'IN VITRO' INHIBITION OF MICROSOMAL CALCIUM ATPASE FROM EGGSHELL GLAND OF MALLARD DUCK

EDGEOOD ARSENAL, ABERDEEN PROVING GROUND, MARYLAND

DECEMBER 1976
EDGEOWOOD ARSENAL TECHNICAL REPORT

EB-TR-76097

IN VITRO INHIBITION OF MICROSOMAL CALCIUM ATPASE FROM EGGSHELL GLAND OF MALLARD DUCK

by

Gerald J. Kolaja, D.V.M., CPT, VC
David E. Hinton, Ph.D.

Biomedical Laboratory

December 1976
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
IN VITRO INHIBITION OF MICROSOMAL CALCIUM ATPASE FROM EGGSHELL GLAND OF MALLARD DUCK

Author(s):
Gerald J. Kolaja, D.V.M., CPT VC
David E. Hinton, Ph.D.

Performing Organization Name and Address:
Commander, Edgewood Arsenal
Attn: SAREA-BL-VP
Aberdeen Proving Ground, MD 21010

Controlling Office Name and Address:
Commander, Edgewood Arsenal
Attn: SAREA-TS-R
Aberdeen Proving Ground, MD 21010

Monitoring Agency Name & Address (if different from Controlling Office):

Distribution Statement (of this Report):
Approved for public release; distribution unlimited.
Copies available from: National Technical Information Service, Springfield, Virginia 22151

Distribution Statement (of the abstract entered in Block 20, if different from Report):

Supplementary Notes:

Key Words (Continue on reverse side if necessary and identify by block number):
Ca ATPase
DDT
Microsomes

Abstract (Continue on reverse side if necessary and identify by block number):
The results of this study have demonstrated the inhibition of Ca ATPase by DDT in an *in vitro* microsomal test system. Furthermore, this inhibition has been established to be competitive in nature. Our results are similar to those of other investigators who showed Ca ATPase inhibition by DDE in shell gland homogenate. Previous studies have shown DDT-induced eggshell thinning to be due to decreased calcium content of eggshells. Since calcium ATPase has been shown to be associated with calcium transport in eggshell gland, the inhibition of this enzyme *in vitro* offers a possible explanation for DDT-induced eggshell thinning.
PREFACE

The work described in this report was authorized under Project/Task No. EPA. This work was started in February 1976 and completed in March 1976.

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and Use of Laboratory Animals" as promulgated by the Committee on Revision of the Guide for Laboratory Animals Facilities and Care of the Institute of Laboratory Animal Resources, National Research Council.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, Edgewood Arsenal, Attn: SAREA-TS-R, Aberdeen Proving Ground, Maryland 21010; however DDC and the National Technical Information Service are authorized to reproduce the document for US Government purposes.
CONTENTS

I. INTRODUCTION ... 5
II. MATERIALS AND METHODS 5
III. RESULTS .. 5
IV. DISCUSSION ... 7
 LITERATURE CITED ... 8
 DISTRIBUTION LIST 9

LIST OF FIGURES

Figure

1 In Vitro Ca ATPase Inhibition by DDT 6
2 Lineweaver-Burke Plot of Ca ATPase Inhibition by DDT .. 6
IN VITRO INHIBITION OF MICRO SOMAL CALCIUM ATPASE
FROM EGGSHELL GLAND OF MALLARD DUCK

I. INTRODUCTION

In a previous paper we reported the effects of 2,2-bis(p-chlorophenyl)-1,1,1-
trichloroethane (DDT) on morphology of eggshell gland of the mallard duck (Anas platyrhynchos) (Kolaja and Hinton 1976). In that study, edema of the eggshell gland mucosa
accompanied eggshell thinning. We postulated that the edema could have arisen as the result of
an ionic imbalance. Calcium adenosine triphosphatase (ATPase) is the enzyme which is thought
to be responsible for the transport of one ion, calcium, across epithelium of the eggshell gland
(Pike and Alvarado 1975). Both in vivo and in vitro inhibition of Ca ATPase by the DDT
metabolite 2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE) has been demonstrated in
homogenate of freeze-dried mucosal preparation from shell gland of Pekin ducks (Miller, et al., 1976). The primary purpose of this study was to determine the inhibitory effect of DDT on Ca ATPase isolated from microsomal preparations of duck eggshell glands and to characterize the
type of inhibition by Lineweaver/Burke plots of Michaelis Menten analyses.

II. MATERIALS AND METHODS

Mature mallard hens, in egg production, were killed by cervical dislocation and the
eggshell glands were rapidly excised and placed in ice-cold 0.25 M sucrose. All subsequent
procedures were done in an ice bath or at 4°C. The mucosa of the eggshell gland was removed
by scraping with a clean razor blade and 1 gm was weighed and diluted up to 10 ml in 0.25 M
sucrose. The sucrose-shell gland mixture was homogenized at 500 rpm in a Potter-Elvehjem tissue
homogenizer. The homogenate was sedimented for 15 minutes at 18,000 X g max in a Beckman
L-2 ultracentrifuge. The above supernatant was recentrifuged at 98,000 X g max for 1 hr. The
resulting pellet was resuspended to 3 ml in 0.25 M sucrose, and stored at -60°C until the time of
assay. The Ca ATPase activity was determined by the method of Rorive and Kleinzeller (1974). Twenty microliters of DDT (Pfaltz and Bauer, Flushing, New York), dissolved in acetone were
added to the reaction mixture and brought to a final concentration of 10^{-4}, 0.5 X 10^{-4}, and
10^{-5} gm/ml in a final volume of 2 ml of reaction mixture. Control preparations received an equal
volume of acetone without DDT. Preliminary experiments revealed no enzyme inhibition with
the above volume of acetone alone. Tris salt of adenosine triphosphate (ATP) (Sigma Chemicals)
was used in concentrations of 2.5 mM, 1.25 mM and 0.625 mM. The phosphate released at the
end of 30 minutes was determined by the method of Stanton (1968).

III. RESULTS

The inhibitory effect of DDT on Ca ATPase is shown in figure 1. When 1/velocity
was plotted against inhibitor concentration, the inhibitor binding constant (I) was approximately
8.8 X 10^{-4} gm/ml. The competitive nature of the inhibition of Ca ATPase by DDT is shown
when the reciprocal of velocity is plotted versus the reciprocal of substrate concentration
(figure 2). This plot shows that the inhibition by DDT was overcome by addition of more
substrate (ATP).
Figure 1. *In Vitro* Ca ATPase Inhibition by DDT

Figure 2. Lineweaver-Burke Plot of Ca ATPase Inhibition by DDT
IV. DISCUSSION

The results of this study have demonstrated the inhibition of Ca ATPase by DDT in an in vitro microsomal test system. Furthermore, this inhibition has been established to be competitive in nature. Our results are similar to those of Miller, et al. (1976) who showed Ca ATPase inhibition by DDE in shell gland homogenate. Previous studies have shown DDT-induced eggshell thinning to be due to decreased calcium content of eggshells (Bitman, et al., 1969). Since calcium ATPase has been shown to be associated with calcium transport in the eggshell gland, the inhibition of this enzyme in vitro offers a possible explanation for DDT-induced eggshell thinning.
LITERATURE CITED

