THE RELATIONSHIP BETWEEN THE CONCENTRATIONS OF SERUM LIPOPROTEINS AND SERUM LIPIDS

SCHOOL OF AVIATION MEDICINE
RANDOLPH AIR FORCE BASE, TEXAS

MARCH 1959
THE RELATIONSHIP BETWEEN THE CONCENTRATIONS OF SERUM LIPOPROTEINS AND SERUM LIPIDS

BERNARD S. SCHLESSINGER, First Lieutenant, USAF (MSC)*
MARGARET F. ALLEN, M. S. t
FREDRICK H. WILSON, JR., B. S.*
LAWRENCE J. MILCH, Colonel, USAF*

*Department of Pharmacology and Biochemistry
tDepartment of Biometrics

Air University
SCHOOL OF AVIATION MEDICINE, USAF
RANDOLPH AFB, TEXAS
March 1959
THE RELATIONSHIP BETWEEN THE CONCENTRATIONS OF SERUM LIPOPROTEINS AND SERUM LIPIDS

In this laboratory current research procedures require that simultaneous measurements of blood lipoproteins and blood lipids be accomplished in an effort to estimate the risk of coronary disease. It has been suggested that little additional information is gained by the multiple determinations. These studies report (1) the extent of correlation between ultracentrifugally determined serum lipoproteins, (2) the errors of measurement involved in all determinations, and (3) age-specific values for all serum parameters in the same population. It was found that although a high correlation exists between a linear combination of ultracentrifugally determined lipoproteins and the serum concentrations of cholesterol and phospholipid, the prediction of lipoprotein levels from the purely chemical measurements is not entirely satisfactory. Therefore, for the time being at least, all measurements will have to be accomplished.

In 1950, Gofman (1) reported that the serum lipoprotein concentrations determined by ultracentrifugation were significantly correlated with the incidence of coronary disease in the American male. Subsequently, the utility of such measurements as diagnostic and predictive measures of coronary disease has been the subject of extensive evaluation (2-7). Age-specific values for the concentrations of the standard lipoprotein classes have been recorded (8). This report will compare the measurement errors involved in the estimation of serum concentrations of lipids and lipoproteins; will estimate the extent of correlation between ultracentrifugally determined serum lipoproteins and the corresponding concentrations of cholesterol and lipid phosphorus; and will indicate age-specific values for such serum parameters in the same population.

EXPERIMENTAL

In order to study measurement errors and the correlations between parameters, sera from 20 normal (N) subjects and 20 persons with a proven history of myocardial infarction (MI) were used. All the tests on these samples were performed in duplicate.

The age-specific data were accumulated during the period 1953-1957 from various service agencies. The total number of subjects involved was 1,423. From these data various statistics were computed and are reported below.

The sera were analyzed for the ultracentrifugal concentrations of the Sf 0-12, Sf 12-20, and Sf 20-400 lipoproteins by methods described elsewhere (9-11). In addition, the atherogenic index (A.I.) was calculated. Serum cholesterol concentrations were measured by the Bloor method (12), and lipid phosphorus levels were determined by the Fiske-Subbarow technic (13).

RESULTS AND DISCUSSION

The measurement errors determined from duplicate analyses of lipid and lipoprotein parameters for the 20 N and 20 MI subjects are recorded in Table 1. The differences between the means of the MI and N groups for each variable are statistically significant and confirm data previously reported (15). The measurement errors are roughly equivalent for the

1The breakdown of the group shows 459 West Point cadets, 199 Army basic trainees, 348 Pentagon officers, 228 Air Defense Command personnel, 105 officers referred to the School of Aviation Medicine Consultation Service, and 84 School of Aviation Medicine personnel.

2A.I. - Concentration (Sf 0-12) + 1.75 concentration (Sf 12-20 + Sf 20-400)

Received for publication on 14 November 1953.
TABLE I

Means, standard deviations, and measurement errors for serum parameters in 7C ml's and 20 N's

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Measurement error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>S_0^2 0-12</td>
<td>462</td>
<td>375</td>
<td>122</td>
</tr>
<tr>
<td>S_0^2 12-20</td>
<td>63</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>S_0^2 20-400</td>
<td>155</td>
<td>125</td>
<td>110</td>
</tr>
<tr>
<td>S_0^2 0-400</td>
<td>680</td>
<td>545</td>
<td>207</td>
</tr>
<tr>
<td>A.I.</td>
<td>6.5</td>
<td>67</td>
<td>29</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>32.6</td>
<td>270.3</td>
<td>73.7</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>11.65</td>
<td>10.30</td>
<td>2.45</td>
</tr>
</tbody>
</table>

TABLE II

Correlation coefficients (r) between A.I. and other serum parameters

<table>
<thead>
<tr>
<th>Variable (Y)</th>
<th>r (A.I., Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>.669</td>
</tr>
<tr>
<td>12-20</td>
<td>.635</td>
</tr>
<tr>
<td>20-400</td>
<td>.894</td>
</tr>
<tr>
<td>A.I.</td>
<td>.916</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>.779</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>.801</td>
</tr>
</tbody>
</table>

ML and N groups. For ultracentrifugally determined lipoproteins, this error ranges from 8.5 to 19.1 percent; for lipid phosphorus, approximately 4 percent; and for cholesterol, 2 percent.

The correlations between A.I. and the other parameters are given in Table II. The duplicate determinations of A.I. gave a correlation of 0.916, somewhat less than the largest obtainable value of 1.00. All other correlations reported are less than 0.916.

Since the correlations between A.I. and other serum parameters are high, and also since the measurement errors of some of these variables are as small as or smaller than those for 2
A.I., it seemed appropriate to ascertain whether A.I. might be satisfactorily predicted from a linear combination of some or all of these other variables. The data on the 1,423 subjects were used to formulate equations which predicted A.I. from combinations of the three
parameters age, cholesterol, and lipid phosphorus. The best such equation made use of all three parameters and took the form:

This equation was used to estimate A.I. from the first run determinations of cholesterol and lipid phosphorus for the N and MI groups totaling 39 samples. These predicted A.I. values were correlated with both A.I. and A.I., the correlation coefficients were .800 and .816, respectively. It is evident that there is better agreement between the duplicate measurements of A.I. than between A.I. and the A.I. predicted from the given equation.

The age-specific values for A.I. 0-12, A.I. 12-20, A.I. 20-400, A.I., cholesterol, and lipid phosphorus are presented in figures 1 through 6. The x's indicate two standard deviations from the mean. The +'s are points obtained from the literature (8). Table III gives the age breakdown of the 1,423 persons included in the study.

If the assumption is made that these cross-sectional data are indicative of age changes in the individual, such data then predict that all the lipoprotein concentrations and the cholesterol level will increase at comparable rates during the third and fourth decades of life, after which levels will be maintained. Serum lipid phosphorus concentrations increase at a less rapid rate in an almost linear fashion, but the increase is maintained until the individual is past 50 years of age. The slightly decreased levels in the oldest age group may represent the process of natural selection.

In general, the Gofman lipoprotein data for a civilian population are significantly higher than the data reported here for the military group. These differences may be attributed to the selection which attends induction into the service.

REFERENCES

