Modernizing Tomahawk on the Cheap

Robin Ross
NSWC Dahlgren Division
TTWCS SDA Software Lead
Work: 540.653.2109
robin.ross@navy.mil

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.
Agenda

- Background
- Problems faced
- Alternatives Assessed
- Solution chosen
 - Hardware Architecture
 - Porting Considerations
- Results
Background

- Tomahawk Weapon Control System (TWCS) is mature
 - Evolved from TWCS to TTWCS v5.3 over 30 years
 - TWCS developed in 80’s
 - Proprietary Mil-Spec computers and Operating System (OS)
 - Advanced Tomahawk Weapon Control System (ATWCS) developed in early 90’s
 - Commercial Off-The-Shelf (COTS) computers
 - Proprietary OS
 - Tactical Tomahawk Weapons Control System (TTWCS) developed in late 90’s
 - COTS VME-based computers
 - Proprietary OS
- Multiple funding requests for modernization were unfunded

Flowchart:

1. TWCS (v1) → ATWCS TCGR (v2) → ATWCS LCGR (v3) → TTWCS (v4) → TTWCS (v5.3) → TTWCS (v5.4)
Problems Faced

● Computer Resource Constraints
 – Deployed versions of TTWCS constrained by processor memory and CPU speed

● Viability Concerns
 – Unsupported COTS software (SW)
 – Obsolete hardware (HW)
 – DoD mandates for Open Architecture and Security

● Budgetary Concerns
 – DoD dollars increasingly difficult to obtain

Needed an affordable, step-wise approach that would be the foundation for future modernization
Alternatives Assessed

- Add additional processor in existing racks
 - Minor impact to ship configuration; no change to footprint
 - Low risk
 - Least expensive

- Replace all processors
 - Major ship configuration impact
 - High risk
 - High cost

- Replace all processors, network, and displays
 - Complete ship configuration impact
 - Even higher risk
 - Most expensive
Solution Chosen

- First step in incremental approach to modernization of Tomahawk Weapon Control System
 - Insert x86 processor into each Tomahawk equipment rack
 - Use Linux OS on new processor
 - Port selected pieces of SW to new processors
- Future increments will remove HP processors and port remainder of code
Porting Considerations

- Careful consideration given to which SW components were ported to new x86 processors
 - Safety Critical components not ported to reduce risk to safety certification of build
 - External Interfaces
 - Endian sensitive interfaces
 - Legacy HP processors are big-endian
 - X86 processors are little-endian
 - Point-to-point interfaces expected big-endian format
 - Components with these interfaces were not ported since each message would require complex byte and bit swapping due to bit fields crossing byte boundaries
 - Components with Common Object Request Broker Architecture (CORBA) interfaces were good candidates
 - Built-in data marshalling eliminates need for byte swapping
Porting Considerations (cont)

– Multi-core sensitivity
 - Ada components not designed for multi-core processors
 - Work required to counter the effects of running on multi-cores

– Resource usage
 - Highly algorithmic components work well with multi-cores
 - CPU-intensive components benefit from speed of new processors
 - SW components with larger memory demands benefit from additional memory
Results

- ~50% of code ported to x86 processors
- 15 months initial development to enter system test
- Significant performance enhancements seen during system test
 - Functions that took minutes now take seconds
- Certifications effort streamlined due to focused areas of impact
- Operational Test (OT) extremely successful
 - Deemed effective and suitable
 - "The system met all critical effectiveness performance parameters with noticeably improved processing times for key functions." (RADM Dunaway’s IT-CF OT Commander’s Report November 15, 2011)
- Fleet Release decision reached December 2011