ROTC SERVICE COMMITMENTS: A COMMENT ON THOMAS AND BIERMAN'S PAPER IN PUBLIC CHOICE (Fall 1975)

Samuel Kleinman

Professional Paper No. 167
November 1976

CNA Professional Paper - 167
The ideas expressed in this paper are those of the authors. The paper does not necessarily represent the views of either the Center for Naval Analyses, the United States Navy or any other sponsoring agency. It has been reproduced by CNA as a courtesy to the authors, under the CNA Professional Development Program.
ROTC SERVICE COMMITMENTS: A COMMENT ON THOMAS AND BIERMAN’S PAPER IN PUBLIC CHOICE (Fall 1975)

Samuel Kleinman

Professional Paper No. 167

November 1976

Published in Public Choice, fall 1976

CENTER FOR NAVAL ANALYSES
1401 Wilson Boulevard
Arlington, Virginia
ROTC SERVICE COMMITMENTS: A COMMENT

In a recent note in this Journal, Thomas and Bierman argue that the military should consider reducing the minimum service requirement for ROTC candidates. Although we agree that the services should consider the trade-off between accessions and minimum obligated service, we find no theoretical basis for the authors' contention that "supply" will be increased and that there will be a higher quality of candidates in the program.

To start, we draw figure 1 with schedules similar to those drawn by Thomas and Bierman. \(q_H \) and \(q_L \) are the "supply schedules" for high quality and low quality candidates, respectively. We have added the schedules vertically, \(q_T \), to obtain the maximum potential accessions per year. The higher is the minimum service requirement (MSR), the lower is the potential number of accessions. For an MSR of \(M_1 \) and demand of \(M_1C \), \(M_1A \), high quality and AC (which is less than \(M_1B \)) low quality candidates are accessed.

![Figure 1](image-url)
Unfortunately, the curves do not directly depict the demand for and supply of newly commissioned officers. The military's demand is properly stated in terms of man-years acquired: that is, the number accessed times their years of service. The demand is for \((OM_1 \times M_1C)\) man-years (assuming no attrition in the first \(M_1\) years and no officers serve beyond MSR). High quality individuals supply \((OM_1 \times M_1A)\) man-years; low quality individuals supply \((OM_1 \times AC)\) man-years. Recognizing that demand and supply is in terms of man-years and not accessions is necessary when calculating the optimal MSR.

If MSR is reduced to \(M_2\), the services must increase the number of accessions in order to maintain the same number of man-years.\(^1\) If \((OM_2 \times M_2D)\) is greater than \((OM_1 \times M_1C)\), then the military can acquire the same number of man-years. The military's "demand curve" in figure 1 (not drawn in) would have unit elasticity. However, if the "supply" of accessions is inelastic with respect to MSR, the military may be unable to acquire the desired number. That is, the increase in the number willing to join the program would not be sufficient to offset the man-years lost because of the lower MSR.\(^2\) Thus, the elasticity of these curves plays a crucial role in determining the optimal MSR.

More importantly, the argument that the services will acquire higher quality individuals is called into question. If \(q_H\) is inelastic in the region of \(M_1\) and \(M_2\), then fewer high quality man-years are obtained. The high quality man-years is \((OM_2 \times M_2E)\), and this would be lower than \((OM_1 \times M_1A)\). Since total man-years acquired is constant, the average quality of man-years is reduced.

Even if the high quality curve was sufficiently elastic and the military was still receiving a suitable return on its investment at \(M_2\), the services may find it optimal

\(^1\) Thomas and Bierman are clearly aware of this. But they take it for granted that both the quantity and quality of candidates desired will be available.

\(^2\) This assumes that there is some quality, those along \(q_L\) in the example, below which all applicants would be rejected.
to remain at M_1. If productivity increases with length of service, more man-years would be needed with M_2 than with M_1 to maintain the same level of military readiness (the output). The military's "demand curve" would now have an elasticity greater than one. Since the military operates within a manpower constraint, acquiring the additional manpower may not be feasible.

In conclusion, the Thomas and Bierman article is remiss in failing to discuss the elasticities of their accession curves. Since the military's demand is for man-years and not accessions, the magnitude of these elasticities is basic to determining the optimal minimum service requirement. Furthermore, there is no reason to expect that the average quality of the man-years acquired will be higher.

REFERENCE

Thomas, L. Joseph and Harold Bierman, Jr., "ROTC Service Commitments," Public Choice, 23 (Fall, 1975), 109-114.
CNA Professional Papers — 1973 to Present

PP 103 Friedheim, Robert L., "Political Aspects of Ocean Ecology" 48 pp., Feb 1973. (To be published as a chapter of "Who Protects the Oceans?" published by the American Society of International Law) AD 757 936

PP 107 Stoloff, Peter H., "Relating Factor Analytically Derived Measures in Survey Research, Survival, Nov-Dec 1973) AD 761 678

PP 114 Maloney, Arthur P., "Job Satisfaction and Job Turnover," 41 pp., Jul 1973, AD 786 410

PP 115 Silverman, Lester P., "The Determinants of Emergency Hospital and Effective Admission to Hospitals," 145 pp., 18 Jul 1973, (To be published in the Journal of the American Statistical Association (Chapter 11) and Health Services Research (Chapter 2)) AD 766 359

Research supported in part under Office of Naval Research Contract N00014-73C02756/017

PP 119 Stoloff, Peter and Lockman, Robert F., "Development of Navy Human Relation Questionnaire," 3 pp., May 1974, (Published in APA Proceedings, 41st Annual Convention, 1972) AD 770 999

Econometrica, North Carolina State University.

PP 126 — ClassFed.

PP 130 DiMorsa, Bradford, "Roles and Missions of Soviet Naval General Purposes Forces in Western Pro-SSBEN Operations," 20 pp., Aug 1974, AD 786 320

PP 133 Squires, Michael L., "A Stochastic Model of Regime Change in Latin America," 45 pp., Feb 1975, AD 1 A 007 912

Department of Mechanical Engineering, University of Maryland.

*CNA Professional Papers with an AD number may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151. Other papers are available from the author at the Center for Naval Analyses, 1401 Wilson Boulevard, Arlington, Virginia 22209."
CNA Professional Papers — 1973 to Present (Continued)

PP 139
Morgan, William F., Jr., "Beyond Folklore and Fables in Forestry to Positive Economics," 14 pp., Aug 1975

PP 140
Mahoney, Robert and Druckman, Daniel, "Simulation, Experimentation, and Context," 36 pp., 1 Sep 1975 (Published in Simulation & Games, Vol. 6, No. 3, Sep 1975)

PP 141

PP 142

PP 143

PP 144

PP 145
Kelly, Anne M., "Port Visits and the 'Internationalist Mission' of the Soviet Navy," 36 pp., Apr 1976

PP 146

PP 147

PP 148

PP 149

PP 150

PP 151

PP 152

PP 153

PP 154

PP 155

PP 156

PP 157

PP 158

PP 159

PP 160

PP 161
Melich, Michael E. and Peet, Vice Adm, Ray (USN, Retired), "Fleet Commanders: Affairs or Affairs?" 9 pp., Aug 1976 (reprinted from USN Naval Institute Proceedings, Jun 1976)

PP 162
Friedenreich, Robert L., "Parliamentary Diplomacy," 100 pp., Sep 1976

PP 163

PP 164

PP 165
Jaworow, James M., "Effects of Trade Restrictions on Imports of Steel," 67 pp., November 1976. (To be delivered at IALAB Conference, 26 Dec 1976)

PP 166

PP 167

PP 168

PP 169