x10%ps1 194 291
ro_ .090 0. 1.
vzec .090 0. 1.
Eﬁgc 3.27x10%ps 310 240
e 2 A0x100psT | 277 i
£ 1.40x10%ps 133 395
rs, 145 0. 1.
vzet- .120 0. 1.
s0F Eﬁit 2.04x10:ps1 158 388
F.‘,.c 3.60x10 psi 316 .220
;. 2.00x10%ps 158 347
o, 0950 0. 1.
vzec 0950 0. 1.
Eﬁic 3.270%pst | 270 290
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TABLE 3-1, concluded

MECHANICAL
TEMPERATURE ECHANICY A B ¢
E, 2.70x105%ps1 282 .237
t
€, 1.40x10%ps 107 477
t
g, .150 0. 1.
Vo, 125 0. 1.
45 6
E 1.97x10%s1 ,200 .360
4000°F TZy 6
E, 2.80x105ps1 .323 212
c
E, 1.80x10%psi .153 .377
C
vrec 100 0. 1.
V2o, .100 0. 1.
sﬁi 3.06x10%s1 .270 .300
S . 6
Er 2.50x107psi .300 .250
£
E, 1.30x10%ps1 100 .500
£
e, 170 0. 1.
Va0, .150 0. .
. Eﬁg 1.50x10%ps1 200 .400
4500°F t 6
E, 2.40x10%ps1 275 ,250
[
E, 1.80x10%s1 | .24 267
Cc
vrec .150 0. 1.
vzec ']50 OI ] L ]
Er 2.40x105ps1 .300 .270
C
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%; given in Table 3-2. Both sets of data are obtained from Ref. 3-1. The
éé direct moduli Er and EZ are shown in stress-strain curve form in Ref.

'? 3-1 along with tables of (constant) Poisson's ratios and coefficients of
: thermal expansion. The' values for Eig are obtained by observing the rela- ‘
? tion between the coefficients in Eq. (3.1) for Eﬁi, E.» and E, measured
éf for ATJ-S graphite at room temperature by Jortner [3-8] and applying that
o relation to the measured data for En and EZ at elevated temperatures.

ii : The boxes in Fig. 3-2 are actual data from Ref. 3-1, and the curves
ﬁﬁ . are Jones-Nelson curves through the data. The curves are obtained by

i{ use of the JNMDATA computer program in which all the stress-strain curve
gﬁ data are input along with instructions for which points to use in the

g% calculation of A1, B1. and Ci' Obviously, very good fits to the data can
;? be generated with the JNMDATA computer program. Moreover, all stress-
gii TABLE 3-2

%iﬁ COEFFICIENTS OF THERMAL EXPANSION FOR ATJ~S(WS) GRAPHITE

?;} AS A FUNCTION OF TEMPERATURE

b

L TEMPERATURE ap az

3 Of 1075 per °F | 1079 per OF

)

X 70 11200 1720

i 2000 1915 2471

3 3000 .2194 2727

- 3500 2315 2864

§'§ 4000 2414 2997

N 4500 .2547 .3174

: “
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strain curves and mechanical property versus strain energy curves can be
plotted easily.

The data in Tables 3-1 and 3-2 are input to a version of the SAAS
II1 finite clement stress analysis computer program |3-9] which has been
modified to use the Jones-Nelson material model. In the use of the new
version called SAAS IIIM, stress-strain data at temperatures between the
values Tisted in Tables 3-1 and 3-2 must be generated. If the Jones-
Nelson parameters A1, B1, and Ci for T = 70°F and T = 2000°F are inter-
polated for a specific temperature, say 1403°F which is the inner dia-
meter temperature at t = 1.9 seconds, then the stress-strain curve la-
beled "PARAMETER INTERPOLATION FOR 1403°F" in Fig. 3-5 results. However,
this stress-strain curve doesn't 1ie between the two curves from which
it is interpolated. On the other hand, if the nonlinear mechanical prop-
erties calculated from Eq. (3.1) for T = 70°F and T = 2000°F are inter-
polated (i.e., Ert at 70°F and at 2000°F). then the curve labeled "PROP-
ERTY INTERPOLATION" in Fig. 3-5 results, Finally, if the points at the

same strain energy on the two stress-strain curves are interpolated, then

the curve labeled "STRESS-STRAIN CURVE INTERPOLATION" in Fig. 3~5 results.

Obviously, the latter two approaches coincide for all practical purposes.
The property interpolation approach 1s used in SAAS IIIM because it is
simpler to program and cheaper to execute than the stress-strain curve
interpalation approach.

3.1.3.3 Inner Diameter Change Predictions

Times Tate in the test run are selected for correlation of predicted
and measured results. Then, the disk should be deforming nonlinearly,
i.e., the stresses should be inelastic. The power in the induction coils

does not reach the nominal levels used to predict the temperature distri-
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butions at various times with the MOATS heat transfer computer program
[3-10] (in which convection is not considered). Hence, the temperature
gradients are lower at all times than predicted. We account for this
discrepancy by assuming that a predicted temperature aistribution at one
time with a specific inner diameter temperature is the actuai temperature
distribution at another time when the predicted inner diameter temperature
is the same as the measured temperature. The validity of this time-power
shift hypothesis would be even more plausible if we could also match pre-
dicted and measured outer diameter temperatures. However, the outer dia-
meter temperature measurement with e micro-optical recorder is not suffi-
ciently accurate to be relied upon because the temperature rise is too
fast for the recording device speed used for all measurements. Thus, we
depend on the inner diameter temperature correlation to determine the
times at which the predicted temperature distributions are applicable.
These times, t = 1.2, 1.55, and 1.9 seconds, correspond to measured inner
diameter temperatures of 889°F, 1135°F, and 1410°F whereas the predicted
temperatures are 886°F, 1130"F, and 1402°F, respectively. Revision of
these times to force the predicted temperatures to correspond more close-
1y to the measured temperatures is regarded as unnecessary. The actual
calibrated inner diameter temperatures are plotted as a function of time
in Fig. 3-6. There, dots are used to denote the times and correspond-
ing temperatures at which the deformations, stresses, and strain are pre-
dicted. The predicted deformations should be slightly too low because the
temperature gradient increases with time and the predictad temperatures
are jower than the measured temperatures.

The measured inner diameter changes are shown in Fig., 3-7 for two

orthogonal directions as a function of time. The change cf diameter in
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the two directions is measured with two electronically equivalent but

not identical circuits. The measurement in the y-direction is much less

4

3 noisy than in the x-direction. However, both measurements are suffi-

% ciently accurate for the present correlation effort without calibration, ?
§ The difference in measured deformations in the x- and y-directions can 'ﬂ
§ also be attributed to the disk hole not remaining perfectly circular. Of "ﬁ
% course, the hole should remain circular since the material 1s nominally j
:5 isotropic in the plane of the hole and the temperature distribution is 4
§ axisymmetric about the z-axis perpendicular to the plane of the disk. 5;
; However, the material does not have perfect transverse isotropy nor is i
g the temperature distribution perfectly axisymmetric. :
% The predicted inner diameter changes are plotted in Fig. 3-7 for ’

t=1.2, 1.55, and 1.9 seconds. These predictions are obtained with the
: SAAS ITIM finite element computer program for which the disk finite ele-
A

;i ment mesh is shown in Fig. 3-8, The SAAS IIIM program is the SAAS III

—
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program [3-9] with the Jones-Nelson nonlinear material model incorporated.

As is obvious from Fig. 3-7, the predicted deformations are quite close

R, |
|
|

to the measured values. The actual numerical values are listed in Table
3-3 wherein we observe that the predicted deformations are within 2.2 to

: 3.3% of the average of the two measured diameter changes.

S TABLE 3-3
i MEASURED AND PREDICTED INNER DIAMETER CHANGES

i o) guiac

: - 1.D. TEMPERATURE CHANGE IN INTERNAL DIAMETER, inches

3 IME {

t seconds MEASURED

' MEASURED | . USED IN PREDICTED | % ERROR )

8 CALCULATION | X~CHANNEL | Y~CHANNEL | AVERAGE f
' 1.2 | 888 886 ,00230 | 00250 | .00240 | .00232 | 3.3

; 1.5 | 136 1130 .00300 | .00320 | .00310 | .00303 | 2.2

p

n 1.9 | o0 1402 .00365 | .00390 | .00378 | .00367 | 2.9

L ,
N ‘%
\

i ,
i

3.1.3.4 Stress_and Strain Predictions

Xk . .ttt

The predicted stresses 9, and o, are shown along with the correspond-

ing temperature distribution at t = 1.9 seconds in Fig. 3-9. Although we

§ expect g to predominate, substantial values of Uy exist., These radial

: - stresses are always tensile and can be explained with the aid of the free
body diagrams in Fig. 3-10., There, the view is down the z-axis of the
disk perpendicular to the plane of the disk. The shear stress Trg is zero
by virtue of axial symmetry of the loading and geometry. The free bodies
extend through the (variable) thickness of the disk so the shearing stress

:

k .
P AN
‘

*

z is zero. In the body next to the outer diameter, the circumferential
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stress 1s compressive. Thus, the radial stress must be tensile to achieve

equilibrium, i.e., to balance the component of o_ in the negative r-direc-

0
tion. At the radial location where the circumferential stress is zero,
the radial stress is also zero. Of course, the radial stress is zero on
the unloaded inner and outer surfaces. Despite these surfaces of zero
radial stress, o, can have substantial values elsewhere because of the
small disk inner diameter and the high circumferential stressas to which
o, is inversely proportional and proportional, respectively.

The stress-strain behavior becomes more and more nonlinear when the
test time increases as we see from the increasing disparity between elas-
tic and nonlinear stresses in Table 3-4, The disparity increases to

nearly a factor of two at t = 1.9 seconds. This disparity is depicted

TABLE 3-4
PREDICTED CIRCUMFERENTIAL STRESSES AND STRAINS

060P51 Be
TIME ELEMENT | TEMPERATURE A | ae
seconds oF ELASTIC | NONLINEAR | ELASTIC [NONLINEAR
1(1.0.) 887 6,295 4,77 .00313 | .00336 | -25% | +7%
]-2
82(0.D.) 2,890 -5,339 | <4,515 | -.00252 | -.00248 | -16% | -2%
: 1(1.0.) 1,10 8,233 5,671 ,00408 | .00829 | -31% | +5%
.55
82(0.D.) 3,457 -7,442 | -5,501 | -.00308 | -.00307 | -26% | 0%
- 1(1.0.) 1,403 10,608 6,380 .00527 | .00500 | -40% | -5%
" lez(0.m.) | 4,087 -9,806 | -5,0711 | -.00360 | -.00379 | ~48% | +5%

100

"'bk“ & :.\:‘( ".'.‘.-q:ml ,.,,.-‘w P ‘ AW [V T
R T IR S T TR

[WH L L PR - b . ‘o .
i Madilaibhuioaciiig Kbl bbbl aicaals bnitia b & it it w31 B s et ety

A mie —Mmg‘s.-nn&j

O LS

pRT

PR R,

LG wea

e tmeil AT e e RS e b et T Rt e a T i ant



SR R R S O I

I

T T .

LT TR T

—_— - .. N
= —

R o T N i G-t I T L — s T
e L T D e T o e L A P T

RS S 1. o RIS Sy AT TR
Edal: i - ST L -

graphically for circumferential stresses and strains in Fig. 3-11.
There, the elastic stresses are too high by nearly a factor of two.
However, the elastic strains are not as different from the nonlinear
strains as the corresponding stresses. Moreover, the elastic strains
are not always higher than the nonlinear strains. In fact, the non-
linear inner diameter strain decreases by only 5% and the nonlinear outer
diameter strain increases by about 5% from the respective elastic strains!
Thus, a failure criterion based on elastic strains is much more accurate
than a failure criterion based on elastic stresses. However, even an
elastic strain failure criterfon is inaccurate because of the 5% error
in predicting elastic strains and the fact that the error is sometimes
positive and sometimes negative,

The stresses, strains and displacements converge to the final results

in 5, 5, and 6 iterations at t = 1.2, 1,55, and 1.9 seconds, respectively.

2 =2p
(10,608psi, .00527)

o iy (-9,806p1l, ~00360)
% .l %l
109ps 103psi

ok (6,380ps1, 005000 o]

(-5,071psi, -00379)
4} -4
ELEMENT 1 AT ID ELEMENT 82 AT OD
2 T =1403°F -2 T = 4057°F
o [ ) [ | I | o { [ [ 1 S |
0 .002 .004 006 .008 .00 0 -002 =004 =006 =008 =010

€g €g
FIGURE 3-11 DEGREE OF NONLINEAR STRESS~STRAIN BEHAVIOR
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Thus, the rapidity of convergence depends on the degree of nonlinearity
i which increases with test time. The inner diameter stresses at t = 1.9
E; seconds in Table 3-5 oscillate with decreasing amplitude about the final
N results, However, the inner diameter strains and displacements monoton-
ically decrease to the final values.

A The energies in the elastic state are well above the energies in the

actual nonlinear states. Thus, the energies in the iteration procedure
must decrease as the number of iterations increases. Conceivably, the

elastic energy could be so much higher than the actual nonlinear energy

that the Jones-Nelson model would not converge because of unfavorable
numerical characteristics of the various stress-strain curves (first ris-
ing, then falling as for 3000°F in tension in Fig. 3-2). However, that
unfortunate numerical be-wavicr is not found in this problem., If such a

difficulty arises, 1t can be remedied by use of the extended stress-strain ]

TABLE 3-5
PREDICTED CIRCUMFERENTIAL STRESSES AND STRAINS AT I.D. ELEMENT )
AND RADIAL DISPLACEMENTS AT I.D. NODAL POINT 2 AT t = 1.9 seconds

Ao i R

¥
i

]

'|

L,

I

s i
3 ITERATION dgepsi €q U.sinches )
K 1 10,608 | .00527 | .001903

¥ 2 5,722 | .00s03 | .o01841

¥ 3 6,543 | .00500 .001834 ;
§

b 4 6,345 | .00500 ,001834 ﬂ
; 5 6,390 | .00500 .001833

g 6 6,380 | .00500 ,001833 *
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curve approaches due to Jones and Morgan [3-11].

3.1.4 SUMMARY

The Jones=Nelson nonlinear material model {is extended from mechani-

é
!
]
i
)

cal loading problems for homoyeneous bodies to thermal Toading problems

? for nonhomogeneous bodies. The nonhomogeneity results from a temperature

4
d
A
i
b

gradient over a body with temperature-dependent mechanical properties,

Moreover, the model is shown to be valid for materials which have highly

# nonlinear stress-strain behavior which is different under tension load-

g ing than under compression loading.
The vehicle for the verification of the model extension is the SoRl

hi thermal stress disk test. The inner diameter changes of this annular
?g wedge-shaped disk made of ATJ-S graphite are predicted with the model to i
FL within about 3%, The mechanical properties of ATJ-S graphite are a

Fg. strong function of temperature and stress level. Thus, the present re- )

sults are a severe test of the model and are an important step in the

e e
Sl -l

qualification of the model for general use in nonlinear material defor-

[ m—— e
e A I
e

mation problems.

3.2 50 MW NOSETIP STRESS ANALYSIS

3.2.1 INTRODUCTION
The stress and strain field 1s analyzed in an ATJ-S graphite nosetip

¢ subjected to the Air Force Flight Dynamics Laboratory 50 MW arc jet facil-

Tz,

S ity environment. The nosetip design is supposedly representative of

stress states that exist during reentry. Moreover, the nosetip model

T T P T T o e Ty R s AW T e gyt - 7, . ¥ e e oo

is supposed to fail during the test. The specific test condition analyzed

" is 50 MW Run R41-016 at t = 1.60 seconds. The nosetip is of the shell

YRR S

type (as opposed to the plug type) and has a .75" nose radius, 1" over-

E hang, 10° half cone angle, and .15" wall thickness as shown in Fig. 3-12. 1
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The temperature distribution at t = 1,60 seconds displayed in Fig. 3~I3
was calculated with the ASTHMA, ARGEIBL, and BLIMP computer programs

at Aerotherm Division of Acurex Corporation and provided to Southern
Methodist University by AFML. The corresponding surface pressure dis-
tribution in Fig. 3-14 was also provided to SMU.

The stresses and strains predicted with the Jones-Nelson-Morgan
nonlinear material model are displayed in contour plot form in Section
3.2.2 along with the specific ATJ-S graphite mechanical properties which
are used. These stresses and strains are compared in Section 3.2.3 with
those predicted by Baker, Jackson, Starrett, and Budde [3-12] who used
the DOASIS computer program [3-13]. The basic efforts of this study are

summarized in Section 3.2.4.

3.2,2 JONES-NELSON-MORGAN NONLINEAR MATERIAL MODEL PREDICTIONS

The Jones-Nelson-Morgan model predictions are based on the mechani-
cal properties of ATJ-S graphite given in Section 3.2,2.1. Then, 1in
Section 3.2.2.2, the predicted elastic stresses and strains are displayed.

Finally, the predicted nonlinear stresses and strains are presented in
Section 3.2.2.3.

3.2.2.1 ATJ-S Graphite Mechanical Properties

The basic source of information for ATJ-S graphite mechanical prop-
erties {s the SoRI ATJ-S data book [3-1]. However, those data are mod-
eled with the Jones-Nelson-Morgan nonlinear material model instead of
with the Jones-Nelson nonlinear material model as in the Thermal Stress
Disk Test Correlation 1n Section 3.1. The reason for this new approach
1s that the stresses and consequently the energy in the nosetip is too

high for convergence of the basic Jones-Nelson model. That is, the ener-
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gies are high enough that the hump of the stress-strain curve in Fig.
2-18 is passed so the model is unstable. Accordingly, we must use a
Jones-Nelson-Morgan model with an extended stress-strain curve that
doesn't have a hump and always has positive slope as in Fig. 2-22. A
typical stress-strain curve and mechanical property versus energy curve
are shown along with experimental data from the SoRI ATJ-S data book
[3-1] in Fig. 3«15 and 3-16 for behavior in the radial direction (crt
versus Ert and Ert versus U) at 70°F under tension loading. The Jones-
Nelson-Morgan nonlinear material model parameters are given for all
available temperatures in Table 3-6. The associated coefficients of
thermal expansion are given in Table 3-7.

The implied slope version of the Jones-Nelson-Morgan model seems to
be the most appropriate of those available although the Jones-Nelson-
Crose model might be equally applicable., In the implied slope model,
the slope at the last data point 1s arbitrarily used as the subsequent
slope of the stress-strain curve. In contrast, the subsequent slope of
the Jones-Nelson-Crose model is determined by fitting a straight line
through the stress and strain points corresponding to 5% probability of
failure and 50% probability of failure. Not having suitable failure data
to work with, we chose the simpler Jones-Nelson-Morgan implied slope mod-
el. However, the available data are insufficient to apply the implied
slope model without approximation. Specifically, the data are available
for Er and Ez in tension and compression for all temperatures but not
for Eﬁg! Thus, we fit the implied slope model to Er and Ez and observe
the corresponding values of A, B, C, Uo' U*, E*, and 9 for each case.

Then, we estimate corresponding values for Eﬁg based on the relation of

Eig to Er and Ez at room temperature for Jortner's data [3-8]. Simulta-
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TABLE 3-6 :
JONES-NELSON-MORGAN NONLINEAR MATERIAL MODEL PARAMETERS ;
i
FOR ATJ-S(WS) GRAPHITE AS A FUNCTION OF TEMPERATURE ;
- MECHANI CAL | e | o, !
b TEMPERATURE | propeRTY A B C | psi |10%si] psi |
[
E& £, 2.00x10%s1 | .182 | .337]"11.8] .708| 2050
x t "
i| E, 1.50x10%s1| 226 | .322] 13,1 .354 | 2230
3 t
: o, 110 0. 1. 0. | o. | o.
gi vzet .090 0. T, 0. 0. 0.
o 45 6
: E 1.55x10%s1 | .200 | .330] 12.1{ .480] 1950
b 70°F s
il E, 3.0010%s1 | .477 | .125] 37.3] .336 | 4100
! -
) E, 2.1000%si | .451 | .134{ 30.3{.304| 3010
£ c
5 Vro, 065 0. . o. | o. | 0. |
el v, 065 oo 1. o o | o :
B 6 ,
4 g48 2.4010%s1 | 470 | .130]29.7].310] 3230 ;
. rz, ) P ' ‘ A &
[ 1
i . |
# E, 2.00x10%s1 | .0651| .583|14.1].825 | 2550 i
E, 1.60x10%s1 | 165 | .336|12.3|.645 | 1710 ;
t
e, 130 0. 1. 0. {0 | o g
Vo 107 0. 1. 0. | o | o ;
g4d 1.83x10%s1 | 120 | .460|11.6 |.660] 2210 ;
2000°F rZy i
. 6 ,
E, 3.00x10%s1 ! .333 | .203|37.1|.338 ] 5210 !
[ I
E, 1.90x108s4 | .281 | .221]36.0 | .337 { 3830 ;
[ N
o, 082 0. 1. 0. [o. [ o 3
¢
Vo 082 0. 1. 0. |o. | o :
c i
g4 2.84x10%s1 | .350 | .210]24.3 |.337 | 4120 !
Y‘Zc ﬁ
|
3
109 ]
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TABLE 3-6, continued

T Y
it Fuss e S o et S

MECHANICAL. v | Ex | o,
TEMPERATURE | propERTY A B C | psi foSpsi| psi
E, 2.10x10%s1 ] .0510] .660] 19.7] .600| 3990
t
E, 1.45x10%si| .o254] .921 16.5].350| 3590
24
vret .140 Ol 1! 0. Ol 0.
V26, 116 0. 1. 0. | 0. | o.
ER 2.11x10%0s1| .0380| .790{ 19.5] .400{ 4830
3000°F £ 6
E, 3.60x10%s1| .350 | .198] 45.8.243 | 6730
[}
E, 1.80x10%s1 | .198 | .291] 40.2] .350| 4360
c
g, 090 0. 1, o. | o | o
Ve 090 0. 1. 0. | o. | o.
[
Eﬁf 3.27x10%s1| 310 | .240{ 29.9| .278 | 5500
C
E, 2.40x10%s1 | .277 | .212| 70.0] .203] 6430
t
E, 1.8000%s1| 133 | .395] 36.1] .226| 4360
t
o, 145 0. 1. 0. | 0. | o
V20, 120 0. 1. o. | o | o
Ed 2.00x10%s1 | .158 | .388| 30.0] .232{ 5090
36800°F t 6
E, 3.60x10%s1 | .316 | .220] 41.4] .293] 6560
C
E, 2.00x10%s1| 188 | .347] 42.2] .300} 5440
¢
ro, 0950 | 0. 1. o. | o { o
Vao, 0950 | 0. 1. 0. | 0. | o
3 3.27x10%ps4 | .270 | .290( 24.5| .240| 5480
C
10
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TABLE 3-6, continued

MECHANICAL e foer | o
. 2.70x10%si | .282 | .237| 69.5] .069 8230
t
e, 1.40010%s1| 107 | .477] 35.2] .15 5140
t
e, 150 0. 1. 0. | o. | o.
o, 125 0. 1. 0. | 0. | o.
o 1.97x10%s1 | .200 | 360} 30.0].083] 5340 !
4000°F t 6
E, 2.80x10%s1 | .323 | .212| 42.5| .240] 5730 :
C p
E, 1.80x10%s1 | 153 | .377[ 31.7| .267 4640 y
; |
v .100 0. 1. o. | 0. | o 3
r‘eC R
i
Yo .100 0. i} 0. | 0. | o. ;
-c i
Effz’ 3.06x10%s1 | .270 | .300| 20.5] .250] 4860 4
[of
E, 2.50x10%s1| .300 | .250] 46.1] .030] 6700 N
t
E, 1.30x10%s1 ] .100 | .500| 37.4) .060} 5420
£ ]
ro, 170 0. 1. 0. | o. | o. ;
vzet 150 0. 1. 0. { o. | o. }
-@
Eﬁg 1,50x10%s1 | .200 | .400| 21.6] .035| 4190 i
4500°F t 6 ]
€, 2.40x10%s1| .275 | .250] 38.0] .227( 5330 !
C B
3 1.80x10%ps1| 284 | .267] 33.8 | .260 4160 ]
C A
e, 150 0. 1. o. | o | o
|
vze .]50 Ol ]. O. 0. Ol i
c -:
Eﬁi 2.40x10%s4| .300 | .270] 20.1] .220| 4030 -;
c i
i
#
m ;
k
[
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TABLE 3-6, concluded

MECHANICAL | e | o,
TEMPERATURE | ponpeRTY A B C fpsi [10%si| psi
y
E, 2.00x10%s1]| .300 | .250] 46.8] .020 | 6050
t
E, 1.20x10%s4 | .100 | .500| 39.2] .0d0| 5400
t
g, ,200 0. 1. o. | o | o
Va0, 170 0. 1. 0. | o | a.
g4 1.4010%s1| .200 | .4c0] 22.1] 025 4130
r o rz
5000°F t 6
E, 2.00x10%si | 300 | .237] 31.8} .208] 4280
[
E, 1.80x10%s1]| .408 | .170| 26.1] .214{ 3070
c
ro, 200 0. 1. o | oo
Vo 200 0. " o. | o. | o.
C
Eﬁf 1.74x10%s1| 410 | .210] 11.3] .210] 2190
C
TABLE 3-7

COEFFICIENTS OF THERMAL EXPANSION FOR ATJ-S(WS) GRAPHITE

AS A FUNCTION OF TEMPERATURE

T .mmum,g,.,‘u iy
O R R NS R BRI e

L o

TEMPERATURE _5ar -BGZ
°F 10°¥ per °F 10 per °F
70 1200 1720
2000 1915 241
3000 2194 2727
3500 2315 .2864
4000 2414 . 2997
4500 .2547 3174
5000 .2685 .3384
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neously, we use the constant values for the Poisson's ratios given in
the SoRI ATJ-S graphite data book [3-1]. A1l of the foregoing modeling
is performed with the invatuable aid of the JNMDATA program described in

Section 2.4.

3.2.2,2 Elastic Stress and Strain Predictions

The elastic stresses and strains are predicted with the SAAS IIIM
finite element stress analysis computer program whjch is a Jones-Nelson-
Morgan model version of the SAAS III program [3-9]. Elastic predictions
are obtained in the first iteration of the Jones-Nelson-Morgan model,
Specifically, the stresses and strains are predicted with the elastic
mechanical properties, i.e., the values of A in Eq. (2.3) and Table 3-6.
The finite element mesh is composed of 398 elements with 454 nodal points
as shown in Fig. 3-17. Some element numbers of special interest in sub-

sequent discussions are labelad.

B [ZZI/— ELEMENT NUMBER
1.0+
r 134
inches
005- '
0 T I T T I I LI ﬂ T T T
1 ]
o 05 10 1.5 20 2.5 30

Z,inches
FIGURE 3-17 NOSETIP FINITE ELEMENT MESH
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The elastic predictions with the Jones-Nelson-Morgan model are
different from elastic predictions with any other commonly used material

model, This situation occurs because the actual high initial slopes are

more closely approximated with the Jones-Nelson-Morgan model than by "eye-

ball" from a stress-strain curve. Thus, comparison of predicted elastic

A

stresses and strains with other results may not be fruitful. At any rate,

] the elastic strains Epr Egr €50 Vg and Enax 2"€ displayed in contour
¥
F' plot form in Figs., 3-18 through 3-22, )
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3.2,2.3 Nonlinear Stress and Strain Predictions

The nonlinear stresses and strains are obtained by iteration of the
SAAS 11IM program until the energies in all finite elements do not change
more than a specified small percentage (in this case %%). These stresses
and strains are what is predicted to actually exist in the nosetip under
the prescribed environment., Thus, they are the values which will be com-
pared with the DOASIS predictions in Section 3.2.3. At this point, we
only display contour plots of the nonlinear strains Epr Egv €20 Yo and
€max in Figs. 3-23 through 3-27.

The results depicted in Figs., 3-23 through 3-27 are obtained after
nine iterations of the SAAS IIIM computer program. The rate of conver-
gence is studied for two specific finite elements: element 232 along
the inner contour of the nosetip in Fig. 3-17 and element 134 in the

hottest region on the outside contour of the nosetip.. Values of repre-
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sentative stresses and strains are listed in Tables 3-8 and 3-9 for the
two elements.

The stresses and strains for element 232 in Table 3-8 appear to have
converged in five iterations for all practical purposes. This rapid con-
vergence occurs because the stress-strain behavior at a temperature of
1397°F 1s not highly nonlinear. A reasonable question is why are results
obtained for nine iterations instead of stopping at five (or six) itera-
tions? The answer is related to the fact that convergence is achieved
in the SAAS IIIM program only when every single element has a strain
energy change of less than 1/2% from the energy in the previous jteration.
Thus, we would expect to find other finite elements for which the con-
vergence is slower than it is for element 232. Brute force of tediously
examining the convergence in all elements is presently the only way to
determine the elements for which convergence is slowest., However, some
good estimates can be made as to which elements might have slower con-
vergence than element 232. For example, consider element 134 on the
outer nosetip contour in Fig. 3-17. The temperature there is very high

(7768°F), and hence the stress-strain behavior is very nonlinear. In
fact, we can only approximate the stress-strain behavior for such high
temperatures., The convergence of the stresses and strains for element
134 in Table 3-9 is much slower than for element 232, The stresses and
strains are not quite different encugh in the last few iterations to be
the governing factors in the overall nosetip iteration procedure. How-
ever, we need only be assured that elements exist for which convergence
is slower than for element 232 to justify having more than five or six

fterations in a nosetip stress analysis,
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. TABLE 3-8

g PREDICTED STRESSES AND STRAINS IN ELEMENT 232 ;

; ) . ?

R ITERATION o.psi | g, spsi €p €, €nax

g 1 4950 | 5879 | .00203 | .00335 | .00611

3 2 2359 | 2775 | .00163 | .00321 | .00590

3 3 2798 3300 | .00166 | .00331 | .00601

g 4 2674 | 3149 | .00166 | .00329 | .00599

| 5 2705 | 3188 | .00166 | .00330 | .00600

b 6 2697 | 3177 | .00166 | .00329 | .00600 :

Pl 7 2699 | 3180 | .00166 | .0033C | .00600 ’

it 8 2699 | 3179 | .00166 | .00330 | .00600

r& 9 2699 | 3180 | .00166 | .00330 | .00600

;

g

L TABLE 3-9 k

i PREDICTED STRESSES AND STRAINS IN ELEMENT 134 )

3

fi ITERATION | o upsi| o,.pst | ogupsi| opynepsi|  enin

% 1 |-nses | -9235 | -25737 | 18857 | -.0007

b 2 -1780 | -1549 | -4305 | -3900 | -.01275

3 3 -2842 | -2728 | -7225 | 5698 | -.01370 !

f . 4 -2460 | -2251 | -5916 | -4966 | -.01349 ;

L 5 -2580 | -2402 | -6321 | -5199 | -.01358 !

o 6 -2538 | -2348 | -6178 | 5116 | -.01358 |

by 7 ~2553 | -2367 | 6227 | -5145 | -.01356 §

L 8 -2547 | -2360 | -6210 | 5134 | -.01356

L. 9 2549 | -2362 | -6216 | -5138 | -.01356 ;
{j: ;
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3.2.3 COMPARISON OF JONES-NELSON-MORGAN AND

DOASIS STRESS AND STRAIN PREDICTIONS

The elastic and nonlinear strains plotted in contour form in Figs.
3-18 through 3-27 are quite similar in appearance to corresponding
DOASIS results obtained by Baker, Starrett, and Budde [3-12]. The only
ﬁ apparent differences are somewhat higher strains for SAAS ITIM than for

DOASIS and a difference in sign for Ypz*

{ﬁ The SAAS II1IM sign convention for shear stress and shear strain is

opposite to that in DOASIS. This difference was noted after the rather

expensive computer runs were mede so the wrong contours were requested
5_ for SAAS IIIM. That is, a renuest for the same contours as plotted from

t DOASIS resulted in only those contours which were common to both sign

conventions. For example, contours .005, 0., -.u05, -,010, and -.015

y

rz
b were requested, but in the SAAS I[IM sign convention only .015, .010, ﬂ
.005, 0., and =.005 exist in the results. Thus, only results tour .005, 3

J., and -,005 are plotted. Contours for .010 and .015 do exist as is L

e

1 easily verified by inspection of che computer output 1istings, but simply

T T e e g T g e e e e T TN P i e

are not plotted. These comments apply to both the elastic Yz in Fig.

L 3-21 and to the nonlinear y,, in Fig. 3-26.
?; The higher SAAS IIIM strains in Figs C-18 through 3-27 than DOASIS

by strains [3-12] are more easily quantified if we examine the strains tor

fk. a specific element. We choose element number 232 on the inside surface
E’; . in Fig, 3-17. This element has the highest predicted maximum strain in

; the cool region of the nosetip and is the element about which a clip-on

n e e el b e

extensomete: 1s centered in the 50 MW tests, The SAAS IIIM elastic

CEAS

s

stresses for clement 232 are seen in Table 3-10 to be nearly 53% higher

S 2
L T

—T

than the DOASIS stresses., Moreover, the SAAS I1IM strains in Table 3-11
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TABLE 3-10

s ST

ELASTIC STRESSES IN ELEMENT 232
CALCULATED WITH DOASIS AND SAAS IIIM

e o

T

. DOASIS | SAAS ITIM
STRESS psi psi

S0

3,429 4,950 +44%
1,257 1,112 -12%
4,023 5,879 +46%
3,579 -5,210 +46%
7,316 10,645 +46%
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TABLE 3-11
ELASTIC STRAINS IN ELEMENT 232
CALCULATED WITH DOASIS AND SAAS IIIM

» STRAIN | DOASIS | saAs I1IM| &
3
i
* e, .00157 | .00203 | +29%
L g .00014 | -.00013 -7
38 €, .00297 | 00335 | +13%
[‘3 ) Ypg .00582 | -,00671 +159%
H Enax | 00526 | .00611 | +163
j b
=
b
B
X
L
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are 15 to 30% higher than the DOASIS strains. However, comparison of

these two elastic predictions is not entirely valid because the SAAS IIIM
elastic properties are much higher than the DOASIS elastic properties
(higher elastic properties than in conventional analyses is characteristic
of the Jones-Nelson and Jones-Nelson-Morgan nonlinear material models

as noted in Section 2.2.2). Thus, we do not make an issue of the lack

of comparison of SAAS IIIM and DOASIS elastic results because they should
not be the same.

However, the SAAS IIIM and DOASIS nonlinear stresses and strains
are comparable. In Table 3-12, we see that the SAAS IIIM nonlinear
stresses are about 13% lower than the DOASIS nonlinear stresses. At
the same time, the SAAS IIIM nonlinear strains in Table 3-13 are nearly
20% higher than the DOASIS nonlinear strains in element 232. The signif-
icance of this latter conclusion will be revealed in Section 3.2.4.

The linear and nonlinear g€, and g€, results are shown for ele-
ment 232 from both the DOASIS program and the SAAS IIIM program with the
Jones-Nelson-Morgan (JNM) material model in Fig. 3-28. There, the DOASIS
uniaxial bilinear stress-strain curves are plotted with a medium solid
1ine (and the extension of the elastic slope is shuwn with a long dash -
short dash 1ine). Also, the actual nonlinear stress-strain curves are
shown with a heavy 1ine along with the elastic slope (the tangent to
the stress-strain curve at u=0) as a dashed line. The DOASIS elastic
results are plotted as a ¢ircle which lies to the 1eft of the elastic
uniaxial stress-strain curve because of Poisson effects in the multiaxial
stress state. The DOASIS nonlinear results are plotted as a dot which
is similarly to the left of the uniaxial stress-strain curve. The JNM

elastic multiaxial results are shown as open squares and are to the left
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‘ TABLE 3-12

t
| NONLINEAR STRESSES IN ELEMENT 232
| CALCULATED WITH DOASIS AND SAAS IIIM
e | DOASIS | SAAS IIIM

sTRess | 200 i A
h]
ﬁ o | 3133 | 2,699 | -14
' o 1,647 1,327 | -19%
: 5, 3,666 3,180 | -13%
j Tryg 3,267 -2,82 -13%
; Spax | 6667 5,771 -13%
4
:?_71
i
i
i
”) TABLE 3-13
)
i NONLINEAR STRAINS IN ELEMENT 232
{j CALCULATED WITH DOASIS AND SAAS IIIM
o STRAIN | DoAsis | saas 111M | A
. p 00140 | .00166 | +19%
, € .00026 | .00042 | +62%
g8 e, .00284 | .00330 | +16%
X Yoy ,00576 | -.00685 | +19%
¥
v €pax | 100509 | 00800 | +18%
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of the elastic uniaxial stress-strain curve., Finally, the JNM nonlinear

o iy by

multiaxial results are shown as solid squares and are to the right of the
actual nonlinear stress-strain curve as {s typical of graphitic materials 5
with biaxial softening. Obviously, the JNM linear and nonlinear results
are drastically different from each other even for the relatively modest ‘
nonlinear behavior at this temperature. More drastic differences between
Tinear and nonlinear results exist for elements in hotter and hence more
nonlinear regions of the nosetip. Note that the elastic strains are larg-
er than the nonlinear strains for this element. In contrast, the elastic .
strains are less than the nonlinear strains for element 134 in a hotter
region of the nosetip. These two results are similar to the results for
the inside and outside elements in the SoRI thermal stress disk test anal-

ysis. That is, sometimes the elastic strains are higher than the non-
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E linear strains and sometimes they are lower.
; The DOASIS results were obtained in ten iterations in contrast to
, the nine iterations required for the same problem in SAAS ITIM, No

claim is made that SAAS IIIM is "faster" than DOASIS on the basis of

Vs

ﬁ\ the observed one less iteration. As a matter of fact, DOASIS is prob-

? ably faster for this nosetip problem because DOASIS is faster per itera-
; tion than SAAS I1IIM. The meaningful comparative measure is the accuracy
ﬁ of the results, and this issue will be addressed in the next section,

e

‘l 3.2.4 SUMMARY OF 50 MW NOSETIP STRESS ANALYSIS

?ﬁ The objective of this 50 MW nosetip stress analysis {s to compare
%g the JNM model results with those obtained with the DOASIS computer pro-
P;v gram. That comparison is made in Section 3.2.3 where the JNM model

ﬂ; strains are seen to be about 20% greater than the DOASIS nonlinear

F% strains in element 232 about which the extensometer in the 50 MW tests

,;{ s centered. The scope of this contract does not include a correlation

b;i of JNM model predictions with the actual 50 MW nosetip strain measure-

f{i ments. However, a cursory correlation will be performed to put the JNM

I model predictions into some perspective.

E‘ The elongation between two points on the nosetip inside contour

fi: was measured in the 50 MW tests in order to estimate the strain tangent

'f‘ to the inside contour. This e]ongét1on between nodal points 199 and 304
f

'—-'E‘_

was measured with an extensometer centered about element 232 in Fig, 3-17.

For run R41-016, the elongation was .0028 inches [3-12]. The mechanical

e

P

-

strain is obtained by dividing the elongation by the gage length of .36

sart

b’

inches and subtracting aAT = ,0031. The resulting mechanical strain is

.0047. The maximum mechanical strain in element 232 is predicted to be

TR NI MRS I W T

U T R R -

.0051 (Baker, Starrett and Budde report .0038, but .0051 appears in the
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DOASIS output provided to SMU by Captain Budde) with DOASIS and .0060
with SAAS ITIM., However, the maximum mechanical strain in element 232

is not fangent to the inner contour of the nosetip. This fact is readily
observed when we realize that, although principal stress direction is
tangent to the inner contour because the shear stress 1s zero at the

inner contour, the principal strain direction (e___) 1s not necessarily

max
in the same direction. That is, for orthotropic materials in nonprincipal
material directions (1.e., not in the present r-8-z principal material
coordinates), principal stress directions do not coincide with principal
strain directions! The tangent to the inner contour is at 47.7° to the
r-direction. Also, the angle to the maximum principal stress is 47.4°
(47.3° 4n DOASIS), but the angle to the maximum principal strain is
51.7° (52.0° in DOASIS). A strain transformation relation for the correct
angle could be used, but a more direct comparison {s available - compare
the predicted elongations themselves,

The elongation between elements 199 and 304 {is predicted with the
SAAS IIIM program to be .0033 inches and with DOASIS to be .0030 inches.

Both values are obtained from the equation

AL = Lesnal = Linitial

where

3 172
Lfinal ® {[(R *updyon = R+ udyggl® ¢ (24 u)ggy - (2 "2)199]2}

2 2,1/2
Linittar = [{R3pq = Rygg)™ + (Z3g4 = Zygq)°]
Both the DOASIS and JNM model elongation predictions are higher than the

measured value. On the other hand, the DOASIS e prediction reported

max
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by Baker, Starrett, and Budde [3-12] is less than the estimated measured

P

€ nax whereas the JNM model £

measured value. One reason for the strain differences might be the fact

ax prediction is greater than the estimated

that the temperature of 1600°F used by Baker, Starrett, and Budde is

higher than the element temperature of 1397°F used in the analysis. The

extensometer is exposed only to the temperature at the inner contour of

RTINS e s
ST B R

the nosetip. Thus, the extensometer temperature should be less than the

adjacent element temperature. A lower temperature would lead to a lower

aAT in the estimated measured € nax calculation and hence to a higher €max "’

AN T T
e e YT

These kinds of speculations and questions can be cleared up only with a
detailed correlation study (which, as mentioned before, is not the objec-
tive of the current contract).

i Basically, the Jones-Nelson-Morgan model nosetip predictions are

f higher in strains and lower in stresses than the DOASIS predictions.

{ﬁ The key elements of difference are the manner of representation of uni-
\éi axial stress-strain curve behavior and the manner in which uniaxial

!

.3 stress-strain curves are used to obtain stresses and strains under muiti-

axial loading, The correctness of approximation for both models can

be measured only by meaningful comparison with experimental results.

R ST - gL

How the Jones-Nelson-Morgan material model has been applied in such a

S —
=
x

comparison with experiment is described in the next section.

3.3 SUMMARY OF GRAPHITIC MATERIAL MODELING

& The Jones-Nelson-Morgan nonlinear material model has been validated

TR nseme e T e,

in a meaningful hierarchy of comparisons with experimental results. First,
: g the basic mechanical property versus energy equations are curve-fit to

& data from uniaxial tests in principal material directions. In this fash-
B ion, the basic model is defined. The model is then validated by compari-
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son of predicted and measured strains under the following loading condi-
b tions:
¥
g (1) uniaxial mechanical loading in other than principal material
directions [3-3, 3-6, 3-14].
b (2) biaxial mechanical loading in principal material directions

[3-2, 3-6, 3-14],
(3) biaxial thermal loading in principal material directions (Sec-
tion 3.1).
(4) multiaxial thermal and mechanical loading in other than principal 3
material directions (Section 3.2).
The predicted and measured strains or deformations were in very good to
excellent agreement in the first three loading conditions. The agree-
ment was not particularly good for the nosetip probl=m in condition four,

but a meaningful correlation of the data was out of scope of the contract

s0 only cursory results are available. A more complete effort to corre-

= e e

G late the nosetip results should be made. Then, the graphite thermal and

mechanical stress analysis problem for nosetips would be well under con-

| st
-

trol because of this modeling work and the failure stress and failure

SO A T

strain work of Crose [3-15] and Batdorf [3-16]. The latter efforts |

7 1T T A e K R TR

depend on the present modeling efforts because of the need for accurate

it

nonlinear stresses and/or strains,
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4. MODELING OF CARBON-CARBON MATERIALS

4.1 _INTRODUCTION

The nonlinear modeling work for carbon-carbon materials was initi-

ated with this contract. However, only a few solid accomplishments were
achieved within ine time and funding constraints. These results are
reported in this section in the following order. First, the basic char-
acteristics of carbon-carbon are reviewed and examined relative to their
{mportance for nonlinear material modeling in Section 4.2, Then, the
flexural modulus and strength studies for multimodulus materials are dis-
cussed in Section 4.3, Finally, the essential future modeling work is

described in Section 4.4.

4.2 CHARACTERISTICS OF CARBON-CARBON

Carbon-carbon s not a single material, but is instead a broad class
of materials. Many types of carbon-carbon are manufactured including
various Kinds of woven fibers or felt materials both of which are coated
or impregnated with a matrix material in a vapor deposition process or a
pressure impregnation process.

The steps in a typical pressure impregnation process are illustrated
in Fig. 4-1. In the first step, woven graphite fabric in the horizontal
plane is pierced with metal rods in the vertical direction while being
built up layer by layer in the vertical direction. Next, the metal rods
are replaced with graphite yarn or graphite fibers. This somewhat loose
assembly of layers is impregnated with phenolic resin in step three. The
impregnation process takes place first by evacuation of the chamber in
which the material is located and then by pressurization to force the

phenolic resin into the voids of the woven and pierced fabric. Then, in
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FIGURE 4-1 MOD-3 FABRICATION PROCESS

step four, the material is cured in an oven at 350°F, Next, the material
is carbonized at 2000°F in a kiln 1in step five. Finally, the material is
graphitized to 4900°F in an induction furnace in step six. At this stage,
the billet of carbon-carbon does not have the degree of density possible,
f.e., not all the voids are filled with a graphitized form of the phenolic
resin. Accordingly, steps three through six are repeated until the de-
sired density is attained,

Carbon-carbon is made with several different geometries, Each of
the layers in Fig. 4-~1 can be either woven in the horizontal (x-y) plane
as in Fig. 4-2a or made of parallel fibers as in Fig. 4-2b. Avco 3D is

of parallel fiber construction and 1s shown schematically in Fig. 4-3,
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One variation on a three-dimensicnal weave or three-dimensional construc-
tion of orthogonal fibers is to add fibers at 45° angles to the x-, y-,
and z-directions. The resulting "7D" construction is shown schematically

in Fig. 4-4 for fibers with prismatic cross sections. A much simpler

FIGURE 4-4 PACKING MODEL OF PRISMS HAVING EQUAL CROSS SECTIONAL AREA
IN 7-D CUBIC GEOMETRY

carbon-carbon structure is obtained after carbon vapor deposition on car-
bonized felt. The fibers of uncarbonized felt are shown in the scanning
electron photomicrograph in Fig. 4-5 where obviously the fibers have no
preferred orientation. The scale of all these possible carbon-carbon
constructions is revealed in Fig. 4-6 where the approximate fiber spac-
ings in 7-D carbon-carbon are shown in a nosetip. Obviously, the micro-
scale of carbon-carbon materials is not negligible in comparison to the
nosetip dimensions, Generally, the microscale dimensions of graphite,
namely the particle size, etc., are negligible for nosetip stress analysis

problems. However, the characteristic material dimensions of carbone
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carbon are not clearly negligible for nosetip problems aithough perhaps
the answer to this question is dependent on the specific carbon-carbon
material to be considered.

The anisotropy of the various carbon-carbon materials depends pri-
marily on the geometry of the fiber construction and secondarily on the
manner of incorporating a carbon matrix. For example, the orthogonally
reinforced carbon-carbons with parallel fibers such as AVCO 3D (Figs.,
4-2a and 4-3) and with woven fabric such as AVCO MOD-3 (Fig. 4-2b) are
orthotropic with principal material directions in the three fiber direc-
tions. In contrast, GE 7-D i1s not only orthogonally reinforced, but also
has fibers at 45° to the x-, y-, and z-directions in which the orthogonal
fibers are placed. Accordingly, GE 7-D is anisotropic {(although with so
many fiber directions, the degree of anisotropy for GE 7-D is lower than
the degree of orthotropy for AVCO 3D, i.e., GE 7-D is more 1ike an iso-
tropic material than is AVCO 3D). The manner of incorporating a carbon
matrix in carbon-carbon can be an influencing factor for anisotropy only
when the process of constructing or depositing the matrix has some direc-
tioral dependence. For example, a matrix formed by chemical vapor deposi-
tion in a shell structural element can have a directional dependence of
mechanical properties because of vapor penetration perpendicuiar to the
shell surface and no penetration parallel to the surface. This effect
is similar to effects obtained with pyrolytic graphite because of align-
ment of particles due to direction preferential deposition of material.
In summary, the most obvious clue to the degree of anisotropy remains the
fiber geometry, but anisotropy is also influcnced by the matrix construc-

tion.
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At least two difficulties arise in analysis of carbon-carbon mate-
rials. The first obvious difficulty is the analytical complication due
to the many more mechanical properties necessary to characterize carbon-

carbons as compared to simpler materials. This analytical complication

is handled with relative ease in comparison to the more troublesome prob- %
lem of measuring the additional mechanical properties. Basically, the

problem is that simple strain states do not result from simple imposed

stress states. For example, a unfaxial stress at 45° to the fiber direc-

tions in Fig. 4-7 leads to both extension in the direction of the load

(and the usual Poisson contraction perpendicular to the load) and in-

plane shearing if the ends of the specimen are not restrained in any way.

On the other hand, if the specimen ends are restrained to remain perpen-

.g dicular to the load, then a complicated nonuniform shearing and exten-
f? sional response results. The complicated response occurs if the test

specimen is short and wide whereas the simpler response occurs if the

s,
PEEnENEY

e -
-~

test specimen is long and narrow. In fact, if the specimen 1s relatively

short and wide, the stiffness being measured is not the Young's modulus
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= NO END EFFECT RESTRAINED ENDS

5 ' FIGURE 4-7 DEFORMATION OF A UNIDIRECTIONALLY REINFORCED LAMINA

i g, LOADED AT 45° TO THE FIBER DIRECTION :
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g in the x-direction of the sketch in Fig. 4-8, but the two-dimensional

3

n (transformed reduced) stiffness 0}1. The reason for this discrepancy 1is

that the geometrically admissible state of strain in the specimen depends

strongly on the geometry. If the specimen is long and slender, then the

E boundary conditions at the specimen end grips are of no consequence 3 la N
(,7 .1
ﬁ Saint Venant, Accordingly, a pure uniaxial strain is obtained and k
ﬁ o, * Ex € (4.1)
il However, for a short, wide specimen, the end restraint of o, # 0, i
%ﬁ Ey = Yyy ° 0 Teads to the stress-strain relation
o % = Oy & (4.2) ;
% Similar results are shown in Fig. 4-8 for an appliad shear stress result- |
!
3 ing in either ny as desired or Q%G if the test specimen geometry is not
fﬁ properly chosen, 30
x .
i ;
H ;
! 2 3
STIFFNESSES 5
AND j
- MODULI !
X 10% psl i
o 10 :
i '.1
s §
‘\ h‘“‘ ;
- 0° 15° 30° 45° 60° 75° o0° |
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The foregoing situation is but one example of many complicated
mechanics problems which arise in the design of "proper" test specimens.

By "proper" test specimens is meant specimens for which the desired re-

f sponse can be measured without undue influence of some unwanted response,
) For example, even with end restraint in Fig. 4-7, a specimen can be made
long enough that the resulting deformation looks 1ike the unrestrained
end response. From a practical standpoint, if the response can be made
predominantly simple by suitable choice of specimen geometry, then the
goal of a proper test specimen is attained. Analysis of specimen re-
sponse for various geometries to determine the geometry for which simple

response occurs is the objective in many mechanics efforts. However, to

date, 1ittle has been done to apply the principles of mechanics in ra-
tional treatment of carbon-carbon materials.

S Some of the difficulties in rationally analyzing the mechanical be-

havior of carbon-carbon materials are related to even more complicated

T TR ) T e L Temu e S
st

response characteristics than just discussed for a unidirectionally rein-

i%i forced lamina. For example, anisotropic carbon-carbon under shear loading
' in one principal material plane will also have shear deformation in the

3
k
".
{: two principal material planes which are perpendicular to the stressed

TR R T WA e T AR
rooer Tt

principal material plane. This shear coupling obviously results in very

complicated strain response. Moreover, the multimodulus characteristic

¢ of carbon-carbon materials is yet another complicating factor in addition

to the nonlinear stress-strain behavior in every principal material direc-

-~
e e

tion. L
13 |
g§3 If we ignore for a moment both the multimodulus character and the 3
- :
E-ka nonlinear character of carbon-carbon materials, the strain-stress equa- ?
-1 f
; b tions for 1inear elastic behavior of orthotropic materials are (in ortho- }
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Yyz 0 0 0 E;; 0 0 Tyz
]
sz 0 0 0 0 G—z-; 0 sz
]
Y 0 0 0 0 0 — |17
X X
\ Y s L xy.. \ ya

Obviously, nine independent constants

Ex’ E., Ez = Young's moduli in x-, y-, and z-directions, respec-

Y
tively

Vij " Poisson's ratio for transverse strain in the j-
direction when stress exists in the i-directions,
i.e.,
[
v”'-g‘}
for o, = o and all other stresses are zero.
Gyz' sz. ny = shear moduli in the y-z, z-x, and x-y planes, respec-
tively.
must be measured,
We now recognize that the strain-stress relations in Eq. (4.3) must

be modified to account for multimodulus behavior. Hence, in the manner
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Jones [4-1], the shear moduli are replaced with Young's moduli at 45°
to principal material directions. We then have the following nine inde-

pendent mechanical properties:

45 45 45
» Egzr Eger Exy (4.4)

when the carbon-carbon composite has three orthogonal principal material

E., E

x? Eys Bz Vyge Vays vy
directions with unequal fiber volumes or unequal fiber sizes in the three

directions. If the fiber volumes or fiber sizes are equal in two direc-

tions (as in AVCO 3D shown in Fig, 4-3), the six independent mechaﬁ1ca1
properties are:

45 .45 _ .45 45
zy' “xy? Eyz' sz Ezy’ Exy (4.5)

Finally, if equal fiber volumes or fiber sizes exist in all three direc-

E =E LRV

x* By = Eyo Byn Vyge Vpy » Vv

E

tions, the three independent mechanical properties are:

- - - - 45 _ 45 _ .45
E, Ey E, Vyz * Vax = Vyy Eyz Epx Exy (4.6)

(Note, however, that because of the three fiber directions the modulus
at 45° 1s independent of the direct moduli and Poisson's ratios because
the shear behavior {is independent.) A1l of the properties in Eqs. (4.4),
(4.5), and (4.6) must be measured both in tension and in compression.
Moreover, these properties must be measured at many stress levels to
account for the nonlinear stress-strain behavior in the manner of the
Jones-Nelson-Morgan material models discussed in Section 2.

At this point, we have not yet examined the equations for off-axis
behavior of such orthotropic materials nor have we considered any behavior
of anisotropic carbon-carbon materials. We defer treatment of these com-

plicated questions to subsequent reports on carbon-carbon material behav-

for.
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Instead, we examine orthotropic and anisotropic carbon-carbon me-
chanical behavior which is representative of that found in References
4-2 through 4-11. Those references are the primary body of information
on carbon-carbon mechanical properties although other information exists

in the Journal of Composite Materials and in other classified and unclas-

sified reports, Typical stress-strain curves are shown in Figs. 4-9 and
4-10 for the materials examined in the CCAP program (Carbon-Carbon Assess-
ment Program). A1l of the stress-strain curves displayed have some degree
of nonlinearity ranging from mild to strong. Notice how the shapes of the
actual stress-strain curves are similar to the basic shape of the Jones-
Nelson-Morgan nonlinear material model stress-strain curve in Fig. 2-2la
on p, 67. The Jones-Nelson-Morgan model was developed to treat carbon-
carbon behavior in addition to ATJ-S graphite as well as boron/epoxy,
graphite/epoxy, and boron/aluminum. However, the model has not been
applied to carbon-carbon.

The multimodulus characteristic of carbon-carbon is a manufacturer-
dependent phenomenon. Early materials had drastic diffe;=nces in tension
and compression moduli. For example, the MDAC low modulus block course
weave material [4-2] has a ratio of tension modulus to compression modulus
in the z-direction ranging from 4 to 5! More recent materials have closer
tension and compression moduli - for example, AVCO MOD 3 [4-56] has a ten-
sion modulus greater than the compression modulus by about 60% in both
the x-direction and the z-direction.

Another behavioral characteristic worthy of note 1s the classical
viscoplastic behavior of carbon-carbon at high temperatures, For example,
AVCO MOD 3a exhibits this behavior at 5000°F in Fig. 4-11. The stress

rate is increased by factors of ten and the stress-strain curve rises in
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FIGURE 4-9 PROBABLE VALUE TENSION STRESS~-STRAIN CURVES FOR
CCAP MATERIALS AT 70°F IN THE Z-DIRECTION [4-6]
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FIGURE 4-10 PROBABLE VALUE COMPRESSION STRESS-STRAIN CURVES FOR
CCAP MATERIALS AT 5000°F IN THE Z-DIRECTION [4-6]
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the usual viscoplastic manner.

Carbon-carbon has a characteristic of noncylindrical orthotropy which
is quite different from the transverse isotropy of ATJ-S graphite. The
practical significance of this difference is that in a reentry vehicle
nosetip application, ATJ-S graphite is axisymmetric whereas carbon=-carbon
is not. This important distinction is significant from the point of view
of the nosetip stress analyst, but will be ignored in this report.

In summary, carbon-carbon materials have mechanical behavioral char-
acteristics which are a substantial escalation in degree of complication
over the characteristics of graphite materials. The carbon-carbon analy-
sis problem is very difficult and complex. Hence, the progress will be

slow because of the many mechanics problems that must be addressed.

4.3 APPARENT FLEXURAL MODULUS AND FLEXURAL STRENGTH OF
MULTIMODULUS MATERIALS
4.3.1 INTRODUCTION

The ASTM flexure test [4-12] 1s commonly used to measure the flexural
modulus and flexural strength of materials other than the plastics for
which 1t was originally developed. The officially designated equations
for reporting the test results are applicable only to materials that are
Tinear elastic to failure. However, the test is often used for carbon-
carbon and other composite materials which have different (and sometimes
nonlinear) stress-strain curves under tension loading than under compres-
sion loading.

In the ASTM flexure test for plastic materials [4-12], a rectangular
cross section beam is subjected to either 3-point or 4-point transverse
loading as shown in Fig. 4-12. The slope of the measured load-deflection

curve is related to the apparent flexural modulus F.f which is defined
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FIGURE 4-12 ASTM FLEXURE TEST LOADING SETUP

A

Eg; with the usual moment-curvature relation:

’\ M= Egly, (4.7)
E% If the tension modulus of the material is the same as the compression

:ﬁ modulus, then the flexural modulus measurement 15 just a {redundant) way
iﬁ of measuring Young's modulus. The flexural failure stress 1s related to
;?i the failure load through the simple equations [4-12]:

h (" 3pL

§  EEE? s 3-point loading

E x| PL o
; ‘ Lb_dz » 4=point loading

X

;?’ . If the tension strength of the material 1s the same as Lhe compression
g% strength, then the flexural strength measuvement is ju.: a (redundant)

é %: way of measuring the strength. However, most materials have different

t ﬁ strengths in tension than in compression even when the tension and com-
; ﬁ} pression moduli are the same. Accordingly, the apparent flexural strength
: F& is the lesser of the tension and compression strengths. If the moduli
D
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calculated with the ASTM equations, Eq. (4.8), is neither the compres-

i

b

are different in tension than in compression, then the flexural strength 1
%

|

sion strength nor the tension strength. Thus, the interpretation of the
apparent flexural strength is difficult for many materials. The key
Timitation of the ASTM flexure test is its applicability only to linear
elastic materials with the same modulus under tension loading as under

< compression loading.

‘ﬂ The ASTM flexure test is, however, commonly used for materials such

! as fiber-reinforced compesite materials which have a different modulus

Et under tension loading than the modulus EC under compression loading.

i e S e IR

9 These multimodulus materials typically have the stress-strain behavior ;
f:! depicted in Fig. 4-13, There, the actual nonlinear stress-strain behav- !
i; jor is approximated with a bilinear stress-strain curve for which Et is i
?@ different from E,. For this behavior, the axial strain in a beam under ]
%;é bending varies linearly through the depth of the beam as in Fig. 4-14. |
i 7t ]
b

i

: smmsmsmms BILINEAR APPROXIMATION
f === ACTUAL BEHAVIOR

aamd 2

FIGURE 4-13 BILINEAR STRESS-STRAIN CURVE FOR MATERIALS

o -

WITH DIFFERENT MODULI IN TENSION AND COMPRESSION
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FIGURE 4-14 STRESS AND STRAIN VARIATION FOR A BEAM SUBJECTED TO MOMENT

Moreover, the stresses vary in a bilinear fashion through the depth of
the beam. The significant factor is that the neutral axis, 1.e., the
point of zero stress and zero strain, is not at the mid-depth of the beam.
Thus, because of the mixed state of tension and compression, the flexural
modulus for multimodulus materials is neither E, nor E., but must be
interpreted differently. Also, the flexural strength is neither the ten-
sion strength or the compression strength.

The objective in this section is to assass the meaning of the ASTM
flexure test when applied to multimodulus fiber-reinforced composite

materials, The effect of different moduli in tension and compression

on the apparent flexural modulus is predicted. The predicted flexural

moduii are then compared with measured values for two carbon-carben com-
posite materials, Sandia CVD carbon felt and Avco 3D. Sandia CVD carbon
felt [4-13] 1is a chemical vapor deposited (CVD) carbon matrix in carbon
felt and is an orthotropic material because of the directional nature of
vapor deposition. Avco 30 [4-14] hds a phenolic matrix with high modulus
graphite (Thornel 40 and/or Thornel 50) fibers as woven reinforcement in

one plane and quartz filaments as reinforcement in an orthogonal plane.
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; Thus, Avco 3D is an orthotropic material. The effect of different moduli
as well as different strengths in tension and compression on the apparent
flexural strength is also predicted, and the results are compared with
measured values for Sandia CVD carbon felt and Avco 3D.

The emphasis ! this section is on proper analysis of the apparent
flexural modulus and strength obtained for multimodulus materials with

v the ASTM flexure test. An important purpose in this section is to identi-

;! fy deficiencies in the current ASTM flexure test, to stimulate work to

R S

X resolve these deficiencies, and to account for all pertinent behavioral

CO VW PSR Ry

i aspects of multimodulus composite materials. The results of this analysis
will enable a materials scientist to determine whether experimental data

are consistent in the same manner that the usual reciprocal relation

ko= v12/E] = “21/E2 is used to check experimental data for linear elastic

arthotropic materials. The usefulness of this effort is also related to

;i getting what we can out of present multimodulus material data and to

4 generating appropriate data for multimodulus materials in the future.

L 4.3 APPARENT FLEXURAL MODULUS
) Consider a beam of a multimodulus material subjected to pure moment
as in Fig. 4-14., The axial strain is a 1inear function of y and depends

1 1]
on the curvature o7 the neutral surface, Vo (v evaluated at y = 0):

b £= VY (4.9)

The untaxial stress-strain relation is

. Et€,0>0

o= 4.10)
L E e, <0 (4.
:ﬁ" (o
%
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We first locate the neutral axis since it is not, in general, at the

The beam is subjected only to moment so the resultant

F = .J; o dA

Upon substitution of the stress-strain relation, Eq. (4.10), and the

beam mid-depth.

axial force must be zero:

(4.11)

strain-displacement relation, Eq. (4.9), the force on a rectangular cross

section beam is

dn d-dn
f Etvoybdy-f Ecvoybdy=0
0

0

(4.12)

where dn is the distance from the bottom of the beam to the neutral axis

as aefired in Fig. 4-14. After integration,

1]
v. b
0 2 IR
> Etdn - Ec‘d dn) :] 0 (4.13)
or
1/2 _c 1/2
E, /7 d, = E.'T (d-d) (4.14)
whereupon the neutral axis.is located at
EC1/2
dn = - 72 Tt 72 d (4.15)
t o
Next, the bending moment about the neutral axis is
dy "o d-d, 5
M=J‘cydA=f Etvoy bdy+f Ec Vo ¥ b dy (4.16)
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which can be integrated to obtain k

4; n b ¢
) 2 Yo 3 43
.}, M . Etdn + Ec(d dn) (4.]7) -‘
: ;
3 Now substitute the location of the neutral axis, Eq. (4.15), to get f
p " g
e v, bd’ E, /2 3 £, /2 3 18) ;
K Me S &\ sz ) R\ : i
0 Byt Ee Byt E
;E which can be simplified to E
'I " 3
fﬁ M= v°3bd 1/2EtEc 1722 (4.19)
4 (B, /% +E.'T)
Ls
s Compare this moment expression with Eq. (4.7) and realize that I = bd3/12 4
ki i
@@ﬁ for a rectangular cross section to obtain
[\ 4EtEC .
P& Ep = (4.20) 3
R f \VPRYLIY: .
K (By 7%+ £ !
&
?.- This apparent flexural modulus can be normalized with respect to the ;
%; cempression modulus in the form
- » E 4(E,/E ) !
£;,»- g ts (4.21) !
P ¢ 1+ 2(E/E) % EL/E, :
b ;
(o |
b i and plotted along with the normalized average modulus ?
) 1
?‘ B E (E, + E_)/2 |
v + R
S avg _ ‘"t c - i
T, s = (/R 4 1)/2 (4.22) !i
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and the normalized tension and compression moduli versus the multimodulus

ratio E,/E, in Fig. 4-15. There, we see that
(1) Ef 1s always less than Eavg and ﬂ

(2) Ef is always closer to the smaller of Et and Ec.

These observations can be used to test the quality of experimental

% flexural modulus data, That is, if the experimental data do not exhibit
ﬁi those characteristics, then we would have to be suspicious of their valid-
gl ity. This test is analogous to applying the reciprocal relation “]2/E1 =
Ei vo1/Ey to test experimental modulus and Poisson's ratfos data for ortho-
&; tropic materials,

§5 Experimental results for materials with substantially different mod-

%

I

fi uli in tension and compression are plotted in Fig. 4-16 which 1s an expan-
! sion of Fig. 4~15 near the region where Et/Ec = 1. For Sandia CVD carbon
t*i felt [4-13], an orthotropic material, the tension modulus is as much as

L 42% higher than the compression modulus depending on the vapor deposition

&W} pressure in Table 4«1, For Avco 3D [4-14], the tension moduii are up to

A
;3 25% lower than the compression moduli as shown in Table 4-2. Although ?
Avco 3D is an orthotropic material, the orthotropy is excited only in the

form of Gx since the material in the beam 1s oriented such that Ex & Ey

. y
y (i.e., the x- and y-coordinates of the beam coincide with the principal

" material directions in the plane of the graphite fibers). The flexural

i moduli are calculated from Eq.(4.20) with the known tension and compres-

_::

sion moduli and are also shown in Tables 4-1 and 4-2. There, the calcu~

lated moduli are 5% and 7% too high and 3% too low for Sandia CVD carbon ;

T AT RIS L T

felt and 2% and 5% too high for Avco 3D. This agreement between theory

and experiment is rather good considering the inherent accuracy of the

e R e

experiments and the bilinear stress-strain curve approximation. Thus,
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TABLE 4-1

STIFFNESSES OF SANDIA CVD CARBON FELT

,=§-

LU R TR N
e L ot .

R LR R L

Ef
E E
DEPOSITION t ¢ E
PRESSURE 106psi | 106psi | MEA§URED CALCELATED ERROR
mm Hg (GN/m2) (GN/mZ) c 10%psi 100psi
(GN/m2) (GN/m2)
2.2 2.0 2.0 2.1
35 (15.2) 3.8) [ V10 (13.8) (14.5) +5.0%
3.7 2.8 3.0 3.2
100 (25.5) | (19.3) | '3 | (20.7) (22.1) *6.7%
4.7 3.3 4.0 3.9
760 (32.4) | 22i8) [ V%2 | (27%8) (26.7) -2.5%
TABLE 4-2
STIFFNESSES OF AVCO 3D THORNEL/PHENOLIC
£ 3 Ef
THORNEL t ¢ E
VOLUME 108pst | 10fpst | gt | MERSORED ) CALEARTED 1 epop
(GN/m2) (GN/m2)
4,54 5,31 4.68 4.90
50 (31.3) (36.6) | 85 | (32.3) (33.8) *4.7%
4.70 6. 26 5,28 5.40
66 (32.4) @3.2) | 750 | (36.4) (37.2) +2.3%
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we can claim the ability to calculate the flexural modulus for these
materials without having to resort to the expense and time of an ASTM

flexure test (not to mention the high cost of the material far the test

RIS 25k e s i :..mﬂ

specimens!).

4.3.3 APPARENT FLEXURAL STRENGTH

Irrespective of whether 3-point or 4-point loading is used, the ASTM

maximum stress versus moment relation is

r.
SRR L v S S

Mc . Md/2 _ 6M
£ fo] 2 e = = (423) .
i ASTMiax T bad12  bd?

in which the neutral axis is presumed to be at the mid-depth of the beam.

zt If the maximum moment versus load relation for each type of loading is

?§ considered, then the ASTM maximum stress versus load relations are

6 P . L 3PL
" » 3=point loading
bd 2 2 gpd?
] .. (4.24)
ASTMmaX 6 P.L _PL 4-point loading
b2 T3 T hd?

For multimodulus materials, we will derive the correct maximum stress
versus moment relation in which the difference between the neutral axis
and the beam mid-depth is accounted for.

The maximum stresses in the beam cross section are
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irrespective of whether Et Ec or Et Ec' We solve for Yo from Eq.

(4.19) and substitute for dn from Eq. (4.15) to get

PRV - PPy T inﬂ-“d‘

[ EE T g2 ] |
op =gy 77 Ly 777 ¢ :
max bd _(Et + EC ) i LEt + Ec _J \
(4.26)
- Rz T 1
c c ;
max bd L(E, "+ E, )¢ LE, "7+ Eg J *
1
which can be simplified to !
[ 1/2 / &M l
g = (E,/E ) + 1 2
Cnax {. tre J bd®
r i (4.27)
i 1/2 &M
P o u 1+ (E./E,) /2
% “max { A }F‘r

where the terms in braces are the corrections due to noncoincidence of

the neutral axis and the beam mid-depth. Obviously, when Et = Ec’ the

A e L T %
—iams
po- R,

claaral
ot mazz | 2 ame
ity SRR

stresses in Eq. (4.27) are equal to each other and to the ASTM maximum
\ ' stress in Eq. (4.23).
The actual maximum tensile and compressive stresses for multimodulus

materials in the ASTM flexure test can be summarized in the form

i et i e i B A it ke, ¢ A e F e S i Tl Akt i L, St i B

\ 4] =C o

;E; tmax t maxASTM

(I M
Jo o B o] R
o ®max ¢ MXpsTM ?
%’ L., M
A% 1
o where the correction factors C, and C, are multipliers on the calculated d
5' & ASTM stresses used to obtain the actual maximum stresses. These correc- ]
Y g
)\ & tion factors are plotted in Fig. 4-17 as a function of the multimodulus }
3 p
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ratio Et/Ec‘ We see from Eq. (4.27) and Fig. 4-17 that the largest maxi-

mum stress occurs on the side of the beam where the largest modulus is

excited. If Et > EC, then Ct > 1 and CC <1, That is, for materials

B R ek

which are stiffer in tension than in compression, the actual maximum

tensile stress exceeds the ASTM stress whereas the actual maximum com=-

pressive stress is less than the ASTM stress as in Fig. 4-18. Moreover,

RSy

if Et < Ec. then Ct <1 and Cc > 1. That is, for materials which are

more flexible in tension than in compression, the actual maximum tensile

Y

stress is less than the ASTM stress whereas the actual maximum compressive

T R T - ey S

stress exceeds the ASTM value as in Fig. 4-18,

Quantitatively, if Et/Ec = .5, the actual maximum compressive stress
is 21% higher than the value prescribed in the ASTM calculation. Also,
the actual maximum tensile stress 1s 15% lower than the ASTM value. On
g the other hand, if E,/E_ = 2, the actual maximum tensile stress is 214

E*‘ higher than the ASTM value and the actual maximum compressive stress is 1

/— OASTM oy * St

/

O¢ max

s ha Daa

womemmn ACTUAL STRESSES

e ASTM STRESSES

Ohmax

FIGURE 4-18 ACTUAL VERSUS ASTM STRESS DISTRIBUTIONS i
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15% lower than the ASTM value.
Note that simultaneous failure in tension and compression is npot im-
plied in these calculations. That is, neither O nor o, is neces-
max max
sarily the respective strength St or Sc‘ Thus, if we are given the load
or moment at which a beam fails, we calculate the maximum tensile and
compressive stresses from Eq. (4.27) and compare them with the respective
strengths. However, the analysis is restricted to materials which can
be approximated with the bilinear stress~strain curve in Fig. 4-13 and
which are linear elastic to failure., This latter restriction is probably
the toughest to satisfy for most materials.
Four subcases of behavior occur based on whether Et is larger or
smaller than EC and whether St is larger or smaller than SC:
(1) Et > Eq St > Sc
(2) Ey>E.s Sy <Sg
(3) Ey < Ec» Sy > S,
(4) E < Ec’ St < Sc
In both cases (1) and (2), °t is underpredicted and Ocmax is oyarpre-

max
dicted with the ASTM equations, Eq. (4.8), as seen in Fig, 4-18. On the

other hand, in cases (3) and (4), oy {s overpredicted and o, is

max max
underpredicted., In case {2), the beam fails in tension because Oy >
max
e and St < SC. Thus, the apparent flexural strength is
max
S
S = Ef (4.29)

which 15 always less than the tension strength because Ct > 1, In case
(3), the beam fails in compression because 0. > oy and SC < St‘

max max
Thus, the apparent flexural strength is
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(4.30)

-
=

nlm
o lo

S¢

which is always less than the compression strength because Cc > 1. No
definite failure mode exists for the inequalities in cases (1) and (4);
instead, the apparent flexural strength is

S¢  S¢
Sf = lowest of = and — (4.31)

¢ G
which is always between the tension and compression strengths. OQbviously,
the apparent flexural strength never coincides with either St or SC for
multimodulus materials. In fact, S; is sometimes lower than St [case (2)],
sometimes lower than S_ [case (3)], and sometimes between S, and S, [cases
(1)-and (4)].
Sandia CVD Carbon Felt has E, > E, and S, > S, as seen in Table 4-3

so 1s a case (2) material which always fails in tension. The apparent
flexural strengths are calculated from Eq. (4.29) and listed in Table
4-3. Note that the calculated flexural strengths are below the values
of St (as we calculated them to be), but the measured flexura'l strengths
are above the S, values.

Avco 3D has E. > E, and S < S, as seen in Table 4-4 so 1s a case
{3) material which always fails in compression. The apparent flexural
strengths are calculated from Eq. (4.30) and 1isted in Table 4-4. How-
ever, the calculated S, values are lower than Scs but the measured values
of Sf are even higher than the St values {which in turn are higher than
the Sc values).

The measured behavior is significantly different from the predicted

behavior for both example materials. Thus, we must question either the
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TABLE 4-3
STRENGTHS OF SANDIA CVD CARBON FELT

Sf
3 s
DEPOSITION t c 3
PRESSURE 10%st | 10%pst | gt “EA§“RE° CALCgLATED ERROR
mm Hg (MN/m2 ) (MN/m2) c 103psi 109ps1
(MN/m2) (MN/m2)
4.78 23.5 6.18 4.67 i
3 (33.0) (62) | 110 | (a2.6) (32.2) 24%
6.55 35.5 9.07 6.10 ]
100 (45.2) (245) | 13 | (2.5) (42.,0) 33%
6,26 51,8 9.26 5,89 ]
760 (43.2) (357) | V4 | (63.9) (40.6) 362
TABLE 4-4
STRENGTHS OF AVCO 3D THORNEL/PHENOLIC
5 s >
THORNEL >t ¢ E
VOLUME 10%pst | 103psi b | MEASURED CALCgLATED ERROR
FRACTION (MN/m2) (MN/m2) c 103psi 103psi
(MN/m?) (MN/m2)
19.3 13.3 22,1 12.8
50 (133) (01.7) | ‘85 | (1s2) (88.3) ~42%
23.6 17.6 30,9 16.3
66 (163) (121) 50 (293) (M2) ~47%
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theory, its applicability to the data, or the data themselves. Presuming
the data are correct, we examine the theory to see if any deficiencies
exist. The most obvious deficiency of this theory as applied to ortho-
tropic materials is the neglect of shear behavior. However, Sandia
CVD carbon felt has only mild orthotropy and has the same kind of dis-
agreement between theory and experiment as Avco 3D so a shear-related
deficiency is not likely.

Perhaps another possibje reason for the disagreement is that the
stress-strain behavior of both example materials is not linear elastic
to failure. Thus, since the theory is not applicable to nonlinear stress-
strain behavior, it is not applicable to the strength ana1y§1s of these
materials. However, the ASTM prescribed maximum s:ress calculations are
not applicable to these kinds of materials either. Thus, the meaning of
the reported flexural strength data is not clear. What is clear is that
the ASTM flexure test and calculations, as presently prescribed, are not
applicable to multimodulus materials or to materials with nonlinear strass-
strain behavior. However, these expensive tests continue to e run and
reported without sufficient information for proper interpretation and

utilization.

4.3.4 SUMMARY

R T U R SRR T T T S R T S P

Flexural modulus and flexural strength data for multimodulus mate-
rials cannot be used to extract what happens individually in tension and
in compression. Instead, flexure behavior is simply some kind of averag-
ing of those two behaviors with shear effects thrown in for confusion,
Neglecting shear is ignoring an important behavioral aspect of most com-
posite materials. However, the inclusion oi shear effects in the flexure

test analysis may not be warranted because flexure data are not basic
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.data (i.e., not independent of other parameters) and therefore need not
be refined. Accordingly, the ASTM flexure test is very misleading when
applied to materials with distinctly different stiffnesses and strengths
in tension than in compression. Moreover, the typically nonlinear stress-
strain behavior of fiber-reinforced composite materials, especially
carbon-carbon, is another invalidating factor for the ASTM flexure test.
Designers who seem to want these flexure data are actually avoiding or
masking the real problems of nonlinear stress-strain behavior as well

as sometimes lTow and sometimes high shear modulus and shear strength of
many composite materials. (In fact, the span-to-depth ratio for the
flexure test specimen is probably so different from the actual designer's
application that shear plays entirely different roles in the specimen

and the design application.) The proper course of action is to develop
and use more rational analyses of nonlinear behavior and shear effects
coupled with better shear modulus and shear strength data that are re-
ported only in conjunction with the pertinent stress-strain curves to

failure.

4.4 FUTURE MODELING WORK

The Jones-Nelson-Morgan nonlinear material model must be fit to
representative carbon-carbon materials. Subsequently, the model must
be exercised in various theoretical-experimental correlation efforts to
validate the model.

The first step for each material is to fit the model to the mechani-
cal behavior in the principal material directions and at 45° to the prin-
cipal material directions for an orthotropic material (more complicated

mechanical behavior must be treated for anisotropic materials). The only
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practical way to perform these material model fits is to use the JNMDATA
computer program (discussed in Section 2.4) to ease the burden of plot-
ting the actual and approximate stress-strain and mechanical property
versus energy curves. However, before the JNMDATA program can be uti-
1ized, it must be extended to orthotropic materials and possibly to
anisotropic materials. These extensions are relatively straightforward.
With the extensions, the JNMDATA program will be an essential element

in the procedure for modeling carbon-carbon properties,

The next logical step in applying the material model is a series
of validations of the model by comparison of predicted and measured
strains for a representative set of loading conditions ranging from
simple to complex and including both mechanical and thermal loads. The
simplest such situation is uniaxial mechanical loading at some angle to
the principal material directions (other than the 45° angle at which E45
is measured. The next simplest loading condition is a biaxial stress
state such as occurs in the MDAC tubular test specimen for graphite [4-15].
Various carbon-carbon materials have been examined in the Southern

Research Institute thermal stress disk test which is described Yor graphi-
tic materials in Section 3.2. However, the response of a carbon-carbon
disk is not axisymmetric because of the orthotropic,character of carbon-
carbon, i.e., the disk does not have cylindrical orthotropy much less

the in=plane isotropy of a graphite disk. Accordingly, the analysis of

a carbon-carbon disk is a substantial escalation in difficulty over that
of a graphite disk. For example, the Jones-Nelson-Morgan nonlinear mate-
rial model could be incorporated in the ASAAS finite element program [4-16]
with modification for noncylindrical orthotropy or some three-dimensional

finite element computer program. Obviously, such analyses would involve
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considerable escalation in cost for computer time over the cost for
graphitic material analyses.

Jortner obtained preliminary measurements of strains in carbon-carbon
disks under a biaxial stress field due to high speed rotation [4-17].
Experimental results such as these could be used in yet another correla-
tion of theoretical and experimental results.

The next logical step in a hierarchy of correlations “etween theory
and experiment is to consider the thermal and mechanical locading for an
actual reentry vehicle nosetip. The level of analysis needed is identical
to that for the thermal stress disk test because of the noncylindrical
orthotropy of carbon-carbon. Accordingly, the nosetip analyses would be
quite expensive relative to those for graphitic materials.

Obviously, the foregoing series of correlations between theory and
expcriment is much more complicated than the series just completed for
ATJ-S graphite (completed with the exception of the nosetip strain corre-
lation). Moreover, because of the relatively high expense and variability
of the mechanical properties of carbon-carbon, the basic mechanical proper-
ties will not be available with the statistical confidence of graphitic
materials. Thus, there is no room in the continuing development of carbon-
carbon for time, scarce material, and money for tests such as the flexural
modulus and strength test which are not justified or useful. We must
strive to obtain the most and highest quality information from each and

every measurement,
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5. CONCLUDING REMARKS

oL e I A R S B

The major graphitic material analysis problem areas of biaxial

softening and multimodulus nonlinear behavior have been successfully

e e A A it L S i

treated with the various Jones-Nelson-Morgan nonlinear material models.

The models have been validated by comparison of predicted response with

h
@- measured response for a series of meaningful physical problems. These
?‘ problems include uniaxial off-axis and biaxial mechanical lcading as well
i% as biaxial thermal loading of an annular disk and multiaxial thermal and
El mechanical loading of a reentry vehicle nosetip. The capability to
%3 accurately predict stresses and strains in ATJ-S graphite under complex

{

E mechanical and thermal loading has been achieved.
On the other hand, the application of the Jones-Nelson-Morgan non-

b
LJL 1inear material model to carbon-carbon materials is just beginning. The

L1

i model is apparently well-suited for treatment of the stress-strain re- 1

q

Lﬁj sponse typical of carbon-carbon materials., However, this supposition i

E;J must be verified in a meaningful series of correlations between Jones-

;" Nelson-Morgan material model predictions and carefully measured response

?; for various mechanical and thermal loading problems.
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APPENDIX
DETERMINATION OF THE POINT OF ZERQ SLOPE

ON AN IMPLIED STRESS-STRAIN CURVE BY INTERVAL HALVING

The point of zero slope on an implied stress-strain curve or the
point at which the slope of the stress-strain curve has some prescribed
nonzero value must be determined before the 1inear extrapolations of the
stress-strain data described in Section 2.3.3 can be implemented. The
exhression for the slope of an implied stress-strain curve in Eg. (2.20)
1s a function of the stress and the strain. However, for a given strain
the corresponding implied stress is easily determined from the implied
stress-strain relation in Eq. (2.19) so the slope is a function of the
strain only. The strain e* at which the slope of the implied stress-
strain curve 1s zero or a prescribed nonzero value is the root of a
complicated nonlinear equation obtained by combining Eqs. (2.19) and
(2.20). This root is easily found by the numerical technique of inter-
val halving. Interval halving, in general, involves halving an interval
in which the root of a nonlinear expression 1ies until the root is en-
closed by a very small interval, This technique is described in this
appendix for finding the point of zero slope, but the general procedure
{s the same for finding a point of prescribed nonzero slope.

Before the interval halving technique can be applied, an interval
in which the strain c* lies must be determined. This interval is found
by choosing an initial strain at which the slope of the implied stress-
strain curve is positive and then increasing this strain by prescribed
increments until a strain level is ceached at which the slope of the im-
plied stress~strain curve is negative. For example, at the last stress-

strain data point in Fig. A~1, the slope of the implied stress-strain
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FIGURE A-1 STRAIN INCREMENTS FOR FINDING POINT
OF ZERO SLOPE ON A IMPLIED STRESS-STRAIN CURVE

curve is positive. The point of zero slope 1s located to the right of

this point. Thus, the strain €. corresponding to the last data point

0
in Fig. A-1 is used as the initial left bound of the interval in which
e* lies. Then, the strain €, is increased by a prescribed increment Ae,
and the slope is evaluated at this new strain €y The slope of the im-
plied stress-strain curve in Fig. A1 is positive at €9 SO €, is re-
placed as the left bound of the interval by the new strain Eq- Next,

£ is increased by Ae, and the slope is evaluated at £p+ Again, the
slope is positive so £y is replaced as the left bound of the interval

by € The incrementing process is continued until finally, at the
strain €3 the slope of the implied stress-strain curve is negative.

Thus, the strain e* is located in the interval €y < € < Eg. The size of

the prescribed increment Ac used in finding the interval surrounding e*
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is arbitrary but should be chosen wisely, The increment should not be

THEEET

B g
5k

so small that the strain has to be increased a large number of times be-

fore a point of negative slope is found. At the same time, the increment

T TRy

S A S S M PP ™

Ae should not be so large that the interval enclosing the point of zero
slope is exceedingly wide. However, due to the rapld convergence of the
method after interval halving is initiated,, reasonably large increments

. are preferable over very small increments.

ﬁi The interval By < B < Eq surrounding e* in Fig. A-1 is large and

0 must be decreased until the difference between the left and right bounds

g‘ of the interval is very small; i.e., until e* is known to a specified
o level of accuracy. The interval around the point of zero slope is de-

creased in an orderly manner by use of interval halving. The interval

hatving technique is easily described with the aid of the slupe-strain

N curve in Fig. A-2., The initial interval surrounding e*, the strain at

zero slope, is bounded in Fig. A-2 by € and €n the strains at which 3

T e R e e -
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FIGURE A-Z INTERVAL HALVING OF A SLOPE-STRAIN CURVE
TO FIND PQINT OF ZERQ SLOPE :
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the slope is positive and negative, respectively. The strains Lp and “n

A e P T e
gt S b

R S Al

in Fig. A-2 correspond to the strains ¢, and c5, respectively, in Fig.

A-1. The search for v* is initiated by evaluating the slope at the mid-

i
!
{
i

point of the interval bounded by Lp and Cne This initial strain is la-

beled £ in Fig. A-2. 1If the slope is negative at €q as in Fig. A-2 «e*

T T P T

lies/between tq and €9 If the slope is positive at Ep e* lies between

ey and £y Thus, £ 1ies in an interval half as large as the original

interval. The slope is then evaluated at the midpoint of this new inter-

val, i.e., at €9 in Fig. A-2. The slope at € is positive so c* lies be-

tween g, and Py Thus, the interval enclosing e* is halved again. This

-
interval halving process is continued until the interval around c¢* be- }
comes sufficiently small; i.e., until c* is known to a desired level of 5

A
accuracy. J

In conciusion, the point of zero slope on an implied stress-strain
curve is quickly and easily determined by the numerical technique of in-
terval halving. The process consists of two steps. First, an interval

of strain in which the strain corresponding to zero slope is located must

be determined, Then, this interval is halved until it becomes very small

about the strain corresponding to zero slope. A point of nonzero slope
on the implied stress-strain curve can be found by a procedure analogous

to the one for finding the point of zero slope. The only difference be-

tween the two procedures is that for finding a point of nonzeru pre-

-3

scribed slope, the strain at which the slope-strain curve crosses the

OV O A NI SN WS I-C CPY T ¥ Y-S

‘l' line %1‘1 = (g.:’_) * # 0 is desired instead of the strain at which the slope- 1
B ’ ’ :
g!“ strain curve crosses the slope axis %%-= 0. ]
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