OPTIMIZATION OF THE PRE-PUMPING NO/CO₂ CHEMISTRY IN A PURELY CHEMICAL HG LASER

K.D. Foster, D.R. Suelling
R.D. Suart and S.J. Arnold
OPTIMIZATION OF THE PRE-PUMPING NO/ClO\textsubscript{2} CHEMISTRY IN A PURELY CHEMICAL HC\textsubscript{2} LASER

by

K.D. Foster, D.R. Snelling, R.D. Stuart and S.J. Arnold

CENTRE DE RECHERCHES POUR LA DEFENSE
DEFENCE RESEARCH ESTABLISHMENT
VALCARTIER
Québec, Canada

January/janvier 1977

NON Classifié
RESUME

L'émission laser à 3.8 μm, provenant d'un laser au HCl purément chimique, a été utilisée pour recueillir des renseignements sur la chimie du prépompage par le système NO/ClO₂. La réaction entre les atomes de chlore produits chimiquement et l'iодure d'hydrogène fournit le mécanisme de pompage. Le laser a fonctionné efficacement selon trois différents modes cinétiques ou chimiques. Ces modes se différencient par la façon dont le chlore est introduit dans la cavité laser, soit directement sous forme d'atomes de chlore, de radicaux ClO ou de molécules de ClO₂. La comparaison des résultats expérimentaux de ces deux derniers modes avec ceux d'une simulation par ordinateur sur la disparition du HCl permet d'expliquer les caractéristiques principales des relations entre la réaction de pompage et la chimie du prépompage. (NC)

ABSTRACT

The laser output at 3.8 μm from a purely chemical HCl laser was used to obtain information about the pre-pumping chemistry of the NO/ClO₂ system. The reaction of chemically produced chlorine atoms with hydrogen iodide was the laser pumping reaction. Successful laser operation was confirmed using three different kinetic or chemical modes. These modes are distinguishable by whether the chlorine enters the optical (laser) region directly in the form of chlorine atoms, ClO radicals or parent ClO₂ molecules. A comparison of experimental results for the latter two modes, using computer simulation results for the time evolution of HCl, showed that the main features of the coupling of the pumping reaction to the pre-pumping chemistry are understood. (U)
TABLE OF CONTENTS

- **RESUME/ABSTRACT** ... i
- 1.0 INTRODUCTION ... 1
- 2.0 EXPERIMENTAL ... 4
- 3.0 COMPUTER SIMULATION OF CHEMICAL KINETICS 6
- 4.0 RESULTS AND DISCUSSION 7
 - 4.1 Operation in Three Chemical Modes 7
 - 4.2 The Transition from Mode II to Mode III: Split NO Addition Experiments 9
 - 4.3 Chemical Mode III 13
 - 4.4 Relaxation Processes 19
- 5.0 CONCLUSIONS ... 23
- 6.0 REFERENCES .. 24

FIGURES 1 to 10

APPENDIX A .. 26

TABLES A-I to A-IV

REFERENCES TO APPENDIX A
Lasers in which the population inversions are produced directly by elementary chemical reaction steps are termed 'chemical lasers'. This group can be further subdivided into: (a) purely chemical lasers, (b) electrically assisted chemical lasers, and (c) thermally pumped chemical lasers. In these three classes the lasing species, or its precursor, is produced: (a) by purely chemical means, (b) directly or indirectly by an electrical discharge, or (c) by thermal dissociation such as the combustor-type DF laser. To date, most chemical lasers have been based on vibration-rotation transitions and therefore produce radiation in the infrared region.

The hydrogen-halide chemical lasers have received the most attention. Of these, the HCl and DF chemical lasers have the particular advantage of producing laser emission in a wavelength region that is relatively free of absorption by atmospheric constituents. These systems operate in the 3.6 to 4.0 \textmu m region.

For a reaction system to operate as a chemical laser, a substantial fraction of the elementary reaction exothermicity must appear as vibrational energy of the newly formed product molecule. Vibrationally excited HCl may be formed from the reaction:

\[
\text{Cl} + \text{HI} \rightarrow \text{HCl}^+ + \text{I} \quad \Delta H = -32 \text{ kcal/mol},
\]

in which some 70% of the reaction energy appears as vibration in the HCl molecule (Ref. 1). This system has been made to lase in both pulsed (Ref. 2) and CW (continuous wave) regimes (Refs. 3,4). The achievement of efficient CW laser action in this system, in which the atomic Cl was produced in an electrical discharge, has been demonstrated by Linevsky and Carabetta (Ref. 5).
A chemical mechanism for the formation of low concentrations of atomic chlorine by the reaction of NO with C\(_2\)O\(_2\) has been described elsewhere (Refs. 6 - 8). The mechanism involves the reaction of nitric oxide with chlorine dioxide producing atomic chlorine by the following reaction steps:

\[
\begin{align*}
\text{NO} + \text{C}\&\text{O}_2 & \rightarrow \text{NO}_2 + \text{C}&\text{O} \\
& \quad k_2 = 3.3 \times 10^{-13} \text{ cm}^3 \text{s}^{-1} \\
\text{NO} + \text{C}&\text{O} & \rightarrow \text{NO}_2 + \text{C}&\text{l} \\
& \quad k_3 = 1.7 \times 10^{-11} \text{ cm}^3 \text{s}^{-1} \\
\text{C}&\text{l} + \text{C}\&\text{O}_2 & \rightarrow 2\text{C}&\text{O} \\
& \quad k_4 = 5.9 \times 10^{-11} \text{ cm}^3 \text{s}^{-1}
\end{align*}
\]

The above rate coefficients were measured by Clyne (see Appendix A for references and a discussion of available rate data used in the computer simulations).

Purely chemical laser action based on this reaction sequence has recently been demonstrated at DREV. First, laser action was realized at 10.6 \(\mu\)m in a purely chemical HC\(_2\)/CO\(_2\) transfer laser employing longitudinal flow (Ref. 7). Subsequently, purely chemical laser action in HC\(_2\) in a transverse flow system was achieved (Ref. 8). Although the pre-pumping chemistry of the above reactions has been discussed in these previous studies, the essential features of the reaction sequence are described here. The overall effect of stripping the two oxygen atoms from the C\(_2\)O\(_2\) molecule by NO is achieved with a molar ratio of NO/C\(_2\)O\(_2\) of 2/1. The Cl atom and the C\&O radical act as chain carriers. As long as C\(_2\)O\(_2 \) is present, atomic Cl produced in reaction (3) promotes chain branching in reaction (4). C\&O radicals build up initially because of reaction (4) and, to a lesser extent, reaction (2). Once all of the C\(_2\)O\(_2 \) has been consumed, reaction (3) converts this accumulated C\&O into Cl atoms.
As noted previously, efficient chemical laser action in HC\textsubscript{2} employing NO and C\textsubscript{2}O\textsubscript{2} for atomic Cl production was achieved recently (Ref. 8). The well known Cl + HI reaction was the pumping reaction in the above study. A maximum of 4 W output power at 3.6 to 4.0 \mu m was observed, corresponding to a chemical efficiency of 6\% based upon the total exothermicity of the pumping reaction. The maximum specific power relative to atomic chlorine was 288 J/gCl. Power levels of 2.0 to 2.5 W were typically observed. Laser emission originated from eight P-branch transitions of HC\textsubscript{2}35 from the v=3-2, v=2-1 and v=1-0 vibrational bands. Typical J values ranged from J=5 to J=7.

The principal goal of the present study was to ascertain whether an HC\textsubscript{2} chemical laser relying upon NO and C\textsubscript{2}O\textsubscript{2} for Cl atom production could be operated under conditions that would allow scaling to supersonic velocities. Unlike the 'combuster' type supersonic HF and DF lasers, a supersonic device based upon the NO/C\textsubscript{2}O\textsubscript{2} system would not rely on thermal dissociation to produce atomic species in a high-temperature, high-pressure plenum. It would instead employ the non-equilibrium chemistry inherent in the NO/C\textsubscript{2}O\textsubscript{2} system to produce atomic Cl. However, the attainment of supersonic velocities necessarily requires the acceleration of a gas from a plenum at relatively high pressures, and it is believed that the non-equilibrium production of atomic Cl in a plenum would be plagued with high recombination losses of Cl. For this reason, the scaling of the HC\textsubscript{2} laser based upon NO/C\textsubscript{2}O\textsubscript{2} would appear to be severely limited if not precluded altogether. If, however, it were possible to delay production of the atomic Cl until the expanded (low-pressure) region was reached the high pressure in the plenum would be of little consequence.

The initial successful operation of a subsonic-flow HC\textsubscript{2} laser with \textit{in situ} formation of Cl atoms was discussed previously (Ref. 8). The experiments reported herein are a continuation of this subsonic-flow...
work in which an attempt is made to fully exploit the flexibility of the NO/ClO₂ system and thereby gain an insight into the conditions of pre-pumping chemistry which would be required for successful supersonic scaling of a chemical HCl laser.

This work was conducted in mid-1975 under PCN 34B01 (formerly PCN 07C01, Project No. 97-01-39("Research on Chemically Excited Lasers").

2.0 EXPERIMENTAL

The experimental apparatus employed in the present experiments was described previously (Ref. 8). It consists of two main sections, a ClO₂ generator (Ref. 9, 10) and a transverse-flow laser. A schematic diagram of the arrangement appears in Fig. 1. The ClO₂ generator included columns containing NaClO₂ in which conversion of the input Cl₂ to ClO₂ occurred by the heterogeneous reaction:

\[\text{Cl}_2 + 2\text{NaClO}_2 \rightarrow 2\text{NaCl} + 2\text{ClO}_2 \]

(5)

Measures taken for the safe handling of ClO₂ have been described previously (Refs. 7, 8 & 10). The transverse flow laser was essentially the same as that described previously except for the following minor changes. The interior metal surfaces were covered with 1/16-in-thick teflon sheets. Moreover, for most experiments, an additional injector row was added 2 cm upstream from the row that was in line with the window section. The modified injector configuration therefore consisted of three injector rows extending across the 14-cm channel, with the last two rows located 10 cm and 12 cm downstream of the first row.

The optical cavity consisted of a 4-m-radius-of-curvature 'total' reflector of the protected metal type and a partially reflective decoupling flat having a nominal transmission of 4% at 3.85 μm.
Laser power measurements were performed with a Coherent Radiation power meter. Gas flows were monitored with Hastings-Raydist linear mass flow meters.

Typically, the experiments described herein were conducted under the following approximate flow conditions:

- Helium (through NaC\textsubscript{2}O\textsubscript{2} columns) 12 mmol s-1
- C\textsubscript{2}H\textsubscript{2} (through NaC\textsubscript{2}O\textsubscript{2} columns) 0.25 mmol s-1
- Auxiliary He 45 mmol s-1
- NO total 1-3 mmol s-1
- HI 0.5 mmol s-1

Total Pressure 3-4 torr

Average Linear Velocity \(\sim\) 220 m s-1

FIGURE 1 - Diagram of the Apparatus
3.0 COMPUTER SIMULATION OF CHEMICAL KINETICS

A computer simulation of the chemical processes taking place in the laser cavity has been carried out for a variety of experimental conditions. A complete list of the chemical reactions considered together with the relevant rate constants is given in Appendix A. The computer program used to calculate the time evolution of the reacting species is 'Dolphin', a general program for the treatment of chemical rate equations (Ref. 11).

A complete description of these calculations will be given in a later publication (Ref. 12)); hence, only an outline of the method will be included here. The following assumptions were made in the computations: mixing was instantaneous and temperature in the gas stream was constant at 300 K. However, mixing is not instantaneous and may extend into the optical region. The assumption of instantaneous mixing is nevertheless employed in the computer simulations since kinetic trends and processes, rather than fluid dynamic ones, are of primary interest here. In a real experimental apparatus, the effect of a finite mixing time would be one of limiting the rates of certain processes having large rate coefficients. The reaction rate would therefore be 'diffusion controlled'. (Although this effect reduces the accuracy of the computer-generated specie concentrations at early reaction times, it should not alter conclusions about kinetic trends.) The second assumption was dictated principally by the fact that the majority of the kinetic rate data required have been determined for 300 K only. Thermochemical considerations suggest that the temperature in the laser region is below 400 K at the optimum diluent flow rate.

The HCl formation has been taken as a 'figure of merit' rather than the gain on each of the possible vibrational-rotational transitions. In taking total HCl as a figure of merit we have neglected vibrational-
vibrational deactivation of excited HCl. This process, as well as other deactivation processes, will lead to a scrambling of the initial population distribution and a consequent loss of gain and, hence, extractable laser power. However, since no reliable model of the deactivation process is available at this time we have chosen to model the HCl formation reactions only. Consequently, a detailed knowledge of the time dependence of the temperature and of the effect of relaxation processes on the individual level populations was not required.

4.0 RESULTS AND DISCUSSION

4.1 Operation in Three Chemical Modes

An inherent advantage of the chemical HCl laser based on the reaction of NO with C₂O₂ lies in its flexibility. The possibility of operating the laser in different chemical modes was mentioned previously (Ref. 8). These may be categorized and described as:

MODE I - Chemical Cl production followed by HI addition. The first paper (Ref. 8) dealt primarily with this mode that consists of an upstream injection of NO sufficient to convert all of the C₂O₂ to atomic Cl. Hydrogen iodide is then added at a downstream location to produce vibrationally excited HCl. This mode of operation is directly analogous to the electrically assisted HCl laser (Ref. 3-5), in which atomic Cl is produced electrically and subsequently allowed to react with HI.

MODE II - Preconversion of all or part of the initial C₂O₂ to C₂O radicals followed by NO and HI addition, the 'Split NO Method'. Preliminary results relying on this method were reported previously (Ref. 8). Operation in this mode allows storage of the atomic Cl in the form of the C₂O radical.
until needed. This is accomplished with a reduced NO flow through the upstream injectors. The requisite Cl for the pumping reaction is later released with a final addition of NO and HI which initiates the reaction steps:

\[
\text{NO} + \text{ClO} \rightarrow \text{NO}_2 + \text{Cl}
\]

(3)

\[
\text{Cl} + \text{HI} \rightarrow \text{HCl} + \text{I}
\]

(1)

MODE III - Single-Step Chemistry Mode: If the logic upon which the Split NO Flow Method is based is extended, then the possibility of a third chemical mode arises. This mode of operation would allow for the occurrence of all requisite chemical reactions and the pumping step after one simple addition of NO. The Cl would thereby be stored in its most stable useable form, namely, as the parent ClO₂ molecule. In this configuration the mainstream may consist of ClO₂ and HI with a suitable diluent, and reaction would commence upon addition of NO. It was anticipated that the chain nature of the reaction sequence would put an upper limit on the permissible concentration of HI since HI would remove chain carriers. As will be noted later, however, experiments showed that with an excess of NO, the laser did not rely on a chain mechanism, and no such upper limit on the HI concentration was apparent.

![Figure 2 - Injector Configuration](image-url)
The present paper deals primarily with MODE II and MODE III. The injector configuration that was employed for these experiments is shown in Fig. 2. In principle, one downstream injector row for the NO #2 and HI could be used. However, experiments indicated that when the NO #2 and HI were previously mixed in a high-pressure region (i.e., in either the HI or NO #2 line), molecular iodine formation resulted which clogged the injector holes. For this reason, an additional injector row was inserted 2 cm upstream of the final injector so that NO #2 and HI were added separately, yet as close together as the flow geometry of the apparatus would allow. It has been shown previously that there is sufficient time (typically 500 μs) between the NO #1 and downstream injectors to allow the chain chemistry to go to completion (Ref. 8).

4.2 The Transition from MODE II to MODE III: Split NO Addition Experiments

The dependence of HC& laser power as a function of the fraction of total NO entering through the upstream injector row at four different total NO flow rates is illustrated in Fig. 3. For each total NO flow, the power was measured at distances of 1 cm and 1.8 cm downstream of the NO #2 injector. These two positions on the optical axis correspond to flow times of ~50 and ~85 μs from the final injector. The HI and ClO₂ flow rates for these experiments were 1000 SCCM. The ClO₂ flow rate is approximate since it was based on the ClO₂ input to the columns and an assumed value of 85% conversion of the Cl to ClO₂ (each molecule of Cl₂ can produce two molecules of ClO₂) in the NaClO₂ columns. Quantitative measurements of the output of ClO₂ from the columns indicate a typical conversion of ~80% for the experimental conditions used here.
FIGURE 3 - Dependence of the Laser Power on the "Percentage NO (TOTAL) through the Upstream Injectors" for different total NO flows. The open circles (O) correspond to results with the laser axis 1.8 cm from the NO #2 injector. The half-open circles apply to results with the laser axis 1 cm from NO #2.
For total NO, NO\textsubscript{T}, flow values of 2000, 3000, 4000 and 5000 SCCM, the laser power reached a maximum at 45%, 35%, 30% and 20% respectively of total NO\textsubscript{T} through the upstream injectors, corresponding to absolute flow rates of NO through the upstream injectors of 900, 1060, 1200 and 1000 SCCM. These flows were approximately equivalent to the input C\textsubscript{2}O\textsubscript{2} flow rate, which corresponded to the complete conversion of C\textsubscript{2}O\textsubscript{2} to C\textsubscript{2}O radicals before reaching the HI and NO \#2 inlets. One would expect the output power to increase to a plateau value as the percent NO flowing in the upstream injector was increased. In fact, the power attained a certain value but then began to decrease. This was a result of the geometrical constraints of the laser that made the point of HI injection slightly upstream of, rather than coincident with, the NO \#2 injector. As the fraction of NO through the upstream injectors was increased, an NO flow through the upstream injectors was reached that corresponded to complete conversion to C\textsubscript{2}O radicals. Above this percentage of NO, the C\textsubscript{2}O radicals were converted to atomic C\textsubscript{2}, which reacted with HI to form HC\textsubscript{2} at the HI injector. This HC\textsubscript{2} was wasted, however, since it was largely deactivated before reaching the optical axis located 3 or 4 cm downstream of the HI injectors. For this reason, the laser power decreased as the point of 100% NO\textsubscript{T} through the upstream injectors was approached.

A number of other features in Fig. 3 should also be pointed out. It appears that the distance at which maximum gain occurred moved upstream as the total NO (NO\textsubscript{T}) was increased to a point where the power was higher at 1 cm than at 1.8 cm for a flow of NO\textsubscript{T} of 5000 SCCM. This NO flow is 2.5 times the stoichiometric requirement of NO. For lower total NO\textsubscript{T} flows, the highest power was observed at the downstream optical axis location.

Figure 4 shows modelling results for the time dependence of formation of HC\textsubscript{2} at various extents of preconversion of C\textsubscript{2}O\textsubscript{2} into C\textsubscript{2}O radicals. These curves correspond to initial concentration ratios
of C_2O_2: (total) NO$_2$: HI of 1:5:1. The C_2O_2 concentration (1×10^{15} cm$^{-3}$) was approximately equal to that used in the laser. The bottom curve corresponds to no preconversion, or MODE III operation, while the top curve corresponds to complete preconversion, or MODE II operation. In comparison, it should be noted that the laser axis is located in a region for which the flow time from the injection is ~50 to ~85 µs. At early reaction times the beneficial effect of even slight extents of preconversion in optimising the rapid formation of HCl is apparent. This appears to be borne out by experimental curves in Fig. 3.

\[[\text{OCIO}] = [\text{HI}] = 1 \times 10^{15} \]
\[[\text{NO}] = 5 \times 10^{15} \]

FIGURE 4 - Total HCl formation as a function of the extent of preconversion of C_2O_2 to C_2O
4.3 Chemical MODE III

The HCl power corresponding to zero percent NO through the upstream injectors in Fig. 3 corresponds to operation in the chemical MODE III described previously. In this mode, in which all of the requisite chemistry commences at the final NO injection point, the power is highest under conditions of high total NO\textsubscript{T} flow and at the downstream optical axis location. A subsequent experiment under conditions of somewhat higher total NO\textsubscript{T} flow, in which the NO flow was beyond the range of the 5000 SCCM flow meter, resulted in an output power of 1.0 W being observed in this mode, i.e., MODE III.

4.3.1 Effect of HI Flow Rate on HCl Laser Power

The dependence of the laser output power on the HI flow rate was examined for MODE III operation. The total flow of NO\textsubscript{T}, 4100 SCCM, was directed entirely through the downstream injector row. This dependence is shown in Fig. 5. The laser power increases rapidly with increasing HI and reaches a maximum value of 0.3 W at an HI flow of about 1000 SCCM. Further addition of HI leads to only a slight reduction in power. This result was somewhat surprising since it was believed that the laser power would drop precipitously at high HI flows due to overloading of the chemical chain. In other words, if too many Cl atoms were withdrawn from the chain cycle by reaction with HI, then it was expected that the all important branching reaction:

\[\text{Cl} + \text{C}_2\text{O}_2 \rightarrow 2\text{ClO} \quad (4) \]

would be quenched. A possible explanation for the absence of this rapid decrease of laser power with HI flow at high HI flows was found when the kinetics corresponding to MODE III operation were modelled.

The calculated time dependence of HCl formation under MODE III conditions at various HI initial concentrations is shown in Fig. 6. It will be recalled that this corresponds to single step NO addition, in
which all of the chemistry, including laser pumping, is promoted in one step. The initial C\&O\textsubscript{2} and NO concentrations, \(10^{15}\) and \(4 \times 10^{15}\) cm\(^{-3}\) respectively, are similar to the experimental conditions which prevailed for Fig. 5. It will be noted that HC\& formation is virtually independent of HI at reaction times less than 150 \(\mu\)s. At high HI concentrations not enough Cl is allowed to react with C\&O\textsubscript{2} to make the branching reaction Cl + C\&O\textsubscript{2} + 2C\&O the dominant source of C\&O radicals. Because of the higher NO concentration, however, the reaction takes on a non-chain character involving:

\[
\begin{align*}
\text{NO} + \text{C\&O\textsubscript{2}} & \rightarrow \text{NO}_2 + \text{C\&O} \quad (2) \\
\text{NO} + \text{C\&O} & \rightarrow \text{NO}_2 + \text{Cl} \quad (3) \\
\text{Cl} + \text{HI} & \rightarrow \text{HCl}^+ + \text{I} \quad (1)
\end{align*}
\]

with the C\&O radicals provided by reaction (2).

Because of the absence of the branching step, the overall reaction time is greatly increased. The build-up of HC\& is then far from complete at \(\approx 80 - 100\) \(\mu\)s, which is the approximate reaction time 'seen' on the laser axis. The observed low power levels and insensitivity to HI at the high HI flow shown in Fig. 3 would therefore be consistent with this kinetic model.

FIGURE 5 - HC\& Laser Power vs HI flow. Laser axis is 1.8 cm from NO \#2 Flows correspond to Kinetic Mode III with NO \#1 = 0 and NO \#2 = 4100 SCCM.
4.3.2 The Importance of Initial Step: NO + C\textsubscript{2}O\textsubscript{2}

Consider the pre-pumping reaction sequence for the NO + C\textsubscript{2}O\textsubscript{2} system:

\begin{align*}
\text{(2)} \quad \text{NO} + \text{C}\textsubscript{2}O\textsubscript{2} & \rightarrow \text{NO}_2 + \text{C} + \text{O} \\
\text{(3)} \quad \text{NO} + \text{C}\textsubscript{2}O & \rightarrow \text{NO}_2 + \text{Cl} \\
\text{(4)} \quad \text{Cl} + \text{C}\textsubscript{2}O\textsubscript{2} & \rightarrow 2\text{C}\textsubscript{2}O
\end{align*}

As discussed above, for conditions of large excess NO flow and small extents of preconversion, reaction (2) should become more important relative to reaction (4). Under these conditions, the existence or not of an activation energy for reaction (2) is important.
(See Ref. 2 for a discussion of the possible temperature dependence of these reactions). Figure 7 shows the effect of a two-fold increase in the rate coefficient for reaction (2) on the HC\% formation rate. A simple computation assuming an Arrhenius type temperature dependence of the rate coefficient reveals that if reaction (2) had an activation energy of \approx 4 \text{ kcal/mol}, the rate coefficient at 335 K would be twice its value at 300 K. Such temperature variations are possible in the present HC\% laser. The time required for maximum HC\% formation is markedly reduced if the rate constant for the \text{NO} + \text{C}2\text{O}_2 \rightarrow \text{NO}_2 + \text{C}2\text{O} reaction step is increased twofold. The laser power may therefore be sensitive to temperature for kinetic reasons as well as for optical gain reasons.

\[[\text{H}] \cdot [\text{OCIO}] = 1 \times 10^{15} \text{ cm}^{-3} \]
\[[\text{NO}] = 5 \times 10^{15} \text{ cm}^{-3} \]
\[k = 6.8 \times 10^{-13} \text{ cm}^{3}\text{s}^{-1} \]
\[k = 3.4 \times 10^{-13} \text{ cm}^{3}\text{s}^{-1} \]

FIGURE 7 - Effect of Changing the Rate Coefficient for \text{NO} + \text{C}2\text{O}_2 \rightarrow \text{NO}_2 + \text{C}2\text{O} on the total HC\% formation
The dependence of the laser power on the diluent helium flow was examined for MODE III operation and is shown in Fig. 8. Also shown as a solid curve, at the right-hand side ordinate, is a calculated maximum adiabatic temperature for each diluent helium flow. Fluid dynamic factors such as the momentum flux ratio between the free stream and the injected gases, as well as the temperature dependence of relevant molecular diffusion coefficients, will no doubt play a role in affecting the shape of the curve in Fig. 8. However, the observed maximum in Fig. 8 may also reflect the existence of an activation energy in reaction (2). An excess of He may reduce the pumping rate by lowering the ambient temperature.

FIGURE 8 - Dependence of HCÐ Laser Power on diluent Helium Flow. Chemical MODE III
The results which have been discussed above, particularly the model generated curves of Fig. 5, show that even with large excesses of NO and complete preconversion of the C\textsubscript{2}O\textsubscript{2} to C\textsubscript{2}O radicals, approximately 100 us are required before the formation of HCl is essentially complete. For scaling reasons, it would be desirable to increase the rate of HCl formation. In principle this may be accomplished by operating under conditions in which both C\textsubscript{2}O\textsubscript{2} and NO are substantially in excess of the HI initial concentration. Unfortunately, the capacity of the C\textsubscript{2}O\textsubscript{2} generator used for the present experiments was not sufficient to allow large excesses of C\textsubscript{2}O\textsubscript{2} and, therefore, an experimental confirmation of the forementioned statement. The time dependence of the formation of HCl as predicted by the model, under conditions of a threefold excess of C\textsubscript{2}O\textsubscript{2} over HI for various NO flows, is shown in Fig. 9. These curves demonstrate that in the single-step addition regime, in which none of the C\textsubscript{2}O\textsubscript{2} is preconverted to C\textsubscript{2}O (i.e., MODE III), it is possible to effect complete formation of HCl in about 80 us at the HI concentration levels that prevail in the present experiment. The modelling calculations show that operation under conditions of excess C\textsubscript{2}O\textsubscript{2} and NO would ensure that sufficient Cl chain carriers are kept in the chain cycle to allow the chain-branching step \textipa{\textsubscript{2}Cl + C\textsubscript{2}O\textsubscript{2} \rightarrow 2C\textsubscript{2}O} to proceed parallel to the HCl forming reaction \textipa{\textsubscript{2}Cl + HI \rightarrow HCl+ + I}.

As mentioned previously, the experiments described here were carried out for conditions corresponding to chemical MODES II and III. The power levels that were obtained did not exceed or even equal those observed previously for MODE I operation.
4.4 Relaxation Processes

The relaxation processes for HCl_v have been discussed in detail in Ref. 12. At present, insufficient rate data exists to adequately describe the $V-V$ exchange processes of HCl with HCl or HCl with HI. Adequate rate data exists only for the relaxation ($V\rightarrow TR$) of HCl_v by Cl, Cl$_2$, NO and HCl ($v=0$). The deactivation of HCl_v

$$\text{HCl}_v + X \rightarrow \text{HNCl}_{v-1} + X$$
by each of these species was considered separately in order to determine which of these collision processes was of prime importance. Deactivation of HCX_v by the species NO$_2$, I, I$_2$, O$_2$, HI ($v=0$) and NOC$_2$, all of which may be present in appreciable concentrations at various times in the evolution of the lasing mixture, could not be considered due to the lack of rate data.

If one considers the number of diatomic and polyatomic species present in the NO/C&O$_2$/HI system, one may reasonably inquire about possible ways in which HCX may lose its vibrational energy to various collision partners. Specifically, is it possible to account for the lower powers observed for MODES II and III operations than for MODE I operation by differences in the extent of relaxation for the three modes? Since the vibrationally excited HCX, initial HI and product NO$_2$ concentrations were about the same for all three modes of operation, self-relaxation by HCX and V-V transfer from HCX to HI or to NO$_2$ cannot account for the observed differences in power levels.

Other possible processes which may deplete the HCX$_v$ concentration are:

$$\text{HCX}_v + \text{C}_2 \rightarrow \text{HCX}_{v-1} + \text{C}_2 \quad (6)$$

$$\text{HCX}_v + \text{NO} \rightarrow \text{HCX}_{v-1} + \text{NO}(v=1) \quad (7)$$

Collisions between HCX$_v$ and C&O$_2$ and C&O may also deactivate HCX$_v$. Process (6) is known to be rapid (Ref. 13). Indeed, the speed of this process was one of the reasons why it was believed that operation in MODES II and III might give even higher output powers than that in MODE I, since the ambient Cl atom concentration should be much lower in MODES II and III operations. Since power levels are lower in MODES II and III operations, another process, or processes, apparently more than offsets the advantage of low Cl concentration. Generally, MODES II and III are characterized by higher ambient C&O, C&O$_2$ and NO concent-
rations than is MODE I. In MODE II operation, in which the ClO₂ is preconverted to ClO radicals, intimate contact is possible between HCl⁺ and ClO. In MODE III, the parent ClO₂ molecule may undergo many collisions with HCl⁺. Little is known about the transfer of vibrational quanta from HCl⁺ to ClO₂.

In most of the MODE II and MODE III experiments described in the present paper the optimum NO concentration substantially exceeded the levels that prevailed in MODE I operation. The possible depletion of HCl⁺ by V-V transfer to NO must therefore be considered. The v=1→0 vibrational level spacing is 2886 cm⁻¹ for HCl and 1876 cm⁻¹ for NO. The probability of a transfer from HCl⁺v to NO has been measured by Zittel and Moore (Ref. 14) as 4.2 x 10⁻⁴ despite the large energy discrepancy of 1010 cm⁻¹. The corresponding energy discrepancy for HCl(v=2→1)/NO is 906 cm⁻¹ and for HCl(v=3→2)/NO it is 803 cm⁻¹. An approximate correlation between the transfer probabilities and the energy defect (Ref. 14) was employed to estimate the probabilities for transfer of a vibrational quantum from HCl⁺v to NO and from HCl⁺v=3 to NO. For this calculation, a reduced transfer probability \(P(v\rightarrow v-1) \) was determined from the energy defect. With the experimental value of \(0.42 \times 10^{-13} \) for \(v=1 \), values for \(v=2, 3 \) and 4 were calculated to be \(0.65 \times 10^{-3} \), \(1.1 \times 10^{-3} \) and \(1.7 \times 10^{-3} \) respectively. Some loss of HCl quanta is expected at the highest NO concentration used in the present experiments (i.e., \([\text{NO}] \approx 5 \times 10^{15} \text{ cm}^{-3}\)). Based upon the above probabilities, within the time of interest (\(\approx 200 \mu s \)), loss of HCl⁺v is expected particularly from HCl⁺v=3,4.

Figure 10 gives a plot of HCl laser power vs NO input. The experiment was performed using only two injector rows. All of the NO was added through the upstream rows and the HI was added downstream near the optical region. This experiment therefore corresponded to operation in chemical MODE I. The curve was extrapolated to the highest NO level prevalent in MODE II and MODE III operations. The
extrapolated output power at this NO input rate was only about one half the maximum observed power. Under these experimental conditions, the total pressure and NO concentration were too low to account for this power decrease through NO catalyzed recombination losses of Cl (Ref. 15). This result would suggest that the increased importance of V-V HCl \(^+\) - NO transfer in MODES II and III operations relative to MODE I operation may account for the reduced laser output in MODES II and III.

\[\text{FIGURE 10 - HCl LASER POWER VS NO FLOW RATE MODE I.} \]
5.0 CONCLUSIONS

The regime that was studied previously (Ref. 8), and referred to in this text as MODE I, comprises the chemical formation of atomic Cl with subsequent addition of HI. The second, or MODE II, involves the formation of ClO radicals by a reduced initial addition of NO followed by a subsequent addition of NO and HI. The third kinetic mode of operation, MODE III, is a one-step addition procedure, in which the requisite chemistry and chemical laser pumping are performed in situ by a single addition of NO. Typical laser output powers of chemical MODES II and III were less than observed previously for MODE I (Ref. 8).

For the single-step addition (MODE III) experiments described here, the NO was in large excess of ClO₂ and HI. Under these conditions, the reaction sequence appears to be largely non-chain in character. It is believed that this is primarily due to the first reaction step:

\[
\text{NO} + \text{ClO}_2 \rightarrow \text{NO}_2 + \text{ClO}
\]

becoming more important relative to the chain-branching step

\[
\text{Cl} + \text{ClO}_2 \rightarrow 2\text{CO}
\]

Experiments also suggest that the above initial reaction step involving NO may have an activation energy associated with it.

Modelling calculations indicate that the chain character of MODE III operation may be restored if both ClO₂ and NO are in excess of HI. Excess ClO₂ effectively compensates for the presence of HI, which removes Cl atoms and thereby acts as a load on the chain cycle.

Evidence has been found which indicates that the discrepancy in the output powers observed in the three modes of operation is at least partly due to the increased importance of \(\text{HC}_2 \rightarrow \text{O} \) V-V energy transfer in MODES II and III as compared to MODE I. This is a result of the high optimum NO concentrations found in MODES II and III operations.
It is believed that chemical laser efficiencies for operation in MODES II and III can be augmented if (a) the ClO₂ flow is in sufficient excess of HI to ensure efficient operation of the chain and, therefore, a rapid pumping rate of vibrationally excited HCl; and (b) the NO flow is not greater than the stoichiometric requirement of 2/1 in (a) in order to minimize V-V relaxation losses by HCl⁺ - NO collisions.

6.0 REFERENCES

Suart, R.D., Snelling, D.R. and Arnold, S.J., "Purely Chemical Laser Based on Chlorine Atom Reactions: ClO₂ - NO Reaction as Chlorine Atom Source", DREV R-4014/76. UNCLASSIFIED.

A generalized computer model describing the chemical processes taking place in the laser has been developed. The mechanics of the computer simulation are described in detail in "DOLPHIN, A General Program for the Treatment of Chemical Rate Equations" (Ref. 11). It is sufficient to note that the time evolution of the reaction ensemble was simulated using a Runge-Kutta numerical integration routine.

This Appendix consists of a listing of the processes considered in a computer simulation of reacting mixtures typically used in practice during laser experiments. Table A-I lists those reactions used to produce chlorine atoms and Table A-II lists those used to generate vibrational excitation during the reaction of Cl atoms with HI and the subsequent V-V exchange reactions of the HCl thus formed. Additional possible V-V exchange reactions between HCl - HI are not considered due to the lack of rate data. Table A-III lists those V-T transfer reactions of HCl for which reliable rate data are available. No rate data are available for the V-T transfer of HCl with the species, NO₂, I₂, I, O₂, HI or NOCl, all of which are present in appreciable concentrations at various times during the evolution of the reacting mixture. Table A-IV gives additional reactions of iodine atoms.

A more detailed account of the modelling studies is given in Ref. 12 of text. This includes an appraisal of the relevant rate data.

The tables are printed directly by a line printer with the following notations being used: 1.0E-11 = 1.0 x 10⁻¹¹ and Cl₂=Cl₂ etc.

Reference notes for: Tables A-I to A-IV.
A. Rate constants calculated for 300 K; M = He

\[k_f \]

B. The overall rate constant for the reaction \(2\text{CO} \rightarrow \text{products} \) is given in Ref. A-3 as \((1.3 \pm 0.1) \times 10^{-12} \exp (-1150 \pm 50/T) \). Clyne et al (Ref. A-10) indicate that at 298 K reaction (4) accounts for 4.0% of the total reaction. The ratio of reaction (5) to reaction (6) is not accurately known. Watson (Ref. A-11) indicates that \(k_5/k_6 \approx 1 \) at low pressures (1 to 3 torr) while Clyne et al (Ref. A-10) state that reaction (5) is a major reaction channel in the second order decay of C\(\text{CO} \). For the present calculations, \(k_4 = k_6 = 0 \) and \(k_5 = k_f \).

C. A value of the rate constant, \(k_7 \), was calculated from the relationships:

\[
k_7 = \frac{k_{\text{equil}}}{k_8} = \frac{e^{-\Delta H/RT}}{k_8} e^{\Delta S/R}
\]

where \(k_8 = 5.6 \times 10^{-34} \) and the required thermodynamic data from Ref. A-12.

D. A value of the rate constant \(k_{10} \) was obtained from the ratio \(k_9/k_{10} = 15 \) of Ref. A-13 and the value of \(k_9 = 1.56 \times 10^{-10} \) from Ref. A-5.

E. Basco and Dogra (Ref. A-14) in a study of C\(\text{CO} \) recombination over a similar total pressure range to that of Johnson et al (Ref. A-5) found no dependence of the overall rate constant on M. For the present calculations \(k_{11} = 0 \).

F. The value of the rate constant \(k_{16} \) is assumed to be equal to that of \(k_{13} \).
G. The value of the overall rate constant

\[\text{C}_2 + \text{HI} (v=0) + \text{HCl} (v=n) + \text{I} \quad n=0,1,2,3,4 \]

is \(1.64 \times 10^{-10} \) (Ref. A-15). Anlauf et al (Ref. A-16) give the relative rates of formation of \(\text{HCl} \) into \(v=1,2,3,4 \) as 0.30:0.6:1.0:0.7. It was assumed that the rate of formation into \(v=0 \) was 1/3 of that into \(v=1 \).

H. The values of the rate constants for

\[\text{C}_2 + \text{III} (v=1) \rightarrow \text{HCl} (v=n) + \text{I} \quad n=0,1,2,3,4 \]

are assumed to be the same as that of G.

I. The average value of the rate constants given in Ref. A-17-A-19 was used.

J. No reliable values of the rate constants for reactions (29) to (46) exist. Consequently \(k_i \) (29 \(\leq i \leq 46 \)) is set equal to zero for the present calculations. A detailed discussion of the V-V transfer processes occurring for \(\text{HCl} \) is given in Ref. A-20.

K. The values of the rate constants for reactions (50) to (54) were obtained from the ratios given in Ref. A-23, and the value of \(k_{49} = 8.8 \times 10^{-12} \) is given in Ref. A-22.

L. The values of the rate constants for reactions (55) to (63) were obtained by interpolation from the data of Ref. A-23.

M. \[k[\text{HCl}(v=n)] = nk[\text{HCl}(v=1)] \]

N. The average value of the rate constants given in Ref. A-23-A-25 was used.
The value of the rate constant for the reaction

\[\text{I} \left(^2\text{P}_1 \right) + \text{NOCl} \rightarrow \text{ICl} + \text{NO} \]

\[k = 6.2 \times 10^{-12} \text{ given in Ref. A-28 is assumed to be the same as that for the comparable reaction with I} \left(^2\text{P}_{3/2} \right). \]

Clyne et al (Ref. A-31) states that the heteroatom recombination

\[\text{I} + \text{Cl} + \text{M} \rightarrow \text{ICl} + \text{M} \]

is noticeably faster than the homoatom recombination

\[\text{Cl} + \text{Cl} + \text{M} \rightarrow \text{Cl}_2 + \text{M} \]

Consequently the value of the rate constant for reaction (12) was multiplied by 1.5 to give an approximate value for the rate constant 81.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H + H₂ → H₂O</td>
<td>1.66 × 10⁻¹³</td>
<td>1</td>
</tr>
<tr>
<td>H + H₂ → H₂O</td>
<td>1.66 × 10⁻¹³</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE A-II

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H + H₂ → H₂O</td>
<td>1.66 × 10⁻¹³</td>
<td>1</td>
</tr>
<tr>
<td>H + H₂ → H₂O</td>
<td>1.66 × 10⁻¹³</td>
<td>1</td>
</tr>
</tbody>
</table>

UNCLASSIFIED
TABLE A-III

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>$k_{45} = 6.5 \times 10^{-12}$</td>
<td>27</td>
</tr>
<tr>
<td>50</td>
<td>$k_{50} = 1.5 \times 10^{-12}$</td>
<td>23A</td>
</tr>
<tr>
<td>51</td>
<td>$k_{51} = 4.1 \times 10^{-12}$</td>
<td>23A</td>
</tr>
<tr>
<td>52</td>
<td>$k_{52} = 1.2 \times 10^{-12}$</td>
<td>23A</td>
</tr>
<tr>
<td>53</td>
<td>$k_{53} = 5.5 \times 10^{-12}$</td>
<td>23A</td>
</tr>
<tr>
<td>54</td>
<td>$k_{54} = 1.4 \times 10^{-12}$</td>
<td>23A</td>
</tr>
<tr>
<td>55</td>
<td>$k_{55} = 7.5 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>56</td>
<td>$k_{56} = 8.7 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>57</td>
<td>$k_{57} = 7.3 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>58</td>
<td>$k_{58} = 1.5 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>59</td>
<td>$k_{59} = 5.2 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>60</td>
<td>$k_{60} = 4.6 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>61</td>
<td>$k_{61} = 4.3 \times 10^{-12}$</td>
<td>L</td>
</tr>
<tr>
<td>62</td>
<td>$k_{62} = 1.9 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>63</td>
<td>$k_{63} = 2.5 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>64</td>
<td>$k_{64} = 3.8 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>65</td>
<td>$k_{65} = 4.6 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>66</td>
<td>$k_{66} = 1.1 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>67</td>
<td>$k_{67} = 6.8 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>68</td>
<td>$k_{68} = 1.9 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>69</td>
<td>$k_{69} = 1.5 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>70</td>
<td>$k_{70} = 5.8 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>71</td>
<td>$k_{71} = 6.7 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>72</td>
<td>$k_{72} = 1.8 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>73</td>
<td>$k_{73} = 2.3 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>74</td>
<td>$k_{74} = 5.0 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>75</td>
<td>$k_{75} = 4.0 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>76</td>
<td>$k_{76} = 5.0 \times 10^{-12}$</td>
<td>24</td>
</tr>
</tbody>
</table>

TABLE A-IV

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>$k_{79} = 6.2 \times 10^{-12}$</td>
<td>C</td>
</tr>
<tr>
<td>80</td>
<td>$k_{80} = 6.0 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>81</td>
<td>$k_{81} = 1.0 \times 10^{-12}$</td>
<td>24</td>
</tr>
<tr>
<td>82</td>
<td>$k_{82} = 4.17 \times 10^{-12}$</td>
<td>30</td>
</tr>
</tbody>
</table>
REFERENCES

APPENDIX A

A-9 Clyne, M.A.A. and White, I.F., unpublished data, see page 2882
of Clyne, M.A.A. and Cruse, H.W., Trans. Faraday Soc. 67, 2869-
2885 (1971).

A-11 Watson, R.T., "Chemical Kinetics Data Survey. VIII. Rate Constants of C\textsubscript{2}O\textsubscript{x} of Atmospheric Interest", NBSIR 74-510, page 28.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
"Optimization of the Pre-Pumping NO/C1O: Chemistry in a Purely Chemical HCl Laser"
by K.D. Foster, D.R. Snelling, R.D. Suart and S.J. Arnold

L'émission laser à 3.8 μm, provenant d'un laser au HCl purement chimique, a été utilisée pour recueillir des renseignements sur la chimie du prépompage par le système NO/C1O. La réaction entre les atomes de clorure produits chimiquement et l'iode d'hydrogène fournit le mécanisme de pompage. Le laser a fonctionné efficacement selon trois différents modes cinétiques ou chimiques. Ces modes se différencient par la façon dont le clorure est introduit dans la cavité laser, soit directement sous forme d'atomes de clorure, de radicaux C1O ou de molécules de C1O2. La comparaison des résultats expérimentaux de ces deux derniers modes avec ceux d'une simulation par ordinateur sur la disparition du HCl permet d'expliquer les caractéristiques principales des relations entre la réaction de pompage et la chimie du prépompage.

"Optimization of the Pre-Pumping NO/C1O: Chemistry in a Purely Chemical HCl Laser"
by K.D. Foster, D.R. Snelling, R.D. Suart and S.J. Arnold

L'émission laser à 3.8 μm, provenant d'un laser au HCl purement chimique, a été utilisée pour recueillir des renseignements sur la chimie du prépompage par le système NO/C1O. La réaction entre les atomes de clorure produits chimiquement et l'iode d'hydrogène fournit le mécanisme de pompage. Le laser a fonctionné efficacement selon trois différents modes cinétiques ou chimiques. Ces modes se différencient par la façon dont le clorure est introduit dans la cavité laser, soit directement sous forme d'atomes de clorure, de radicaux C1O ou de molécules de C1O2. La comparaison des résultats expérimentaux de ces deux derniers modes avec ceux d'une simulation par ordinateur sur la disparition du HCl permet d'expliquer les caractéristiques principales des relations entre la réaction de pompage et la chimie du prépompage.