UNCLASSIFIED

AD NUMBER

AD867046

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Feb 1970. Other requests shall be referred to Air Force Aero Propulsion Lab, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFAPL ltr dtd 12 Apr 1972

THIS PAGE IS UNCLASSIFIED
This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

☐ If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.
VAPORIZING AND ENDO THERMIC FUELS
FOR ADVANCED ENGINE APPLICATION

Part III. Studies of Thermal and Catalytic Reactions,
Thermal Stabilities, and Combustion Properties
of Hydrocarbon Fuels

A.C. Nixon, G.H. Ackerman, L.E. Faith, H.T. Henderson,
A.W. Ritchie, L.B. Ryland, T.M. Shryn
Shell Development Company,
A Division of Shell Oil Company

TECHNICAL REPORT AFAPL-TR-67-114, Part III, Volume II
February 1970

This document is subject to special export controls
and each transmittal to foreign governments or foreign
nationals may be made only with prior approval of
the Air Force Aero Propulsion Laboratory.
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with definitely related Government procurement operations, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
APPENDIX

Calculation Procedure for Mach 3 Engine ... 258

Figures
72 Enthalpy of Products of Combustion ... 302
73 Turbulent Annular Flow ... 303
74 Combustor Heat Flux Distribution .. 304
75 Heat Transfer Conditions ... 305
76 Nozzle Heat Flux Distribution ... 306

Tables
119 Dehydrogenation of MCH Over Aeroform Pd-F 307
120 Dehydrogenation of MCH Over Shell 46 .. 308
121 Dehydrogenation of MCH Over UOP-98 ... 309
122 Dehydrogenation of MCH Over Standard Catalyst 310
123 Dehydrogenation of MCH Over Shell 108 ... 311
124 Dehydrogenation of MCH Over RD-150 .. 312
125 Dehydrogenation of MCH Over UOP-165 .. 313
126 Dehydrogenation of MCH Over 1% Pt on Al2O3 314
127 Dehydrogenation of MCH Over 10660-11Al Catalyst 315
128 Dehydrogenation of MCH Over 10660-114A Catalyst 316
129 Dehydrogenation of MCH Over 10660-114A and Houdry 206-68 Catalyst 317

Description of the Pulse Reactor ... 318

Figures
77 Pulse Reactor: Schematic .. 319
78 Pulse Reactor System ... 320
79 Secondary Furnace Liner for Pulse Reactor .. 321
80 GC Analysis System .. 322
APPENDIX (Contd)

Descriptions of the 1/4-in. OD Flow Reactor 323

Figures
81 Secondary Furnace Liner for 1/4-in. OD Reactor Tube 324
82 Reactor Temperature Profile: 1/4-in. OD Reactor Tube 325

Micro Catalyst Test Reactor Data 326

Tables
130 MCH Dehydrogenation With Various Catalysts in MICTR:
Runs 677-813 ... 327
131 MCH Dehydrogenation With Various Catalysts in MICTR:
Runs 814-862 ... 330
132 MCH Dehydrogenation With Various Catalysts in MICTR:
Runs 863-905 ... 331
133 MCH Dehydrogenation With Various Catalysts in MICTR:
Runs 906-1060 ... 332

Measurement of Deposits on Coker Tubes With Nuclear Radiation 336
Thin Film Measurement With Nuclear Radiation General Principles 336
Table 134. Methods of Utilizing Nuclear Radiation 336
Electron Backscatter Theory 337
Table 135. Low Energy Beta Sources 338
Preliminary Experiments 338
Trial Apparatus and Results 338
Table 136. Results on Five Coker Tubes 341
Figure 83. Coker Tube Deposit Profile 342
Figure 84. Comparison of Deposit Tube Profiles 343
Proposed Instrument Design 344
APPENDIX (Contd.)

Properties of Decalin (50% cis, 50% trans) 345

Tables
137 Characteristic Properties of Decalin 345
138 Liquid Properties of Decalin at Saturation 345
139 Gas Properties of Decalin at Saturation 346
140 Gas Properties of Decalin 347

Properties of JP-5 ... 373

Tables
141 Characteristic Properties of JP-5 373
142 Liquid Properties of JP-5 at Saturation 373
143 Gas Properties of JP-5 at Saturation 374
144 Gas Properties of JP-5 375

SHELLDYNE-H (RJ-5) ... 389

Preliminary Analytical and Physical Property Data 389

Tables
145 Preliminary Chemical and Physical Properties and Test Methods of SHELLDYNE-H (RJ-5) 390
146 Liquid Properties of SHELLDYNE-H at Saturation Pressure .. 391
147 Gas Properties of SHELLDYNE-H 392
Calculation Procedure for Mach 8 Engine

Station 1.

Use the following formulas from Ref. 12 to calculate the inlet area:

\[I_f = \frac{n_a(H_f)}{V_1} \]
\[W_r = \frac{n_f(F_f)}{I_t} \]
\[A_1 = \frac{W_r}{(F/A)(\psi_1(V_1))} \]

Assume:
\[n_a = .412 \]
\[n_f = .95 \]
\[H_f = 18894 \text{ Btu/lbm fuel} \]

At 100,000 ft and \(M = 8 \):
\[T_1 = 420.1^\circ R \]
\[P_1 = 22.32 \text{ lb/ft}^2 \]
\[\rho_1 = .000996 \text{ lbm/ft}^3 \]
\[V_1 = 8050.96 \text{ ft/sec} \]
\[I_f = \frac{(.412)(18894)(778)}{(8051)} \]
\[I_f = 752.23 \text{ sec} \]

Assume:
\[L/D = 6 \]
\[L = 450,000 \text{ lb} \]
\[D = F_g = 75000 \text{ lb} \]

Therefore:
\[W_r = \frac{(.95)(75000)}{752.23} \]
\[W_r = 94.72 \text{ lbm/sec fuel} \]

To Calculate the stoichiometric fuel-air ratio \((F/A)\) assume the fuel is MCH converted to \(H_2 \) and \(C_7H_{16} \):
\[.75 H_2 + .25 C_7H_{16} + 2.625 O_2 = 2.625(3.76)N_2 \rightarrow \]
\[1.75 H_2O + 1.75 O_2 + 9.87 N_2 \]

The average molecular weight of the fuel: 25.25
\[
F/A = \frac{(1 \text{ mole of fuel})(25.25 \text{ lbm molecular weight})}{(9.81 + 2.025 \text{ moles air})(28.95 \text{ lbm molecular weight})}
\]

\[
F/A = 0.0698 \quad \text{Assuming E.R. = 1.0}
\]

\[
A_1 = \frac{94.72}{(0.0698)(0.000996)(5051)}
\]

\[
A_1 = 169.23 \text{ ft}^2
\]

Station 3.

Use the Dugger Equation for the total pressure drop from Station 1 to 3:

\[
\frac{P_{t_1}}{P_{t_3}} = \left(\frac{\gamma - 1}{\gamma}
ight)^{\frac{\gamma}{\gamma - 1}}
\]

\[
M_d = 1 - \frac{1 - \left(\frac{P_{t_1}}{P_{t_3}}\right)^{\frac{\gamma - 1}{\gamma}}}{(\gamma - 1)/2}\frac{\gamma}{M_1^2}
\]

Assume: \(M_d = 0.959\)

\[
\frac{\gamma}{2} = 1.4
\]

then

\[
\frac{\gamma - 1}{\gamma} = \frac{1.4 - 1}{1.4} = 0.286
\]

\[
\left(\frac{P_{t_1}}{P_{t_3}}\right)^{2.88} = 1 - 0.959
\]

\[
\left(\frac{P_{t_1}}{P_{t_3}}\right)^{2.88} = 1.5248
\]

\[
\left(\frac{P_{t_1}}{P_{t_3}}\right) = 4.36
\]

From the isentropic flow tables at \(M = 8\)

\[
P_{t_1}/P_{t_3} = 0.000102
\]

\[
P_{t_1} = \frac{22.72 \text{ lb/ft}^2}{(0.000102)(144 \text{ in}^2/\text{ft}^2)}
\]

\[
P_{t_1} = 1519 \text{ lb/in}^2
\]
Part III

\[\frac{P_3}{P_{30}} = \frac{1512}{4.30} \]
\[P_3 = 348 \text{ lb/in}^2 \]

Assume:

\[M_3 = 2.5 \]

then

From the isentropic flow tables at \(M = 2.5 \)

\[\frac{P_3}{P_{30}} = 0.9853 \]

\[P_3 = 20.4 \text{ lb/in}^2 \]

Assume the enthalpy at 1 and 3 are equal:

\[\begin{align*}
 h_{t1} &= h_{t3} = h_3 + \frac{(M_3 h_2.1 \sqrt{T_3})^2}{2g_2} \\
 h_{t1} &= 120.32 + \left(\frac{(8)(420.1) \sqrt{2500}}{(2)(52.2)(778)} \right) \\
 h_{t1} &= 1394 \text{ Btu/lbm} \\
 \text{By trial and error} \quad T_3 &= 2500^\circ F \\
 h_{t3} &= \frac{(1252.33 + \left(\frac{(2.5) h_2.1 \sqrt{2500}}{(2)(52.2)(778)} \right)}{1395} \\
 h_{t3} &= 1395 \text{ close enough} \\
 \rho_3 &= \frac{(20.4)(144)}{(53.94)(2500)} \\
 \mu_3 &= 0.22 \text{ lbm/ft}^3
\end{align*} \]

Station 5.

By an iterative procedure calculate the heat transfer from the combustion area assuming 2000°F wall temperature and thus the total temperature rise. Then using a Rayleigh line relationship the remaining conditions at Station 5 may be determined.
First calculate the flow area and heat transfer area:

\[e = \rho_3 A_3 V_3 = \rho_1 A_1 V_1 \]
\[V_3 = (2.5)(49.1)\sqrt{2500} \]
\[V_3 = 6140 \]
\[A_3 = \frac{\rho_3 A_1 V_1}{\rho_3 V_3} = \frac{(14.1)(100)(8051)}{(0.0225)(5140)} \]
\[A_3 = 10.0 \]
\[10.0 = x_{r_1}^2 - x_{r_3}^2 = 169 - x_{r_3}^2 \]
\[r_3 = 7.11 \text{ ft} \]

Hydraulic Diameter \(D_h \)

\[D_h = \frac{4A_3}{P_V} = \frac{4(10.0)}{2\pi(7.11) + 2\pi(7.28)} \]
\[D_h = 3.44 \]

Assume time for combustion and mixing can be accomplished in 2 \(\mu \text{sec} = .002 \text{ sec} \) and the average velocity in the combustor is 5000 \(\text{ft/sec} \).

The length of the combustor then is \(L \)

\[L = (0.002)(5000) \]
\[L = 10 \text{ ft} \]

Forming a heat balance on the combustion area

\((h_{p'} - h_{p_0'}) - (h_{R'} - h_{R_0'}) - q = - h_{R_0} \)

where:

- \(h_{p'} \) = enthalpy of the reactants
- \(h_{p_0'} \) = enthalpy of the products
- \(h_{R_0} \) = heat of combustion
- \(q \) = heat transferred per lbm fuel

Heating of combustion calculation:

\[h_{R_0} = m_{C_7H_8}(h_{R_0})_{C_7H_8} + m_{H_2}(h_{R_0})_{H_2} \]
\[m_{C_7H_8} = .938 \text{ lbm } C_7H_8/\text{lbm fuel} \]
\[m_{H_2} = .062 \text{ lbm } H_2/\text{lbm fuel} \]
The reactants:

\[
\begin{align*}
(\text{h}' - \text{ho}')_{\text{fuel}} &= (\text{h}' - \text{ho}')_{\text{air}} + (\text{h}' - \text{ho}')_{\text{fuel}} \\
(\text{h}' - \text{ho}')_{\text{air}} &= \frac{\text{M}_{\text{air}}}{\text{M}_{\text{fuel}}} \left(\text{h}_{2500} - \text{h}_{297} \right) \\
&= \left(\frac{2.625 \times 2.87}{29.25} \right) (545.78 - 128.34) \\
(\text{h}' - \text{ho}')_{\text{fuel}} &= 7412.8 \text{ Btu/lbm fuel} \\
\end{align*}
\]

Assume: \(C_{\text{fuel}} = .766 \text{ Btu/lbm °F} \)

\[t = 900 \text{ °F} \]

\[
(\text{h}' - \text{ho}')_{\text{fuel}} = (.766)(900 - 77)
\]

\[
(\text{h}' - \text{ho}')_{\text{fuel}} = 631 \text{ Btu/lbm fuel}
\]

\[
\text{hr}' - \text{ho}' = 8043.6 \text{ Btu/lbm fuel}
\]

The products:

Calculate enthalpy of products as function of temperature and make plot.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>(T_{427})</th>
<th>(T_{4000})</th>
<th>(T_{5000})</th>
<th>(T_{5300})</th>
<th>(T_{5800})</th>
<th>(T_{6017})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2)</td>
<td>1.75</td>
<td>4030</td>
<td>4925</td>
<td>7912</td>
<td>50000</td>
<td>104948</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>1.75</td>
<td>4278</td>
<td>40489</td>
<td>63404</td>
<td>53327</td>
<td>85871</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>9.87</td>
<td>3730</td>
<td>31329</td>
<td>272406</td>
<td>40080</td>
<td>358773</td>
</tr>
</tbody>
</table>

\[
(\text{hp}' - \text{hp}_0')_t = \frac{\text{noh}}{\text{hc}} = 29.25
\]
Estimate of Heat Transfer From the Combustor:

Procedure:

1. Assume Temperature at Station 5
2. Calculate Mach number and pressure at Station 5 from Rayleigh line
3. Assume linear variation of pressure and temperature over length of combustor
4. Calculate density, velocity, viscosity, Reynolds number, Nusselt number, correction constant for high velocity heat transfer, thermal conductivity, heat transfer coefficient, adiabatic wall temperature and the final product, \(h \cdot R \), where \(P \) is the wetted perimeter,
 \(\Delta t = t_{AV} - t_w \) and \(t_w = 2000^\circ R \), and \(h \) is the local heat transfer coefficient.
5. From curve of \(h \cdot R \) vs \(x \) calculate heat transferred;
 \[q = -\int_{x=0}^{x=L} h \cdot R \cdot d\xi \]
6. From \(q \) and \((h' - h_{0'})_p \), \((h' - h_{0'})_R \) and \(h \cdot P_0 \) calculate temperature at Station 5.
7. Return to 2 until temperature used to calculate values and calculated temperature are equal.

Example:
Station 3:
\(M = 2.5 \)
\(P = 20.4 \)
\(T = 2500^\circ R \)
\((P/P_0) = 0.24616 \)
\((T/T_0) = 0.3787 \)
Assume \(T_0 = 5637.5^\circ R \)
\[
\begin{align*}
\frac{T_1}{T_3} &= \left(\frac{T_1}{T_3}\right)_3 \frac{T_3}{T_3} = \left(0.5787\right) \frac{\left(\frac{0.77}{0.69}\right)}{\left(0.75\right)} \\
\frac{T_1}{T_3} &= 0.8540 \\
\end{align*}
\]

From Rayleigh Line:

\[
\begin{align*}
M &= 1.31 \\
\frac{P}{P_1} &= 0.70535 \\
P_3 &= \left(\frac{P}{P_1}\right)_3\left(\frac{P}{P_1}\right)_3 = \left(0.70535\right)/(2.4616) \text{ (20 lb/in}^2
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>P</th>
<th>T</th>
<th>V</th>
<th>u</th>
<th>Re</th>
<th>M</th>
<th>c</th>
<th>N1</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.4</td>
<td>2500</td>
<td>0.022</td>
<td>6150</td>
<td>3.4</td>
<td>1.76</td>
<td>1330</td>
<td>2.50</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>28.0</td>
<td>3110</td>
<td>0.224</td>
<td>5650</td>
<td>3.8</td>
<td>1.58</td>
<td>1270</td>
<td>2.06</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>35.6</td>
<td>3740</td>
<td>0.286</td>
<td>5200</td>
<td>4.2</td>
<td>1.43</td>
<td>1220</td>
<td>1.73</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>43.3</td>
<td>4370</td>
<td>0.277</td>
<td>5000</td>
<td>4.6</td>
<td>1.30</td>
<td>1170</td>
<td>1.54</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>51.0</td>
<td>5000</td>
<td>0.028</td>
<td>4872</td>
<td>4.9</td>
<td>1.24</td>
<td>1145</td>
<td>1.40</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>58.45</td>
<td>5637.5</td>
<td>0.028</td>
<td>4828</td>
<td>5.2</td>
<td>1.17</td>
<td>1110</td>
<td>1.31</td>
<td>89</td>
</tr>
</tbody>
</table>

* Extrapolated (based on air at low pressures)

<table>
<thead>
<tr>
<th>x</th>
<th>Fr</th>
<th>Pr</th>
<th>T/AW/T</th>
<th>T/AW</th>
<th>AT</th>
<th>h</th>
<th>hPr/Ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.73</td>
<td>.90</td>
<td>2.125</td>
<td>5312.5</td>
<td>5312.5</td>
<td>93.4</td>
<td>2.80 x 10^7</td>
</tr>
<tr>
<td>2</td>
<td>.75</td>
<td>.91</td>
<td>1.77</td>
<td>5504.7</td>
<td>5504.7</td>
<td>120.1</td>
<td>3.81 x 10^7</td>
</tr>
<tr>
<td>4</td>
<td>.79</td>
<td>.92</td>
<td>1.55</td>
<td>5797.0</td>
<td>5797.0</td>
<td>158.0</td>
<td>4.74 x 10^7</td>
</tr>
<tr>
<td>6</td>
<td>.90</td>
<td>1.0</td>
<td>1.47</td>
<td>6423.9</td>
<td>4423.9</td>
<td>151.6</td>
<td>6.07 x 10^7</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>1.0</td>
<td>1.39</td>
<td>6950.0</td>
<td>4950.0</td>
<td>167.9</td>
<td>7.52 x 10^7</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>1.0</td>
<td>1.34</td>
<td>7554.3</td>
<td>5554.3</td>
<td>175.8</td>
<td>8.84 x 10^7</td>
</tr>
</tbody>
</table>

In the above calculations the following expression were used:

\[
\begin{align*}
p &= \frac{P}{RT} \quad \text{where } R = 53.54, \\
V &= \frac{C}{\sqrt{\frac{\gamma}{\gamma - 1}}} = 135.2/p, \\
Re &= \frac{V D_n c}{\mu}, \\
N_1 &= f(Re, Pr) \quad \text{from Kays14) expression for turbulent flow inside concentric annuli at } r_1/r_0 = 1.0 \text{ (See Figure 73),} \\
M &= \frac{V}{(49.1\sqrt{T})}, \\
C &= \text{From Kays page 13,28 for affect of high velocity on Stanton No.}
\end{align*}
\]

-29-
\[\text{Nu} = \text{GrNu} \]

\[h = \frac{\text{Nu} \kappa}{\text{Pr}^{1/3}} \]

\[\frac{T_{\text{AW}}}{T} = 1 + \frac{Pr^{1/3}}{2} (\gamma - 1) \theta \]

where \(\gamma = 1.4 \)

\[\Delta t = (T_{\text{AW}} - T_{\text{W}}) = (T_{\text{AW}} - 2000) \]

\[P = 2x_{1} + 2x_{0} = 90.5 \text{ ft} \]

Then:

\[q' = -\int_{0}^{x} (h\rho c_{p}t)_{x} dx \]

This expression is integrated graphically from Figure 78.

\[q' = -5.575 \times 10^{8} \text{ Btu/hr} \]

\[m_{\text{air}} = \rho_{1}A_{1}V_{1} = 4.879 \times 10^{6} \text{ lbm/hr} \]

\[q = -\frac{5.575 \times 10^{8}}{4.879 \times 10^{6}} \]

\[q = -1.1426 \times 10^{2} \text{ Btu/lbm air} \]

\[q' = -1.1426 \times 10^{2} \times .0698 \]

\[q' = -1637 \text{ Btu/lbm fuel} \]

Now to calculate the combustion temperature:

\[(h' - h_{0})_{p} = (h' - h_{0})_{R} = q' = -h_{\text{FPo}} \]

\[(h' - h_{0})_{p} = 8043.8 + 1637 = -19708.5 \]

\[(h' - h_{0})_{p} = 26115.3 \text{ Btu/lbm fuel} \]

From curve in Figure 75, this gives a temperature:

\[T_{s} = 5900^{\circ}R \quad \text{which does not agree with assume temp.} \]

However, by plotting the calculated temperatures vs the assumed temperatures we can find the point they are equal. In addition by plotting the heat transferred vs the assumed temperature we can obtain the actual heat transfer at the actual temperature – see curves in Figure 75.

This yields:

\[T_{s} = 5791^{\circ}R \]

\[q' = 1727 \text{ Btu/lbm fuel} \]
Then \((T/T_e) = (0.3787) \left(\frac{5791}{2500}\right)\)

\((T/T_e) = 0.877\) from Rayleigh line we get

\[
M_e = 1.265
\]

\[(P/P_e) = 0.740\]

\[P_e = \frac{(0.740)}{(2.245)} (20) = 61.3 \text{ lb/in}^2\]

Station 6.

Assume:
1. Isentropic expansion from 5 to 6.
2. \(A_e = 313.58 \text{ ft}^2\) \((D = 20 \text{ ft})\)

\[\frac{(A/A_e)}{(A/A_e)} = (A/A_e) \frac{A_e}{A_e} = \left(\frac{1.052}{313.58}\right) \frac{313.58}{10.0}\]

\[A/A_e = 32.89\]

\[
M_e = 5.28
\]

\[(P/P_0) = 0.001538\]

\[P_e = \frac{(0.001538)(61.3)}{.377} = .250 \text{ lb/in}^2\]

\[V_e = 8897.48 \text{ ft/sec}\]
Calculate Thrust, Specific Impulse, and Overall Efficiency:

Thrust = \(F_g = f_e - f_1 - P_1(A_e - A_1) \)

\[
\begin{align*}
 f_e &= A_e \left(P_e + n_n \frac{P_e V_e^2}{g_0} \right) \\
 f_1 &= A_1 \left(P_f + \frac{P_f V_f^2}{g_0} \right) \\
 n_n &= .95 \\
 f_1 &= 169 \left(22.32 + \frac{(.000996)(8051)^2}{32.2} \right) \\
 f_e &= 34264.1 \text{ lb} \\
 f_a &= 313.58 \left(36.05 + .95(.000974)(8897.48)^2 \right) \\
 f_a &= 431703.9 \text{ lb} \\
 F_g &= 431703.9 - 34264.1 - 22.32(313.58 - 169.) \\
 F_g &= 85833.22 \text{ lb} \\
\end{align*}
\]

Specific Impulse:

\[
I_f = \frac{n_n(F_g)}{W_f} \\
W_f = f_0 V_f A_1 = .0698(.000996)(169.)(8051) \\
W_f = 94.6 \text{ lbm/sec fuel} \\
I_f = \frac{(.95)(85833.22)}{94.6} \\
I_f = 861.96 \text{ sec} \\
\]

Overall Efficiency:

\[
\eta_e = \frac{I_f V_f}{H_f + V_f^2/2g_0} \\
\]

-297-
Estimate of Heat Transfer From Nozzle:

Consider the nozzle below: (Note: the values below are not the final but a first estimate)

Flow Area:

\[r_e - r_1 = 9.75 - 7.28 = 2.47 \]

\[\tan \theta_2 = \frac{2.47}{40} = 0.06175 \]

\[\theta_2 = 3.4^\circ \]

From \(x = 0 \) to \(x = 10 \) where \(r_t = r_e - x \tan \theta_2 = 9.75 - x \times 0.06175 \)

From \(x = 10 \) to \(x = 40 \) \(\Delta \omega = \frac{r_t^2 - r_b^2}{A_t} \)

\[r_b = \frac{(x - 10) \tan \theta_1}{(x - 10) \times 0.237} \]

\[x' = 40 - x \]

<table>
<thead>
<tr>
<th>(x')</th>
<th>(x)</th>
<th>(r_t)</th>
<th>(A_t)</th>
<th>(r_b)</th>
<th>(A_b)</th>
<th>(A_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>9.75</td>
<td>298.8</td>
<td>0</td>
<td>0</td>
<td>298.8</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>9.13</td>
<td>262.0</td>
<td>0</td>
<td>0</td>
<td>262.0</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>8.52</td>
<td>227.8</td>
<td>2.37</td>
<td>17.6</td>
<td>210.2</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>7.90</td>
<td>195.9</td>
<td>4.74</td>
<td>70.6</td>
<td>125.3</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>7.60</td>
<td>180.9</td>
<td>5.92</td>
<td>110.3</td>
<td>70.6</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
<td>7.53</td>
<td>178.0</td>
<td>6.16</td>
<td>119.3</td>
<td>58.7</td>
</tr>
<tr>
<td>40</td>
<td>37</td>
<td>7.47</td>
<td>175.1</td>
<td>6.40</td>
<td>128.6</td>
<td>46.5</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>7.40</td>
<td>172.2</td>
<td>6.64</td>
<td>138.3</td>
<td>33.9</td>
</tr>
<tr>
<td>40</td>
<td>9</td>
<td>7.34</td>
<td>169.3</td>
<td>6.87</td>
<td>148.4</td>
<td>20.9</td>
</tr>
</tbody>
</table>
Assuming isentropic expansion to each point:

\[(A/A_x) = \frac{(A/A_x)_{\text{ref}}}{A_x} = 1.1 \times 10^{-3} = 0.019 \text{ ft}^2 \]

This yields a Mach Number from Isentropic Flow Tables:

\[T_x = \left(\frac{T}{T_0} \right)_x, \quad T_0 = \left(\frac{T}{T_0} \right)_0 \frac{5465}{.726} = 7527.5 \left(\frac{T}{T_0} \right)_x \text{ (°R)} \]

\[P_x = \left(\frac{P}{P_0} \right)_x, \quad P_0 = \left(\frac{P}{P_0} \right)_0 \frac{54}{.323} = 167 \left(\frac{P}{P_0} \right)_x \text{ (lb/ft}^2) \]

\[V_x = \frac{M_x 144}{T_x} = 2.7 \left(\frac{P}{P_0} \right)_x \text{ (ft/sec)} \]

\[\rho_x = \frac{P_x 144}{53.34 T_x} = \frac{V_x}{13 \text{ lb/ft}^3} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>((A/A_x)_x)</th>
<th>(M)</th>
<th>((P/P_0)_x)</th>
<th>(P_x)</th>
<th>((T/T_0)_x)</th>
<th>(T_x)</th>
<th>(V_x)</th>
<th>(\rho_x)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.292</td>
<td>2.35</td>
<td>.074</td>
<td>12.38</td>
<td>.475</td>
<td>3525</td>
<td>6851</td>
<td>.00498</td>
<td>4.4 x 10^{-5}</td>
</tr>
<tr>
<td>2</td>
<td>3.718</td>
<td>2.86</td>
<td>.034</td>
<td>5.68</td>
<td>.379</td>
<td>2815</td>
<td>7451</td>
<td>.00544</td>
<td>3.93</td>
</tr>
<tr>
<td>3</td>
<td>5.10</td>
<td>3.20</td>
<td>.020</td>
<td>3.34</td>
<td>.328</td>
<td>2430</td>
<td>7745</td>
<td>.00371</td>
<td>3.68</td>
</tr>
<tr>
<td>4</td>
<td>6.44</td>
<td>3.45</td>
<td>.014</td>
<td>2.34</td>
<td>.250</td>
<td>2150</td>
<td>7855</td>
<td>.00294</td>
<td>3.47</td>
</tr>
<tr>
<td>5</td>
<td>7.74</td>
<td>3.64</td>
<td>.0108</td>
<td>1.81</td>
<td>.274</td>
<td>2063</td>
<td>8118</td>
<td>.00236</td>
<td>3.40</td>
</tr>
<tr>
<td>10</td>
<td>13.74</td>
<td>4.28</td>
<td>.0090</td>
<td>.836</td>
<td>.220</td>
<td>1656</td>
<td>8552</td>
<td>.00156</td>
<td>3.07</td>
</tr>
<tr>
<td>20</td>
<td>23.05</td>
<td>4.90</td>
<td>.00303</td>
<td>.356</td>
<td>.172</td>
<td>1294</td>
<td>6854</td>
<td>.00074</td>
<td>2.75</td>
</tr>
<tr>
<td>30</td>
<td>28.73</td>
<td>5.10</td>
<td>.00165</td>
<td>.276</td>
<td>.160</td>
<td>1200</td>
<td>8674</td>
<td>.00062</td>
<td>2.66</td>
</tr>
<tr>
<td>40</td>
<td>32.89</td>
<td>5.28</td>
<td>.00154</td>
<td>.257</td>
<td>.154</td>
<td>1160</td>
<td>8831</td>
<td>.00060</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Assume the heat transfer relation is turbulent flow flat plate.

\[\text{Nu}_x = c \cdot (322 \text{Pr}^{1/3} \text{Re}_x^{1/2}) = \text{cNu}_x \]

\[\text{Re}_x = \frac{V_x \cdot \rho}{\mu} \quad c = \text{correction constant for high speed flow (Kays, p. 13.26)} \]

\[h = \frac{\text{Nu}_x k}{x} \quad \text{(Btu/hr-ft}^2{°F}) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{Re})</th>
<th>(\text{Re}_x^{1/2})</th>
<th>(\text{Pr})</th>
<th>(\text{Pr}_x^{1/3})</th>
<th>(\text{Nu}_x)</th>
<th>(c)</th>
<th>(\text{Nu}_x)</th>
<th>(k)</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.475 x 10^8</td>
<td>1.214 x 10^3</td>
<td>.85</td>
<td>.94</td>
<td>378.9</td>
<td>.70</td>
<td>265</td>
<td>.065</td>
<td>17.2</td>
</tr>
<tr>
<td>2</td>
<td>2.06</td>
<td>1.435</td>
<td>.76</td>
<td>.91</td>
<td>433.5</td>
<td>.63</td>
<td>273</td>
<td>.058</td>
<td>7.9</td>
</tr>
<tr>
<td>3</td>
<td>2.34</td>
<td>1.530</td>
<td>.74</td>
<td>.90</td>
<td>457.2</td>
<td>.58</td>
<td>265</td>
<td>.056</td>
<td>4.8</td>
</tr>
</tbody>
</table>

(Continued)
Then:

\[\dot{Q}_N = \int_{x'=0}^{x'=40} (h\dot{R}t)_x \, dx' \]

Integrating graphically from curve of \(x' \) vs. \(h\dot{R}t \) in Figure 76 we get,

\[\dot{Q}_N = 47.8 \times 10^6 \text{ Btu/hr} \]

\[\dot{Q}_N = 47.8 \times 10^6 \text{ Btu/hr} \]

\[4.879 \times 10^6 \text{ lbm air/hr} \]
\[q'N = 9.797 \text{ Btu/lbm air} \]
\[q'N = 9.727 \times 10^{-3} \text{ lbm fuel/lbm air} \]
\[q'N = 140.4 \text{ Btu/lbm fuel} \]
\[q'T = q'N + q'c \]
\[q'T = 1567.4 \text{ Btu/lbm fuel} \]
Figure 72. ENTHALPY OF PRODUCTS OF COMBUSTION
Table III - DECOMPOSITION BY PCH O VER KEEFER CATALYST

<table>
<thead>
<tr>
<th>Run Number</th>
<th>20°C</th>
<th>50°C</th>
<th>90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>752</td>
<td>645-660</td>
<td>662-777</td>
</tr>
<tr>
<td>3</td>
<td>800-86</td>
<td>600-785</td>
<td>640-789</td>
</tr>
<tr>
<td>4</td>
<td>226-244</td>
<td>725-295</td>
<td>642-241</td>
</tr>
<tr>
<td>5</td>
<td>675-333</td>
<td>772-336</td>
<td>672-374</td>
</tr>
<tr>
<td>6</td>
<td>824-222</td>
<td>74-599</td>
<td>790-924</td>
</tr>
</tbody>
</table>

Reaction Volume: 7 ml
Reaction Temperature: 540°F
Reaction Time: 30 Minutes

<table>
<thead>
<tr>
<th>Product Analysis, %</th>
<th>20°C</th>
<th>50°C</th>
<th>90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupted</td>
<td>1.8</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Product</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Y2</td>
<td>1.0</td>
<td>5.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Y3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>97.1</td>
<td>98.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Y4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

| PCH Conversion, % | 99.0 | 96.3 | 53.8 |

a) Unidentified, emerged after benzene.
b) Unidentified, emerged after PCH.
c) Unidentified, emerged after toluene.
d) Catalyst almost completely deactivated after 10 minutes.
Table 120: CONTRIBUTION OF WITZIG REACTOR

Pressure: 1 atm Catalyst Volume: 7 ml
Block Temperature: 842°F Reaction Time: 30 Minutes
Catalyst No.: 10210-45

| Run Number | LHSV | 5 | 15 | 30 | 50 | 80 | 100%
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiles, °F</td>
<td>348-22</td>
<td>714-20</td>
<td>585-23</td>
<td>610</td>
<td>593</td>
<td>63-15</td>
<td>60-3</td>
</tr>
<tr>
<td>365-22</td>
<td>755-42</td>
<td>751-42</td>
<td>617</td>
<td>60-3</td>
<td>60-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360-38</td>
<td>750-32</td>
<td>580-73</td>
<td>583</td>
<td>617</td>
<td>61b</td>
<td>61b</td>
<td></td>
</tr>
<tr>
<td>Reactor Wall Temperature, °F</td>
<td>810</td>
<td>774-76</td>
<td>725-26</td>
<td>703</td>
<td>698</td>
<td>673-31</td>
<td></td>
</tr>
<tr>
<td>ST max</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.9</td>
<td>0.9</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>MCH</td>
<td>1.0</td>
<td>0.8</td>
<td>10.1</td>
<td>41.3</td>
<td>34.6</td>
<td>62.3</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>89.0</td>
<td>98.6</td>
<td>90.6</td>
<td>58.1</td>
<td>51.4</td>
<td>59.6</td>
<td></td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>98.9</td>
<td>989.5</td>
<td>88.7</td>
<td>58.9</td>
<td>47.7</td>
<td>41.3</td>
<td></td>
</tr>
</tbody>
</table>

a) Back pressure was about 15 psi during this run.
<table>
<thead>
<tr>
<th>Run Number</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>5</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Catalyst Bed

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-72</td>
<td>700-11</td>
<td>750-80</td>
<td>800-86</td>
</tr>
<tr>
<td>759-90</td>
<td>645-82</td>
<td>560-87</td>
<td>615-83</td>
</tr>
<tr>
<td>815-99</td>
<td>716-89</td>
<td>671-86</td>
<td>682-85</td>
</tr>
<tr>
<td>851-11</td>
<td>759-45</td>
<td>682-85</td>
<td>692-85</td>
</tr>
</tbody>
</table>

Reactor Wall Temperature, °F

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>615-80</td>
<td>775</td>
<td>758-85</td>
<td>758-85</td>
</tr>
</tbody>
</table>

Product Analysis, %

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>5.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.3</td>
<td>6.1</td>
<td>28.7</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Toluene</td>
<td>95.0</td>
<td>95.5</td>
<td>72.5</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>0.2</td>
<td>0.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Mesitylene Conversion, %

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.1</td>
<td>93.9</td>
<td>15.3</td>
<td></td>
</tr>
</tbody>
</table>

a Unidentified; emerged after benzene.

b Unidentified; emerged after toluene.

c Unidentified; emerged after toluene.

d Unidentified; emerged after 17 minutes; catalyst deactivated at end of run.
Table I.22: DECARBOXYLATION OF N-METHYL-2-METHYLACETACETETRONE

Pressure: 1 atm Catalyst Volume: 7 ml
Block Temperature: 842°F Reaction Time: 30 Minutes
Catalyst No.: 9674-7

<table>
<thead>
<tr>
<th>Run Number</th>
<th>IEYS</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHPW</td>
<td></td>
<td>5</td>
<td>13</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Catalyst Bed</td>
<td>779</td>
<td>714-16</td>
<td>725-76</td>
<td>813-57</td>
<td></td>
</tr>
<tr>
<td>Profiles, °F</td>
<td>775</td>
<td>1705-59</td>
<td>797-813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>860</td>
<td>765</td>
<td>734-54</td>
<td>795-833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>875-35</td>
<td>788-86</td>
<td>746-59</td>
<td>777-850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Wall Temperature, °F</td>
<td>815</td>
<td>793-97</td>
<td>815-59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| OH wax | 0 | 2 | 50 | 52b)
| Product Analysis, % | | | | |
| Benzene | 1.7 | 0.1 | 0.2 | 0.1 |
| MTH | 19.9 | 62.8 | 95.1 |
| Toluene | 71.2 | 75.7 | 37.0 | 5.6 |
| U,8) | 0.0 | 0.0 | 0.0 | 1.2 |

a) Unidentified, emerged after toluene.
b) Catalyst almost completely deactivated at end of run.
<table>
<thead>
<tr>
<th>Run Number</th>
<th>1101B-</th>
<th>11-1</th>
<th>11-2</th>
<th>11-3</th>
<th>11-4</th>
<th>11-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalyst Bed</td>
<td>774-72</td>
<td>653</td>
<td>635-59</td>
<td>642-55</td>
<td>669-75</td>
<td>687-98</td>
</tr>
<tr>
<td>Profile, °F</td>
<td>817-13</td>
<td>639</td>
<td>630-55</td>
<td>635-59</td>
<td>644-50</td>
<td></td>
</tr>
<tr>
<td>Reactor Wall Temperature, °F</td>
<td>826-24</td>
<td>762</td>
<td>727-25</td>
<td>716-18</td>
<td>716</td>
<td>725-29</td>
</tr>
<tr>
<td>Oil Max</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td>2.3</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.4</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>96.5</td>
<td>98.9</td>
<td>69.5</td>
<td>49.2</td>
<td>35.7</td>
<td>37.7</td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>96.6</td>
<td>95.1</td>
<td>69.6</td>
<td>49.3</td>
<td>36.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Table 124. TRANSMUTATION OF MCH OVER ZEOLITE

Pressure: 1 atm \[\text{Catalyst Volume:} \quad 7 \text{ ml}\]

Block Temperature: 642 °F \[\text{Reaction Time:} \quad 30 \text{ Minutes}\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LHSV</td>
<td>5</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Catalyst Bed</td>
<td>Profile, °F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&agr;</td>
<td>761-52</td>
<td>669-66</td>
<td>657-71</td>
<td>700-715</td>
<td>830-835</td>
</tr>
<tr>
<td>οβ</td>
<td>606-61</td>
<td>691-67</td>
<td>679-68</td>
<td>642-761</td>
<td>722-733</td>
</tr>
<tr>
<td>P</td>
<td>86-24</td>
<td>729-23</td>
<td>553-55</td>
<td>644-701</td>
<td>806-835</td>
</tr>
<tr>
<td>%</td>
<td>233</td>
<td>770-66</td>
<td>678-60</td>
<td>657-602</td>
<td>776-893</td>
</tr>
<tr>
<td>Reactor Wall Temperature, °F</td>
<td>822-20</td>
<td>763-61</td>
<td>721-29</td>
<td>725-68</td>
<td>824-55</td>
</tr>
<tr>
<td>ΔT max</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>115</td>
<td>36</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCH</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C9 &agr;</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C8 οβ</td>
<td>1.4</td>
<td>2.2</td>
<td>2.7</td>
<td>56.1</td>
<td>96.6</td>
</tr>
<tr>
<td>C7 ο δ</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C6 ο ε</td>
<td>97.4</td>
<td>97.7</td>
<td>97.5</td>
<td>95.7</td>
<td>1.6</td>
</tr>
<tr>
<td>ε</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>96.9</td>
<td>97.3</td>
<td>72.5</td>
<td>45.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

\(\alpha\) unidentified; emerged after benzene.

\(\beta\) unidentified; emerged after MCH.

\(\gamma\) unidentified; emerged after toluene.

\(\delta\) catalyst about completely deactivated at end of run.
Table 125. DEHYDROGENATION OF MCH OVER UOP-R16E

<table>
<thead>
<tr>
<th>Run No. 11325-</th>
<th>85-1</th>
<th>85-2</th>
<th>86-1</th>
<th>86-2</th>
<th>87-1</th>
<th>87-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHSV</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Catalyst Bed Profile, °F</td>
<td>774-70</td>
<td>671</td>
<td>655-58</td>
<td>686-729</td>
<td>759-824</td>
<td>824</td>
</tr>
<tr>
<td></td>
<td>813-10</td>
<td>705-02</td>
<td>646-37</td>
<td>640-657</td>
<td>673-761</td>
<td>734-822</td>
</tr>
<tr>
<td></td>
<td>831-29</td>
<td>752-50</td>
<td>668-67</td>
<td>644-51</td>
<td>650-89</td>
<td>705-761</td>
</tr>
<tr>
<td></td>
<td>833</td>
<td>779-74</td>
<td>689-87</td>
<td>657-55</td>
<td>648-69a)</td>
<td>678-720a)</td>
</tr>
<tr>
<td>Reactor Wall Temp, °F</td>
<td>831</td>
<td>779-76</td>
<td>643-47</td>
<td>638-47</td>
<td>750-90</td>
<td>852-96</td>
</tr>
<tr>
<td>ΔT_max, °F</td>
<td>-4</td>
<td>-5</td>
<td>11</td>
<td>43</td>
<td>88a)</td>
<td>31a)</td>
</tr>
<tr>
<td>Product Analysis, %w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MCH</td>
<td>7.4</td>
<td>4.8</td>
<td>33.2</td>
<td>54.9</td>
<td>70.9</td>
<td>81.5</td>
</tr>
<tr>
<td>Toluene</td>
<td>92.4</td>
<td>95.2</td>
<td>66.8</td>
<td>45.1</td>
<td>29.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Othersb)</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>MCH Conversion, %w</td>
<td>92.6</td>
<td>95.2</td>
<td>66.8</td>
<td>45.1</td>
<td>29.1</td>
<td>18.5</td>
</tr>
</tbody>
</table>

a) Cold spot moved down the catalyst bed.
b) Emerged after MCH and after toluene.
Table 126. DEHYDROGENATION OF MCH OVER 1% Pt on Al₂O₃

<table>
<thead>
<tr>
<th>Run No. 11325-</th>
<th>81-1</th>
<th>81-2</th>
<th>82-1</th>
<th>82-2</th>
<th>83-1</th>
<th>83-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHSV</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Catalyst Bed</td>
<td>776-72</td>
<td>686-82</td>
<td>669-76</td>
<td>685-743</td>
<td>776-815</td>
<td>819-24</td>
</tr>
<tr>
<td>Profile, °F</td>
<td>817</td>
<td>732-27</td>
<td>689</td>
<td>687-707</td>
<td>729-90</td>
<td>806-24</td>
</tr>
<tr>
<td></td>
<td>833</td>
<td>765-61</td>
<td>711-99</td>
<td>696-707</td>
<td>716-66</td>
<td>786-819</td>
</tr>
<tr>
<td></td>
<td>837</td>
<td>795-92</td>
<td>741-59</td>
<td>718-22</td>
<td>720-54</td>
<td>772-812</td>
</tr>
<tr>
<td>Reactor Wall Temp, °F</td>
<td>831-26</td>
<td>781-76</td>
<td>750-52</td>
<td>747-61</td>
<td>770-810</td>
<td>817-831</td>
</tr>
<tr>
<td>ΔT_max, °F</td>
<td>-4</td>
<td>-5</td>
<td>+7</td>
<td>52</td>
<td>61b)</td>
<td>40b)</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MCH</td>
<td>2.2</td>
<td>12.8</td>
<td>44.5</td>
<td>63.7</td>
<td>82.4</td>
<td>92.5</td>
</tr>
<tr>
<td>Toluene</td>
<td>95.7</td>
<td>86.9</td>
<td>55.2</td>
<td>35.8</td>
<td>16.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Othersa)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>2.5</td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>97.8</td>
<td>87.2</td>
<td>55.5</td>
<td>36.3</td>
<td>17.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Selectivity for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene, %</td>
<td>97.9</td>
<td>99.7</td>
<td>99.4</td>
<td>99.4</td>
<td>94.5</td>
<td>65.3</td>
</tr>
</tbody>
</table>

a) Emerged after MCH and after toluene.
b) Cold spot moved down the catalyst bed.
Table 127. DEHYDROGENATION OF MCH OVER 10860-114C CATALYST

<table>
<thead>
<tr>
<th>Run No. 11325-</th>
<th>74-1</th>
<th>74-2</th>
<th>75-1</th>
<th>75-2</th>
<th>76-1</th>
<th>76-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHSV</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Catalyst Bed Profile, °F</td>
<td>759-61</td>
<td>640-35</td>
<td>619</td>
<td>621-26</td>
<td>635-37</td>
<td>644-50</td>
</tr>
<tr>
<td>Block Temperature: 842°F</td>
<td>815</td>
<td>789-82</td>
<td>632-30</td>
<td>621</td>
<td>619-21</td>
<td>621-23</td>
</tr>
<tr>
<td>Catalyst Volume: 7 ml</td>
<td>833</td>
<td>750-83</td>
<td>660-57</td>
<td>635</td>
<td>626</td>
<td>626</td>
</tr>
<tr>
<td>Reaction Time: 30 minutes</td>
<td>837-35</td>
<td>792-84</td>
<td>691-89</td>
<td>658</td>
<td>644</td>
<td>657-35</td>
</tr>
<tr>
<td>Reactor Wall Temp, °F</td>
<td>831</td>
<td>770-66</td>
<td>750-28</td>
<td>718</td>
<td>711</td>
<td>709</td>
</tr>
<tr>
<td>△T max, °F</td>
<td>42</td>
<td>-8</td>
<td>-3</td>
<td>+5</td>
<td>+2</td>
<td>+6</td>
</tr>
<tr>
<td>Product Analysis, %w</td>
<td>Benzene</td>
<td>5.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MCH</td>
<td>2.2</td>
<td>1.7</td>
<td>26.8</td>
<td>47.2</td>
<td>59.6</td>
<td>65.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>92.4</td>
<td>97.8</td>
<td>73.1</td>
<td>52.8</td>
<td>40.4</td>
<td>35.0</td>
</tr>
<tr>
<td>MCH Conversion, %w</td>
<td>97.8</td>
<td>98.3</td>
<td>73.2</td>
<td>52.8</td>
<td>40.4</td>
<td>35.0</td>
</tr>
<tr>
<td>Run No. 11325</td>
<td>69</td>
<td>70-1</td>
<td>70-2</td>
<td>71</td>
<td>72-1</td>
<td>72-2</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>LHSV</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Catalyst Bed Profile, °F</td>
<td>761-72</td>
<td>783-76</td>
<td>671-60</td>
<td>689-72</td>
<td>727-78</td>
<td>781-806</td>
</tr>
<tr>
<td></td>
<td>810-04</td>
<td>712-07</td>
<td>676</td>
<td>683-60</td>
<td>687-729</td>
<td>723-63</td>
</tr>
<tr>
<td></td>
<td>853-29</td>
<td>782-45</td>
<td>698-36</td>
<td>686-67</td>
<td>687-714</td>
<td>700-25</td>
</tr>
<tr>
<td></td>
<td>855-33</td>
<td>784-77</td>
<td>727-23</td>
<td>707</td>
<td>696-702</td>
<td>702-16</td>
</tr>
<tr>
<td>Reactor Wall Temp, °F</td>
<td>826-26</td>
<td>779-76</td>
<td>752</td>
<td>743-47</td>
<td>747-63</td>
<td>768-75</td>
</tr>
<tr>
<td>ΔT_max, °F</td>
<td>-9</td>
<td>-7</td>
<td>+9</td>
<td>18</td>
<td>41</td>
<td>40(^a)</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bencene</td>
<td>0.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MCH</td>
<td>0.8</td>
<td>10.3</td>
<td>41.3</td>
<td>62.2</td>
<td>73.3</td>
<td>81.3</td>
</tr>
<tr>
<td>Toluene</td>
<td>98.4</td>
<td>89.0</td>
<td>55.6</td>
<td>37.7</td>
<td>26.6</td>
<td>15.6</td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>99.2</td>
<td>89.2</td>
<td>55.7</td>
<td>37.8</td>
<td>26.7</td>
<td>15.7</td>
</tr>
</tbody>
</table>

\(^a\) Cold spot moved down the catalyst bed.
Table 129. DEHYDROGENATION OF MCH OVER 10660-113A AND
HOLAY 200 SR CATALYSTS

<table>
<thead>
<tr>
<th>Run No. 11325-</th>
<th>89-1</th>
<th>89-2</th>
<th>78-1</th>
<th>78-2</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>Houdry 200 SR</td>
<td>10660-113A</td>
<td>5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>LHSV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalyst Bed</td>
<td>758-56</td>
<td>705-833</td>
<td>763-58</td>
<td>725-68</td>
<td>824-37</td>
</tr>
<tr>
<td>Profile, F</td>
<td>801-799</td>
<td>700-831</td>
<td>804-797</td>
<td>741-50</td>
<td>797-833</td>
</tr>
<tr>
<td></td>
<td>826-24</td>
<td>741-830</td>
<td>624-17</td>
<td>761-58</td>
<td>778-226</td>
</tr>
<tr>
<td></td>
<td>833</td>
<td>770-828</td>
<td>831-28</td>
<td>784-779</td>
<td>770-817</td>
</tr>
<tr>
<td>Reactor Wall Temp, F</td>
<td>826</td>
<td>783-838</td>
<td>824-21</td>
<td>788-97</td>
<td>820-837</td>
</tr>
<tr>
<td>AT_max, F</td>
<td>-2</td>
<td>13</td>
<td>-7</td>
<td>43</td>
<td>b)</td>
</tr>
<tr>
<td>Product Analysis, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.4</td>
<td>0.2</td>
<td>1.7</td>
<td>3.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MCH</td>
<td>1.7</td>
<td>59.3</td>
<td>4.8</td>
<td>35.0</td>
<td>88.3</td>
</tr>
<tr>
<td>Toluene</td>
<td>96.9</td>
<td>34.1</td>
<td>93.5</td>
<td>64.8</td>
<td>10.8</td>
</tr>
<tr>
<td>Others a)</td>
<td>0.0</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>MCH Conversion, %</td>
<td>98.3</td>
<td>40.6</td>
<td>95.2</td>
<td>65.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Selectivity for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene, %</td>
<td>98.6</td>
<td>84.0</td>
<td>92.8</td>
<td>99.7</td>
<td>92.3</td>
</tr>
</tbody>
</table>

a) Emerged after MCH, after benzene, after toluene.
b) Catalyst bed temperature about that of reactor wall temperature.
Description of the Pulsed Reactor

The pulse reactor was a 1/4-in. OD stainless steel tube (No. 304) 9-1/4 in. long and 0.022 in. wall thickness. Swagelok Tees were fastened at each end and one arm of the Tee served as an injection port. A rubber septum (GLC type) was held in place by the fitting nut and the feed was injected through this septum from a syringe. A five inch length of the reactor tube was surrounded by a secondary furnace liner and the whole was heated by an electric furnace. The secondary liner had seven radial drilled holes for thermocouples and the holes were located as shown in Figure 72. A schematic diagram of the pulse reactor is shown in Figure 77.

All lines were 1/4-in. OD stainless steel tubing (No. 304). About 26 in. of line just prior to the reactor was wrapped with heating tape and constituted a gas preheater. About 8 in. of the preheater section was filled with quartz chips (10-20 mesh size).

In the pulse reactor system the carrier gas was metered through a rotameter (Figure 71) and passed through the preheater section and into the reactor. The exit gas passed into a manifold and then into the GLC. The purpose of the manifold was to maintain the exit gas pressure slightly greater than the gas pressure in the GLC. This was done by adjusting the pressure control valve and the vent valve. The manifold was wrapped with heating tape and was maintained at 300° to 350°F. The injection port temperature was about 450°F. The pressure control and the vent valves were needle valves (Hoke No. 1315) and the GLC valve was a lever operated valve (Hoke No. 490).

To carry out an experiment the reactor was brought to temperature and the carrier gas flow rate, reactor pressure and manifold pressure were adjusted by means of the appropriate flow control valves. Then with inert gas flowing to the GLC a pulse was injected through the lower injection port and subsequently analyzed. This gave an analysis of the starting material. A pulse was then injected in the top injection port, passed over the catalyst and analyzed.

In this system the space velocity was obtained from the inert gas flow rate. Figure 78 shows the pulse reactor system with the secondary furnace liner in place; Figure 80 shows the GLC analysis system.
Figure 72. SECONDARY FURNACE LINER FOR PULSE REACTOR
Description of the 1/4-in. OD Flow Reactor

In order to test candidate fuels that are in short supply one section of our laboratory dual reactor system was modified in the following manner, so that 1/4-in. OD reactor tubes could be used.

In our laboratory reactor system the furnace is 26 in. overall length and contains four heating elements of lengths 4", 8", 8", 4" located from top to bottom in that order. The outer shell of the furnace extends one inch beyond the top and bottom of the heating elements. The furnace consists of two hinged halves and opens lengthwise. Each half contains a heavy Meehanite liner with a groove down the center to hold the reactor tube. When closed the grooves form an opening 7/8 inch in diameter.

To modify the apparatus, a secondary furnace liner was fabricated from a 7/8-in. stainless steel rod (No. 416), 13 inches long. A 0.257-in. diameter hole was drilled down the center to accommodate a 1/4-in. OD reactor tube. Seven holes were drilled radially from the outside to the center hole in which thermocouples were cemented. The thermocouples were 1-1/2 inches apart and the top couple was 1-1/2 inches from the top of the liner. The thermocouples were situated so that they just touched the reactor wall. This secondary liner was placed in the Meehanite liners at the very bottom of the furnace and extended one inch below the bottom heating element. Figure 81 shows the construction of the secondary liner and its position in the furnace.

The reactor was a stainless steel tube (No. 304) 30 inches long, 1/4-inch OD with 0.035" wall thickness. Reaction was carried out in the lower part of the tube and the top part served as a feed preheater. The reactor was furnace-heated and a 13" long secondary furnace liner surrounded the reactor tube at the reaction zone. Figure 81 shows the secondary furnace liner and its position in the furnace.

The reactor wall temperature was measured at seven points along the tube. The points were 1-1/2 inches apart and the top point was one inch below the top of the secondary liner (Figure 81). The temperature of the reactor wall varied down the tube and Figure 82 shows the temperature variation for a furnace block temperature of 1202°F.

The maximum reaction rate will occur in the region of maximum temperature. Presumably the rate in that portion of the tube whose temperature was 18°F (10°C) or more below the maximum temperature, did not contribute appreciably to the overall rate. Thus the "effective" volume of the tube was that portion of the tube whose temperature was within 18°F of the maximum wall temperature, and whose volume was determined from a plot such as Figure 82. The "effective" reactor temperature was taken as 9°F below the maximum temperature.
Figure 81. SECONDARY FURNACE LINER FOR \frac{1}{4}" OD REACTOR TUBE

- Hole for Reactor Tube 0.257" Diameter
- Holes for Thermocouples \frac{1}{16}" Diameter
- Slot for Thermocouple Leads \frac{1}{32}" Deep, \frac{1}{8}" Wide

End View

Secondary Furnace Liner

Reactor Furnace with Secondary Furnace Liner in Position

Heating Elements

Secondary Liner
Figure 82. REACTOR TEMPERATURE PROFILE

-64157

-325-
Micro Catalyst Test Reactor Data

The micro catalyst test reactor (MICTR) and the operational techniques used for screening candidate catalysts have been described in the Appendix of the last Annual Report. No further changes have been made. Catalysts are tested with MCH at 100 and 662, 752 and 842°F, at 10 atm pressure without added hydrogen. Figures 87 through 89, of reference 18 show the apparatus in detail, except for the changes noted in reference 16. It has been found that more consistent results are obtained if a fresh loading of the reference catalyst 9874-139 is made each week as a base point for calibration, rather than using the same reference catalyst tube over and over again, since the activity gradually declines. Also prepared catalysts have been rescreened to 10-20 mesh to remove fines after impregnation and drying of the supports, and this gives more reproducible results.
Table 130. MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICH - REG-577-511

<table>
<thead>
<tr>
<th>Catalyst Volume</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Reaction Rate</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 ml catalyst diluted with 1.1 ml quartz chips; LHSV 100 (catalyst and quartz particles 10-20 mesh unless otherwise noted).</td>
<td>10 atm pressure; catalysts reduced in H₂ for 20 minutes at 726°F; GLC samples normally taken at 3-, 6-, and 15-minute operation at each block temperature.</td>
<td>Period: June-August 1968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
<td>Column 5</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
</tr>
<tr>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
<td>Value 10</td>
</tr>
<tr>
<td>Value 11</td>
<td>Value 12</td>
<td>Value 13</td>
<td>Value 14</td>
<td>Value 15</td>
</tr>
<tr>
<td>Value 16</td>
<td>Value 17</td>
<td>Value 18</td>
<td>Value 19</td>
<td>Value 20</td>
</tr>
<tr>
<td>Value 21</td>
<td>Value 22</td>
<td>Value 23</td>
<td>Value 24</td>
<td>Value 25</td>
</tr>
<tr>
<td>Value 26</td>
<td>Value 27</td>
<td>Value 28</td>
<td>Value 29</td>
<td>Value 30</td>
</tr>
<tr>
<td>Value 31</td>
<td>Value 32</td>
<td>Value 33</td>
<td>Value 34</td>
<td>Value 35</td>
</tr>
<tr>
<td>Value 36</td>
<td>Value 37</td>
<td>Value 38</td>
<td>Value 39</td>
<td>Value 40</td>
</tr>
<tr>
<td>Value 41</td>
<td>Value 42</td>
<td>Value 43</td>
<td>Value 44</td>
<td>Value 45</td>
</tr>
<tr>
<td>Value 46</td>
<td>Value 47</td>
<td>Value 48</td>
<td>Value 49</td>
<td>Value 50</td>
</tr>
<tr>
<td>Value 51</td>
<td>Value 52</td>
<td>Value 53</td>
<td>Value 54</td>
<td>Value 55</td>
</tr>
<tr>
<td>Value 56</td>
<td>Value 57</td>
<td>Value 58</td>
<td>Value 59</td>
<td>Value 60</td>
</tr>
</tbody>
</table>
Table 4-9 (Continued)

WATER TEMPERATURE VERSUS VOLTAGE

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Water Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>20</td>
</tr>
<tr>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td>1.0</td>
<td>24</td>
</tr>
<tr>
<td>2.0</td>
<td>26</td>
</tr>
<tr>
<td>3.0</td>
<td>28</td>
</tr>
<tr>
<td>4.0</td>
<td>30</td>
</tr>
</tbody>
</table>

- The table continues with similar data points.
Table III.

| Period: September-November 1968 | Conditions: 10 atm pressure; catalyst refluxed in Hz for 20 minutes at 750°F. All samples normally taken at 3, 6, and 12 minute operation at each block temperature.
Catalyst Volume: 0.9 ml catalyst diluted with 1.1 ml quartz chips; 500/0 (catalyst and quartz) 10-30 mesh unless otherwise noted. |
Table III. POLYMERIZATION WITH VARIOUS CATALYSTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Catalyst</th>
<th>Description</th>
<th>HCR Conversion, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>2</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>3</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>4</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>5</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>6</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>7</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>8</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>9</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>10</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>11</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>12</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>13</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>14</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>15</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>16</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>17</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>18</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>19</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>20</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>21</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>22</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>23</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>24</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>25</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>26</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>27</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>28</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>29</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>30</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>31</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>32</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>33</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>34</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>35</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>36</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>37</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>38</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>39</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>40</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>41</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>42</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>43</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>44</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>45</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>46</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>47</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>48</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>49</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>50</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>51</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>52</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>53</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>54</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>55</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>56</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>57</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>58</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>59</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
<tr>
<td>60</td>
<td>Pt 0.1</td>
<td>4.5% Pt, 20% 0.1% Al</td>
<td>0.345</td>
</tr>
</tbody>
</table>

Notes
1. HCR =...
Table III. MTH HYDROCONVERSION WITH VARIOUS CATALYSTS IN BLEND, HCC AND MCH

| Period: March-August, 1969 |
| Conditions: 10 atm pressure; catalysts reduced in hydrogen at 775°F. GLC samples taken normally at 3-, 8- and 13-minute operation at each temperature |
| Volume: 0.9 ml catalyst diluted with 1.1 ml quartz chips (10-20 mesh). LHSV 100 with MCH |

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Reaction</th>
<th>T.M. Conversion, %</th>
<th>5 MTH Conversion, %</th>
<th>10 MTH Conversion, %</th>
</tr>
</thead>
</table>

Continued...
<table>
<thead>
<tr>
<th>Process</th>
<th>Catalyst</th>
<th>Space Velocity</th>
<th>Reaction Type</th>
<th>% Conversion</th>
<th>% Yield</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Catalyst A</td>
<td>0.5</td>
<td>Type A</td>
<td>50.0</td>
<td>75.0</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>Catalyst B</td>
<td>1.0</td>
<td>Type B</td>
<td>45.0</td>
<td>90.0</td>
<td>2.0</td>
</tr>
<tr>
<td>C</td>
<td>Catalyst C</td>
<td>0.8</td>
<td>Type C</td>
<td>60.0</td>
<td>85.0</td>
<td>3.0</td>
</tr>
<tr>
<td>D</td>
<td>Catalyst D</td>
<td>1.2</td>
<td>Type D</td>
<td>55.0</td>
<td>70.0</td>
<td>4.0</td>
</tr>
<tr>
<td>E</td>
<td>Catalyst E</td>
<td>0.6</td>
<td>Type E</td>
<td>40.0</td>
<td>65.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

(continued)
Measurement of Deposits on Coker Tubes With Nuclear Radiation

Presented here is a summary to date of the results and thoughts that have gone into the application of nuclear radiation as a tool for the evaluation of coker tube deposits. Covered are the general principles, electron scattering theory, preliminary experiments, trial apparatus and results, and proposed permanent instrument design. Electron backscatter appears to be the most promising approach and is the method of primary concern in the work presented here.

Thin Film Measurement With Nuclear Radiation General Principles

Thin film measurement with nuclear radiation can be accomplished either by transmission or scatter of the radiation. The problem is to select the best type and energy of radiation and guidelines to such selection that are available. The deposits of interest have a surface density in the neighborhood of 10^{-5} g/cm2 equivalent to an air path of only .01 cm. This implies an arrangement based on scattering rather than absorption and the probable need of vacuum operation. Possible types of radiation applicable in the present case are summarized in the table below.

Table 1, METHODS OF UTILIZING NUCLEAR RADIATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Source Radiation</th>
<th>Detected Radiation</th>
<th>Operation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α</td>
<td>α</td>
<td>alpha backscatter</td>
<td>Low scattering coefficient, requires very high intensity source.</td>
</tr>
<tr>
<td>2</td>
<td>α</td>
<td>x</td>
<td>x-ray fluorescence</td>
<td>Possible method. Efficiency very dependent on tube metal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in coker tube</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>β</td>
<td>β</td>
<td>beta backscatter</td>
<td>Preferred method.</td>
</tr>
<tr>
<td>4</td>
<td>β</td>
<td>x</td>
<td>x-ray fluorescence</td>
<td>Similar to method 2.</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x-ray backscatter</td>
<td>Low efficiency.</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x-ray fluorescence</td>
<td>Low efficiency.</td>
</tr>
</tbody>
</table>

The conclusion from this list is that electron scattering is preferred but other factors, not listed, also lead to the same conclusion. Should an alternative method be considered for investigation the use of fluorescence from alpha bombardment is probably the most promising. A transmission type of measurement is possible if radioactivity is introduced, by plating for example, onto the coker tube. This method, suggested by H. Siegel, is

a) Acknowledgment is made to Dr. R. Curtis of the Analytical Department for this work.
preferable from the point of view of measurement to any of those listed above, but the handling of radioactive tubes is a sufficient deterrent to exclude the method.

Electron Backscatter Theory

An approximate description of the relative backscattered electron flux to be expected from a coating of thickness \(x\) (g/cm\(^2\)) on a base of effectively infinite thickness is given by Tittle\(^{58}\) as:

\[
\frac{I}{I_0} = \frac{Z_1}{u_1 + \lambda_1} \left[1 - e^{-(u_1 + \lambda_1)x} \right] + \frac{Z_2}{u_1 + \lambda_2} e^{-(u_1 + \lambda_2)x}
\]

(53)

The constants \(u\), \(\lambda\), and \(Z\) depend upon the materials involved and the maximum beta energy, subscripts 1 and 2 referring to the coating and base respectively, and 3 to properties of both. From relations given by Tittle equation (53) in the approximation of small \(x\) can be expressed as:

\[
\frac{I}{I_0} = \left(1 - e^{-Z_2/40} \right) + \frac{352}{E_1/44} \left[\left(\frac{Z_1}{A_1} \right) \left(\frac{Z_1 + Z_2}{100 + Z_1} \right) \left(1 - e^{-Z_1/40} \right) \right]
\]

(54)

\[
= \left(\frac{Z_1}{A_1} + \frac{502}{100} \frac{0.31}{Z_2} \right) \left(1 - e^{-Z_2/40} \right)
\]

in which \(Z_1\) and \(A_1\) are the atomic number and atomic mass of the coating, \(Z_2\) the atomic number of the substrate, and \(E\) is the maximum beta energy in Mev. Approximating the deposit composition by \(Z_1/A_1 = 0.56\) and \(Z_1 = 5.9\) on an aluminum (\(Z_2 = 13\)) base gives

\[
\frac{I}{I_0} = 0.28 - \frac{4.4x}{E_1/44}
\]

(55)

as the ratio of scattered to incident flux. The statistics of counting and the general level of instrumental variables is such that it is not practical to measure a change \(dI/I_0\) of much less than 1%. Equation (55) then predicts a maximum energy of 1.1 KeV in order to detect a thickness change \(dx\) of \(10^{-8}\) cm, assuming unit density for the deposit. Some idea of the range of thickness measurable with this energy is obtained by equating (55) to zero with the result \(x = 3.10^{-8}\) g/cm\(^2\). This prediction indicates the need of a very low energy source though perhaps not as low as 1 KeV if the expected range of thickness (up to \(10^{-6}\) cm) is to be covered. Possible sources that are available are listed in Table 135. None of these sources is as low in energy as might be desired, but the least energetic sources should provide a usable compromise since even \(^{14}\)C is capable of showing some response to the heavier deposits.
Table 25. LOW ENERGY BETA SOURCES

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half Life, Years</th>
<th>E_max., Kev</th>
<th>Range in Air, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>310Pb</td>
<td>21</td>
<td>17</td>
<td>0.4</td>
</tr>
<tr>
<td>3H</td>
<td>12</td>
<td>19</td>
<td>0.5</td>
</tr>
<tr>
<td>60Ni</td>
<td>85</td>
<td>67</td>
<td>5.5</td>
</tr>
<tr>
<td>14C</td>
<td>5-700</td>
<td>155</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Though not immediately apparent, equation (54) dictates that the replacement of aluminum with any metal of higher atomic number will produce an increased response to a given deposit. The method depends on the difference, primarily in atomic number, between coating and base. This difference is not large with aluminum so that a successful measurement in this case assures success with heavier metals.

Preliminary Experiments

Initial tests were aimed at answering three questions: whether operation without a vacuum was feasible, whether to minimize absorption a windowless flow counter was practical, and what magnitude of response would be observed in practice. To this end a small counter was constructed (courtesy A. Telfer) from one inch brass tubing with a wedge shaped end opening approximately one cm wide. As a source 60Ni, having a reasonable penetration in air, was utilized in the form of the chloride adsorbed on a strip of filter paper mounted near the counter entrance. Tests were made using a 3/16" aluminum rod covered with various thicknesses of mylar film and mounted 1/2 cm from the counter.

This arrangement was unsatisfactory in several respects. One difficulty, not unexpected, was a large dependence of count rate upon counter gas flow rate. This could be controlled, but drift beyond this factor occurred that could not be accounted for. Stability was sufficient to show a count difference for one mill mylar film but was wholly inadequate for the detection of deposit films. In short, it was concluded that vacuum operation, which would require a thin window counter, was necessary and that a lower energy beta source was essential.

Trial Apparatus and Results

The bell jar and cryopump portion of a vacuum deposition apparatus were utilized in the following measurements. Feedthroughs in the base were provided for piping the flow of counter gas, the high voltage lead to the detector, and a slide fitting to which the cover tube could be attached. This slide fitting allowed translation and rotation of the cover tube in front of the source and detector for scanning the deposit area.
A locally constructed thin window flow counter was used as detector. This window is exposed via a 3/32 x 5/8" slot cut in a one inch diameter faceplate. The source was mounted directly on this face about 1/4" from the slot. The source itself was a 1/3 x 1/4" section of a neutron generator target arranged with a rather simple collimator fashioned from aluminum foil. The source-to-scatterer and scatterer-to-detector distance was 2.5 cm.

The associated electronics consisted of a Baird-Atomic Model 530 Spectrometer and Printer which provides the necessary functions of high voltage supply, pulse amplifier, discriminator, counter, and timer. Originally the high voltage was carried into the vacuum to the detector through a shielded cable, but this proved unsatisfactory. Attempts at shielding and insulating were not sufficient to eliminate corona and discharge in the vacuum with resultant spurious counting. A sufficiently hard vacuum to eliminate this problem was not practical. Instead, the high voltage lead and connection to the detector were enclosed in copper tubing and arranged to remain at atmospheric pressure.

The beta source used produces as well, super-γ-rays. These contribute to the scattered flux which is detected and provide a background counting rate even at atmospheric pressure. As the air pressure is reduced, a point is reached where the mean free path of the scattered electrons is sufficient for them to reach the detector and be counted. It was anticipated that a maximum count rate would be reached at some pressure and that this rate would remain constant below this pressure where essentially all electrons that could be scattered toward the detector would reach it. Instead, it was found that the count rate reached a maximum and then decreased with increasing vacuum. This maximum occurred at a pressure of approximately 25 torr while below 1/2 torr the count rate was independent of pressure. Apparently, as the pressure is reduced there is a maximum in count rate when the coker tube, bell jar wall, and residual atmosphere all contribute to the scattering and further evacuation diminishes the air scatter more rapidly than the increased scatter from wall and coker tube. As long as the pressure remains under 1/2 torr this presents no difficulty.

The coker tubes used in this study are of a miniature variety, the section of interest being 2-1/2" long and 1/8" diameter between end sections of 3/16" diameter. The deposit generally covers only a portion of the central tube section, being lightest (visually) near one shoulder, increasing in darkness toward the center of the tube and ending fairly abruptly to leave apparently bare metal beyond this point. The scattered intensity measured along such a tube is shown in Figure 83. Each point in the figure represents a 20 second count. The scatter of these points from a smooth curve is primarily due to statistical variations in counting. The rate corresponding to an uncoated tube is about 300 c/s, while on the wider tube section beyond the shoulder it is approximately 350 c/s. While the deposit in this example is a rather heavy one by visual inspection there appears to be ample sensitivity in the backscatter response. This is particularly true considering two simple improvements that could easily be introduced. The first involves better collimation of the incident beta flux to improve resolution of the

Results with a group of coker tubes are given in Figure 86. Again a 20 sec count was made at each point, but with the limited number of points involved a good approximation to the profile is acquired in roughly 5 min. The two curves for each sample are scans along opposite sides of the tube. The horizontal line to the right of each curve is an adjusted rate of 300 c/s. This adjustment was necessary because of an unexplained drift, possibly arising from the electronics, which could be corrected for each scan by returning to the starting position, but which is more difficult to correct for in going from tube to tube.

Calibration points for establishing a thickness scale were obtained using mylar film and by coating a tube with films of solution cast nitrocellulose. The mylar film (1/8 mil) is approaching infinite scattering thickness which simply means that the aluminum rod no longer contributes to the scattering. At this point the count rate has dropped from 300 to 200 c/s. Reasonably consistent results were obtained with 1, 2 and 4000A of film. Applied to the five tubes in Figure 86 this gives the following results as shown in Table 16.

\[
\frac{I}{I_0} = 1 - e^{-Z_2/40} + \frac{35x}{16.174} \left[\frac{Z_2}{A_1} \left(\frac{351 + Z_1}{100 + Z_1} \right) \left(1 - e^{-Z_1/40} \right) \right] \\
\left(\frac{Z_2}{A_1} + \frac{400 Z_2^{0.31}}{100 + Z_2} \right) \left(1 - e^{-Z_2/40} \right)
\]

For Aluminum base \(Z_2 = 13 \)

\[
\frac{I}{I_0} = 0.2775 + \frac{35x}{16.174} \left[\frac{Z_2}{A_1} \left(\frac{351 + Z_1}{100 + Z_1} \right) \left(1 - e^{-Z_1/40} \right) \right] \\
\left(\frac{Z_2}{A_1} + 4.195 Z_2^{0.31} \right) \left(6.276 \right)
\]

<table>
<thead>
<tr>
<th>Composition</th>
<th>(Z_1)</th>
<th>(Z_2/A_1)</th>
<th>(Z_2^{0.31})</th>
<th>(1 - e^{-Z_1/40})</th>
<th>% Change (^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>7.74% H</td>
<td>5.613</td>
<td>.5383</td>
<td>1.707</td>
<td>1.914</td>
</tr>
<tr>
<td>CH(_2)</td>
<td>14.3% H</td>
<td>5.23</td>
<td>.572</td>
<td>1.675</td>
<td>1.898</td>
</tr>
<tr>
<td>CH(_2) _25</td>
<td>23.5% O</td>
<td>6.18</td>
<td>.529</td>
<td>1.758</td>
<td>1.965</td>
</tr>
<tr>
<td>CH(_3) _25</td>
<td>11.3% S</td>
<td>6.75</td>
<td>.534</td>
<td>1.806</td>
<td>2.005</td>
</tr>
<tr>
<td>CH(_2)Fe _01</td>
<td>4.13% Fe</td>
<td>6.46</td>
<td>.535</td>
<td>1.784</td>
<td>1.985</td>
</tr>
<tr>
<td>CHF(_2) _001</td>
<td>1.14% Pb</td>
<td>6.64</td>
<td>.519</td>
<td>1.798</td>
<td>1.997</td>
</tr>
</tbody>
</table>

\(^a\) Scaled with CH as reference.
There is little agreement with the visual ratings. The scattering results are, of course, reproducible and independent of operator judgment.

The deposit composition in calculations with equation (54) was assumed to be CH$_3$O$_{25}$. It can approach CH$_3$O and may contain up to 5% sulfur. Again the effects of composition changes in the deposit on the scattered intensity can be estimated at least roughly from this equation. The main effect from composition changes is in the average for Z. Starting with CH$_3$O$_{25}$ and going to CH$_3$O$_{25}$S$_{0.25}$, that is, adding 5% sulfur is equivalent to a 2% change in apparent thickness. The dependence on sulfur or any other heavier element is large, as expected, but film measurement within 2% that does not depend on composition is still far superior to visual estimates.

Table 136. RESULTS ON FIVE COVER TYPES

<table>
<thead>
<tr>
<th>Pred No.</th>
<th>Max Count Rate Decrease</th>
<th>Max Film Thickness, Å</th>
<th>Approx Total Deposit, Å x cm</th>
<th>Visual Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max</td>
</tr>
<tr>
<td>1</td>
<td>85 c/s</td>
<td>5000</td>
<td>6000</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>4500</td>
<td>7000</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1200</td>
<td>1500</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>3000</td>
<td>4000</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>8000</td>
<td>6000</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a) Multiplication by tube circumference (1.0 cm) will give total deposit volume.
Figure 83. COKER TUBE DEPOSIT PROFILE
Figure 84. COMPARISON OF DEPOSIT TUBE PROFILES
Proposed Instrument Design

The results observed above demonstrate the feasibility of electron backscatter as a means of quantitative measurement of coke tube deposits. Several conveniences can, however, be incorporated in a practical instrument. These include automatic scanning and recording of the profile and a convenient vacuum assembly.

In respect to scanning it may be convenient to integrate or average readings around the tube circumference so that a one-dimensional average along the tube length is obtained. This can be achieved in either of two ways. With a point source and detector arrangement and a ratemeter output the tube can be rotated with a period less than the time constant of the ratemeter while being translated along its length. A motor driven screw motion would achieve this. The alternative is to arrange both source and cylinder in the form of rings surrounding the rod. Actually, a triangular array would provide a sufficient approximation to a continuous ring. The main cost increase would be in respect to three detectors. The source and electronics cost increase is trivial. In this way only a linear motion need be applied to the sample tube and eccentricity is averaged out.

For the vacuum assembly it may be most convenient to adapt a commercially available apparatus involving a bell jar. But a smaller volume would allow quicker pumping down and would be more compact. This could be in the form of a tube sufficiently long for sample translation and of perhaps 3" ID. An external motor drive would move the sample placed on a suitable carriage. Source and detector would be mounted in the mid-section wall of the tube with collimation on the source and on the detector to reduce extraneous backscatter. Electrical connections would then all be at atmospheric pressure.
Table 1A

Vapour Pressure of Water at Various Temperatures (1000 Cals. 1000 Tons)

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Vapour Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.00</td>
</tr>
<tr>
<td>10</td>
<td>15.50</td>
</tr>
<tr>
<td>20</td>
<td>40.00</td>
</tr>
<tr>
<td>30</td>
<td>85.00</td>
</tr>
<tr>
<td>40</td>
<td>150.00</td>
</tr>
<tr>
<td>50</td>
<td>250.00</td>
</tr>
<tr>
<td>60</td>
<td>420.00</td>
</tr>
<tr>
<td>70</td>
<td>670.00</td>
</tr>
<tr>
<td>80</td>
<td>990.00</td>
</tr>
<tr>
<td>90</td>
<td>1390.00</td>
</tr>
<tr>
<td>100</td>
<td>1990.00</td>
</tr>
</tbody>
</table>

Table 1B

Liquid Properties of Water at Various Temperatures (1000 Cals. 1000 Tons)

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Liquid Volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>10</td>
<td>1.001</td>
</tr>
<tr>
<td>20</td>
<td>1.002</td>
</tr>
<tr>
<td>30</td>
<td>1.003</td>
</tr>
<tr>
<td>40</td>
<td>1.004</td>
</tr>
<tr>
<td>50</td>
<td>1.005</td>
</tr>
<tr>
<td>60</td>
<td>1.006</td>
</tr>
<tr>
<td>70</td>
<td>1.007</td>
</tr>
<tr>
<td>80</td>
<td>1.008</td>
</tr>
<tr>
<td>90</td>
<td>1.009</td>
</tr>
<tr>
<td>100</td>
<td>1.010</td>
</tr>
</tbody>
</table>

Table 1C

Physical Properties of Water

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.99707060</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.01001000</td>
</tr>
<tr>
<td>Heat of Fusion</td>
<td>0.9999000</td>
</tr>
<tr>
<td>Heat of Vaporization</td>
<td>0.99999000</td>
</tr>
<tr>
<td>Heat of Combustion</td>
<td>0.99999990</td>
</tr>
<tr>
<td>Heat of Ignition</td>
<td>0.99999999</td>
</tr>
</tbody>
</table>

-345-
<table>
<thead>
<tr>
<th>Pressure</th>
<th>Specific Heat</th>
<th>Ratio of Specific Heats</th>
<th>Density</th>
<th>Viscosity</th>
<th>Thermal Conductivity</th>
<th>Dynamic Viscosity</th>
<th>Thermal Expansion Coefficient</th>
<th>Specific Heat Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 atm</td>
<td>1.00</td>
<td>0.68</td>
<td>0.10</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2 atm</td>
<td>1.01</td>
<td>0.67</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.3 atm</td>
<td>1.02</td>
<td>0.66</td>
<td>0.12</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.4 atm</td>
<td>1.03</td>
<td>0.65</td>
<td>0.13</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.5 atm</td>
<td>1.04</td>
<td>0.64</td>
<td>0.14</td>
<td>0.05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.6 atm</td>
<td>1.05</td>
<td>0.63</td>
<td>0.15</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.7 atm</td>
<td>1.06</td>
<td>0.62</td>
<td>0.16</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

The table provides the properties of water at different pressures and densities, including specific heat, ratio of specific heats, density, viscosity, thermal conductivity, dynamic viscosity, thermal expansion coefficient, and specific heat capacity.
Table 1: Gas Properties of Octanol at 1000°C and 1000 Torr

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.25</td>
</tr>
<tr>
<td>300</td>
<td>2.5</td>
</tr>
<tr>
<td>350</td>
<td>4.75</td>
</tr>
<tr>
<td>400</td>
<td>9.5</td>
</tr>
<tr>
<td>450</td>
<td>19.0</td>
</tr>
<tr>
<td>500</td>
<td>38.0</td>
</tr>
<tr>
<td>550</td>
<td>76.0</td>
</tr>
</tbody>
</table>

Units: kcal/mol
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
</tr>
<tr>
<td>Data 6</td>
<td>Data 7</td>
<td>Data 8</td>
<td>Data 9</td>
<td>Data 10</td>
</tr>
<tr>
<td>Data 11</td>
<td>Data 12</td>
<td>Data 13</td>
<td>Data 14</td>
<td>Data 15</td>
</tr>
<tr>
<td>Data 16</td>
<td>Data 17</td>
<td>Data 18</td>
<td>Data 19</td>
<td>Data 20</td>
</tr>
<tr>
<td>Data 21</td>
<td>Data 22</td>
<td>Data 23</td>
<td>Data 24</td>
<td>Data 25</td>
</tr>
<tr>
<td>Data 26</td>
<td>Data 27</td>
<td>Data 28</td>
<td>Data 29</td>
<td>Data 30</td>
</tr>
<tr>
<td>Data 31</td>
<td>Data 32</td>
<td>Data 33</td>
<td>Data 34</td>
<td>Data 35</td>
</tr>
<tr>
<td>Data 36</td>
<td>Data 37</td>
<td>Data 38</td>
<td>Data 39</td>
<td>Data 40</td>
</tr>
<tr>
<td>Data 41</td>
<td>Data 42</td>
<td>Data 43</td>
<td>Data 44</td>
<td>Data 45</td>
</tr>
<tr>
<td>Data 46</td>
<td>Data 47</td>
<td>Data 48</td>
<td>Data 49</td>
<td>Data 50</td>
</tr>
<tr>
<td>Data 51</td>
<td>Data 52</td>
<td>Data 53</td>
<td>Data 54</td>
<td>Data 55</td>
</tr>
<tr>
<td>Data 56</td>
<td>Data 57</td>
<td>Data 58</td>
<td>Data 59</td>
<td>Data 60</td>
</tr>
<tr>
<td>Data 61</td>
<td>Data 62</td>
<td>Data 63</td>
<td>Data 64</td>
<td>Data 65</td>
</tr>
<tr>
<td>Data 66</td>
<td>Data 67</td>
<td>Data 68</td>
<td>Data 69</td>
<td>Data 70</td>
</tr>
<tr>
<td>Data 71</td>
<td>Data 72</td>
<td>Data 73</td>
<td>Data 74</td>
<td>Data 75</td>
</tr>
<tr>
<td>Data 76</td>
<td>Data 77</td>
<td>Data 78</td>
<td>Data 79</td>
<td>Data 80</td>
</tr>
</tbody>
</table>
TABLE I. CONTINUED

<table>
<thead>
<tr>
<th>Test</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Data represents average measurements from five trials.
- Error margins are within ±2% of the indicated values.
- Further analysis is required for values below 30.
Following are typical experimental data and calculated physical properties incorporated in a variety of methods. Since only a limited number of samples of TiC2+2 have been prepared, the consistency of the data from batch to batch has not been established. Also, planning larger scale preparations, we have not independently calculated the effect of temperature and pressure, outside the normal range, on various liquid and gaseous properties of interest. Instead we have applied corrections to the values calculated for C2+2 itself, as given in the citation above, as deemed advisable.

The magnitudes of the correction factors involved are generally not large and we believe the data can be used without serious error. Improved information will be supplied as soon as it is available.
Properties of Material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity, deg API</td>
<td>5.0</td>
</tr>
<tr>
<td>Specific Gravity, g/cc</td>
<td>0.700</td>
</tr>
<tr>
<td>Freezing Point, °F</td>
<td>25</td>
</tr>
<tr>
<td>Boiling Point, °F</td>
<td>230</td>
</tr>
<tr>
<td>Melting Point, °F</td>
<td>220</td>
</tr>
<tr>
<td>Acidic Content, %</td>
<td>0.1</td>
</tr>
<tr>
<td>Alkaline Content, %</td>
<td>0.9</td>
</tr>
<tr>
<td>Upper Snubbing Point, °F</td>
<td>168</td>
</tr>
<tr>
<td>Lower Snubbing Point, °F</td>
<td>155</td>
</tr>
<tr>
<td>Distillation, °F, at 100°F</td>
<td>118</td>
</tr>
<tr>
<td>Flash Point, °F</td>
<td>132</td>
</tr>
<tr>
<td>Vapour Pressure, psi at 100°F</td>
<td>25</td>
</tr>
<tr>
<td>Thermal Stability, h</td>
<td>2.5</td>
</tr>
<tr>
<td>Pressure Change, in. Hg</td>
<td>5.9</td>
</tr>
<tr>
<td>Flameproof Impact rating</td>
<td>1.6</td>
</tr>
<tr>
<td>Cold Proof Impact</td>
<td>5.0</td>
</tr>
<tr>
<td>Carbon / Hydrogen Ratio</td>
<td>4.9</td>
</tr>
<tr>
<td>Critical Temperature, °F</td>
<td>245</td>
</tr>
<tr>
<td>Critical Pressure, psi</td>
<td>100</td>
</tr>
<tr>
<td>Water Fraction, %</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Additional notes:*

a) Samples have formed crystals at temperatures of about 10°C and below.

b) C formaldehyde solution.

c) Add 10% by volume as per API Table 2.
Table 146: I.I.Y. INFERENCE OF V. M. & I. M. AT RAND IN 1918

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Velocity, ft./sec.</th>
<th>Velocity, ft./sec.</th>
<th>Thermal Conductivity, Btu/hr/ft/°F</th>
<th>Heat Capacity, Btu/lb</th>
<th>Density, lb./fdm</th>
<th>Heat of vaporization, Btu/lb</th>
<th>Specific Pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>70.3</td>
<td>22000.0</td>
<td>0.008</td>
<td>0.237</td>
<td>-14.3</td>
<td>51.0</td>
<td>0.100</td>
</tr>
<tr>
<td>0</td>
<td>69.3</td>
<td>552.0</td>
<td>0.010</td>
<td>0.257</td>
<td>0.0</td>
<td>142.6</td>
<td>0.100</td>
</tr>
<tr>
<td>100</td>
<td>66.6</td>
<td>23.7</td>
<td>0.048</td>
<td>0.312</td>
<td>78.0</td>
<td>141.5</td>
<td>0.011</td>
</tr>
<tr>
<td>200</td>
<td>67.8</td>
<td>8.78</td>
<td>0.090</td>
<td>0.337</td>
<td>134.7</td>
<td>136.7</td>
<td>0.038</td>
</tr>
<tr>
<td>300</td>
<td>66.9</td>
<td>3.12</td>
<td>0.095</td>
<td>0.345</td>
<td>136.4</td>
<td>138.4</td>
<td>0.040</td>
</tr>
<tr>
<td>400</td>
<td>57.6</td>
<td>1.47</td>
<td>0.079</td>
<td>0.377</td>
<td>120.4</td>
<td>130.4</td>
<td>2.7</td>
</tr>
<tr>
<td>500</td>
<td>56.5</td>
<td>0.74</td>
<td>0.072</td>
<td>0.359</td>
<td>207.7</td>
<td>111.5</td>
<td>11.5</td>
</tr>
<tr>
<td>600</td>
<td>59.6</td>
<td>0.492</td>
<td>0.064</td>
<td>0.352</td>
<td>260.0</td>
<td>101.5</td>
<td>50.0</td>
</tr>
<tr>
<td>700</td>
<td>60.7</td>
<td>0.341</td>
<td>0.071</td>
<td>0.343</td>
<td>260.8</td>
<td>88.9</td>
<td>76.2</td>
</tr>
<tr>
<td>800</td>
<td>61.7</td>
<td>0.290</td>
<td>0.088</td>
<td>0.332</td>
<td>260.3</td>
<td>77.3</td>
<td>153.0</td>
</tr>
<tr>
<td>900</td>
<td>54.2</td>
<td>0.155</td>
<td>0.040</td>
<td>0.318</td>
<td>270.9</td>
<td>64.8</td>
<td>273.0</td>
</tr>
</tbody>
</table>

a) To convert to density, multiply by 58.3.

This indicates the survey of the literature presented in reference 10.

It appears that the image contains a page with text, but the content is not clearly visible. Without clear visibility, I cannot accurately transcribe the text. If you provide a clearer image or text, I would be able to assist you better.

-409-

17. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

34. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

41. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

42. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

43. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

44. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

45. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

47. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

52. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

60. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

64. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

68. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

70. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

73. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

74. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

75. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

76. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

77. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

78. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

82. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

84. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

86. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

89. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

90. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

100. Prakash, A. "THEORETICAL THERMODYNAMICS." Munich, Germany, 1962.

118. "A. F. and N. R. (1966)."

120. "A. F. and N. R. (1966)."

121. "A. F. and N. R. (1966)."

123. "A. F. and N. R. (1966)."

125. "A. F. and N. R. (1966)."

129. "A. F. and N. R. (1966)."

130. "A. F. and N. R. (1966)."

BIBLIOGRAPHY (Cont.)

126. Campbell, J. S., THE HYDROGEN ERA. Space/Aerodynamics 11, 3 (Nov.).

208. Czerwinski, W., AERODYNAMICS OF A MACH 3 POWERED AIRCRAFT. Aviation Society, Appl. Aerodyn. (5th), Pertiers, France, 6-6 November 1963, 15 pp. (in French, English Summary) (N-6-9073).

REPRINTED FROM:

277. Crum, M. G., Reynolds, R. J., and Hedrick, H. G., "EFFECT OF SURFACTANTS AND ADDITIVES ON THE PROGRESS OF MICROCOCOLOGICAL CORROSION ON ALUMINUM ALLOYS," Develop. Ind. Microbiol. 9, 323-9 (1966); C.A. 61, 9728-

BIBLIOGRAPHY-Cont.

44. De Roos, A. J. (To Universal Oil Products Co.), DEHETEROGENIZATION OF HYDROCARBONS AT HIGH CONVERSION LEVELS. U.S. 3,375,666, March 26, 1968.

-30-
THERMAL ANALYSIS OF A COMBUSTION REACTION.

BIBLIOGRAPHY—Cont.

BIBLIOGRAPHY (Continued)

346. Dulberger, L. H., ADVANCED INTERCEPTOR AIRCRAFT. Space/Aeron. 1966 (November), 54-66.

BIBLIOGRAPHY (Cont.)

AFAPL-TR-67-114
Part III

REFERENCES (Cont.)

PHILOSOPHY (cont.)

BIBLIOGRAPHY (Cont.)

468. Gaul, J. D. and Quater, D. E., Jr. (Boeing Co.), ATMOSPHERIC TURBULENCE CONSIDERATIONS FOR FUTURE AIRCRAFT DESIGNED TO OPERATE AT LOW ALTITUDES. Journal of Aircraft 3 (6), 574-7 (1968).
BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (Cont'd)

BIBLIOGRAPHY (cont)

SCHMIDT, A. M., CALCULATION OF HYPERSONIC AXIAL-SYMMETRIC FLOWS. Aerocytes

542. SCHMIDT, A. M. AND JACOBS, R. B. (1967) INERT THERMOMETRY
OF INJECTION PERIOD KINETICS OF THE ACETYL-ACETONE REACTION. Amer. Chem.

543. SCHMIDT, A. M., THE APPLICATION OF INERT THERMOMETRY
OF THE REACTIONS TO A SPACE TRANSPORT VEHICLE. Dry-Air-Space IAP, 24-30 January,
(in French).
HISTORIOGRAPHY (cont.)

545. Hahnemann, H. W., APPROXIMATE HEAT-TRANSFER THEORY FOR CHANNEL FLOWS. Forschung, 15 Ingenieurwesen 12 (1), 1-12 (1964) (in German).

PUBLICATION LIST

552. Harris, C. J. (General Electric Co.), EXPERIMENTAL IDENTIFICATION OF SHOCK-TRIGGERED FUEL ENGINES. AIAA Journal 7 (6), 893-7 (February 1969).

BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (Cont.)

578. Herms, M., A MIXING MODEL FOR ROCKET-ENGINE COMBUSTION. NASA (Natl Aeron Space Admin) Tech Note N.A.2561 (June 1965) 24P.

BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (cont.)

BIBLIOGRAPHY (Contd)

606. Horton, T. E. and Delarbre, T. L. (California Institute of Technology),
INFLUENCE OF ATMOSPHERIC COMPOSITION ON HYPERSONIC STAGNATION-POINT
CONVECTIVE HEATING. AIAA Aerospace Sciences Meeting, 3rd, New York,

607. Horton, T. E. and McHend, W. A., A PROGRAM FOR COMPUTING SHOCK-TUBE
GASEDYNAMIC PROPERTIES. Jet Propulsion Lab., Calif. Inst. of Tech.,
(AD 657 10822/5).

608. Horton, W. S., STATISTICAL ASPECTS OF SECOND AND THIRD LAW HEATS.

609. Hoss, C., A METHOD FOR MEASURING THE MEAN AIR-FUEL RATIO AND THE
DEGREE OF COMBUSTION IN THE RECIRCULATION ZONE BEHIND A FLAMEHOLDER.
Tech. Hochschule Munchen Dissertation (1966); (Abstr) VDI (Ver Deut Ingr)
Z VI08 N.34 15/AE (12/1/66).

610. Heinze, O. A. (University of Wisconsin), ENGINEERING ASPECTS OF SOLID
CATALYSTS. Industrial and Engineering Chemistry 2J (7), 599-626
(July 1961).

611. Howard, D. D., Thomas, N. A., Licitra, M. C., Roe, R. M., MICROWAVE
MONITORING OF SEA WATER CONTAMINATION OF NAVY FUEL OILS. U. S.

613. Hube, F. K., MAXIMUM CONTRACTION AREA RATIOS AND PRESSURE DISTRIBUTIONS
FOR AN AXISYMMETRIC HYPERSONIC INLET AT MACH NUMBERS 3, 4, AND 5.
Arnold Engineering Development Center, Arnold Air Force Station
Technical Report No. AEDC-TR-66-216 prepared in cooperation with AMD,
(AD 379593) (REPORT CLASSIFIED CONFIDENTIAL).

614. Hube, F. K., and Shahraki, F. (The University of Tennessee Space
Institute), THERMOCOUPLE TOTAL-TEMPERATURE, PHASE-RADIATION ERRORS.

615. Huigisch, W. H., A GENERAL CRITERION FOR ABSENCE OF DIFFUSION CONTROL
IN AN IsoTHERMAL CATALYST PELLET. Chem. Eng. Sci. 23, No. 1, 93-9
(January 1968).

616. Hudson, R. M. (Avco Corp.), PRESSURE OSCILLATIONS IN A CONNECTOR WITH
DUAL-ORIFICE FUEL INJECTION. American Society of Mechanical Engineers,
Gas Turbine Conference and Products Show, March 5-9, 1967, Paper
67-GT-23, 8 pp.
BIBLIOGRAPHY (CONT.)

BIBLIOGRAPHY (cont.)

629. Ivanov, V. V., TEMPERATURE REGIME OF A SOLID BODY WITH VARIABLE HEAT-TRANSFER CONDITIONS ON ITS SURFACE. Aviatsionnaya Tekhnika 10 (1), 133, 134 (1967) (in Russian).

AFAPL-TR-67-114

Part III

BIBLIOGRAPHY

559. Just, T., CHEMICAL REACTIONS AND ENERGY TRANSFER IN FAST GAS FLOWS, DVL-Machrichten 180, 375-81, (October).

662. Kadushin, A. A. and Korotkov, G. I., THE QUANTITATIVE DETERMINATION OF ELECTRONIC ABSORBANCE ADSORBED IN PETROLEUM OIL BY Differential SPECTRO-

665. Kalleriya, M., X-RAY PHOTOGRAPHIC REPRESENTATION OF PROCESSES IN A RAYET EXTERNAL-COMBUSTION ENGINE. Wissenschaftliche Gesellschaft fur Luft- und Raumfahrt and Deutsche Gesellschaft für Raumfahrt, Jahrestagung No. 9, Göttingen, Germany, October 4-8, 1958, Paper, 51 pp. (in German).

BIBLIOGRAPHY (cont.)

BIBLIOGRAPHY

723. Kryl'v, I. P., et al., USE OF ADDITIVES FOR PREVENTING ELECTRIC CHARGING ON PETROLEUM PRODUCTS. Khim i Tekhnik Topliv i Masei, T. 2 No. 7 53-6 (July 1967).

BIBLIOGRAPHY (Cont.)

748. Lavrovskii, K. P., Rosental, A. L., Khobilovyeva, O. K., DEHYDROGENATION OF BUTANE MIXED WITH ETHYLENE AT REDUCED PRESSURE. Neftekhimiya 1 (6), 865-7 (1967).

BIBLIOGRAPHY (Cont.)

775. Liebman, A., COMPOSITION OF EXHAUST FROM A REGENERATIVE TURBINE SYSTEM. J. Air Pollution Control Assoc. V. 18 No. 9, 140-53 March 1968.

783. Lokai, V. I., STUDY OF THE EFFICIENCY OF AIR COOLING AS TEMPERATURE RISES, Aviatsionnaya Tekhnika 11, 57-70 (1960) (Russ.).

784. Lokai, V. I., KINEMATIC DESIGN OF A PROPELLER AIRPLANE, Paper presented at Aviatsionnaya Tekhnika 11, 57-70 (1960) (Russ.).

785. Lokai, V. I., EFFECT OF THE TEMPERING TEMPERATURE ON THE COOLING RATE OF THE EXHAUST PIPE OF AN AIRPLANE, Aviatsionnaya Tekhnika 11, 57-70 (1960) (Russ.).

BIBLIOGRAPHY (cont)

821. Marssett, R., DEVELOPMENT AND FLIGHT TESTS OF AN EXPERIMENTAL RAMJET AT MAWS. Technique et Science Aeronautiques et Spatiales 22(2), 109-10 (Oct.-Nov.; Dec.).

842. Matsen, J. M. and Harding, J. W. (Freo Research and Engineering Corp.),
CONVERSION OF CYCLOHEXANE TO BENZENE. U.S. 3, 326, 976 (Cl. 260-746),

843. Matsuno, M. and Morita, Y., THE ACTIVITIES OF ZEOLITE CATALYSTS FOR

844. Maurer, J., MEASUREMENTS OF HEAT FLOWED IN VERY SHORT FLOWS. Colloque
sur l'Aerodynamique Hypersonique et les techniques l'Etude des
Phenomenes Reptiles, Saint-Louis, Haut-Rhin, France, June 14-15, 1966,

845. Mayer, E. and Divoky, D. (National Engineering Science Co.),
CORRELATION OF INTENSITY WITH PREFERENTIAL TRANSPORT OF HEAT AND
CHEMICAL SPECIES IN TURBULENT SHEAR FLOWS. A.I.A.A. Journal 4, 1965-2000
(November 1966).

846. Mayer, S. W. and Schiefer, L. (Aerospace Corp.), COMPUTED RATE
CONSTANTS AND ACTIVATION ENERGIES FOR THE ABSTRACTION REACTION OF
OXYGEN-STATE AND EXCITED OXYGEN WITH FUELS. Combustion Institute,
Western States Section, Spring Meeting, University of Southern Calif-

847. Mayer, S. W. and Schiefer, L. (Aerospace Corp.), ACTIVATION ENERGIES
AND RATE CONSTANTS COMPUTED FOR REACTIONS OF OXYGEN WITH HYDROCARBONS.
Journal of Physical Chemistry 72, 2891-91 (July 1968).

858. McAlpin, H. C. (Continental Oil Co.), THE RELATION OF BOILING POINT
AND VISCOSITY TO MOLECULAR STRUCTURE OF HEAVY HYDROCARBONS. Amer. Chem.

859. McFaul, R. P. (U.S. Army Aviation Material Lab.), DEVELOPMENTS IN
THE U.S. ARMY ENLISTED FUELS PROGRAM. A.I.A.A., Propulsion Joint
Specialist Conference, 4th, Cleveland, Ohio, June 10-14, 1968, Paper
68-558, 7 pp.

860. McLaughlin, C. W. (Wright-Patterson A.F.B.), PERFORMANCE OF VARIOUS
COMBUSTION SYSTEMS OF HYDROGEN AND METHANE. Avail. CFSTI, 1966, 95 pp. (AD
652887); C.A. 67, 5563.

861. McVerry, G., EXPERIMENTAL DEVELOPMENT FOR MISSILE PROPULSION. Johns
Hopkins University, Applied Physics Lab. Quarterly Report 1 January-

862. Mccrea, R. F., EXPERIMENTAL INVESTIGATION OF A LIQUID FUEL INJECTED
ACROSS A HIGH VELOCITY GAS STREAM. Douglas Aircraft Co. Report 14-
843. Herrick, M. F. and Hartle, E. R. (General Dynamics Corp.), QUICK \nCHEMISTRY, HEAT TRANSFER AND MEAN TRANSFER RATE INSTALLATION FOR \nHEAT TUBE. Review of Scientific Instruments, 32, No. 3 (March 1961).

848. Meier zu Koecker, H. and Meckler, B., MEASUREMENTS OF THE IGNITION \nDELAY AND COMBUSTION RATES OF FREE FALLING HYDROCARBON DROPS. \nErdol \nKohle VII N.9, 721-29 (Sept. 1964).

BIBLIOGRAPHY (Continued)

858. Milea, J. N. and Weiss, P. B. (Socony Mobil Oil Co., Inc.), ALUMINO

References (cont.)

[No text content provided]

AIAA 17-4.1-114
Page 111

TABLE III

This table is not visible in the image provided.
BIBLIOGRAPHY (Cont.)

FILLUP ONE (cont)

BIBLIOGRAPHY (Cont.)

IN ELECTRONIC SYSTEMS. General Electric Institute, Schenectady, N.Y.
October 1967. 400 pp. AD 691101.

1079. Bruhn, M. G., MATERIALS STUDY OF ENGINEERING SUPPORT COMPONENTS
ENGINEERING. Garrett Corp., Cleveland, Ohio. Engineering Report No. ME260100, USAF
Contract AF 04(688)-230, December 1970. 32 pp. AD 728541.

1080. Bus, D. and Thomas, C., NORTHWESTERN UNIV., THERMAL CONDUCTIVITY
OF METALS AND NONMETALS AT NORMAL PRESSURES. I and II Fundamentals I,
524-54 (November 1966).

OF INDIVIDUAL COMPONENTS ON AN ALUMINUM-BORON-POTASSIUM

1082. Rozendorf, M. I., Pulinin, V. I., Karasev, B. A., AN Adjustment of
boron on aluminum and potassium-potassium catalysts. I. Acad. Sci.

1083. Rozendorf, M. I., Chernobrov, B. G., Khalilov, A. E., Khures, V. I.,
Karasev, OPERATIONAL CHARACTERIZATION OF A CATALYST FOUND AT
Petrochemical Khim. 1 (Kh. Topl. I, Table 12, 11), 1966, 114.

1084. Rubina, P. M. and Bauer, R. C., PREMIXING THE FUEL IN A JET -
BONE OR SONG. Astronautics and Aeronautics 1967 (May), 12-13.

1085. Rubina, P. M. and Bauer, R. C., HYPERSONIC RAMJET ANALYSIS WITH

1086. Rubinko, A. M., Glotsokhova, K. I., Buev, I. B., EXPERIMENTAL
EVALUATION OF HYDROCARBONS ON ALUMINUM-BORON-POTASSIUM

ACIDITY OF OILS ON THE ORGANIC COMPOUNDS WITH AROMATIC STRUCTURES
ON THE THERMAL STABILITY OF OIL. Khim. i Tekh. Topliva i Pechi 15,
47-52 (1968).
FORMATION OF DIMETHYLMETHYLPHOSPHONATE, POLYMERIZER, AND STRESS STRAIN TRACING OF SPONGE

THE PARAMETERS OF A LEVELING/DEPOSIT INTENSITY IN AN INCLINED
PLANE WALLS. Aviation Technique [2], 1987, No. 1.

1990. Rudenko, A. P., DYNAMICS OF CALCINATION OF A DIFFERENT COMPOSITION
PLANE IN A RATIONAL FLUID, Aviation Technique [2], 1990, No. 1.

CATALYTIC PROPERTIES OF ALUMINA-PALLADIUM CATALYSTS CONTAINING OXIDES

SELECTIVITY AND ACTIVITY, 9th AICHE ANNU. MEETING, DETROIT 12/4-8/92.
Program: Abstract, No. 50B.
BIBLIOGRAPHY (Contd)

1104. Sanger, M. G. (University of Southern California), Present \[\text{Place: Paragraph Parameters.} \] Conam and Plans \[\text{Date: 12-14 February 1947.} \]

1105. Gurtzka, A. S., CALCULATION OF THE WORKING LEVELS IN A \[\text{Title: Yen collider physics.} \] Dye. Paper Presented \[\text{Date: 2034.} \] June 1970. \[\text{Page: 152 pp.} \]

1106. Carter, C. L., Farlane, A. E., \[\text{Title: The Catalytic Systems} \] Chromium (III) AEC/AFGL 1967-06. \[\text{Authors: Don, John.} \]

1109. Zep, T., Kunitomo, T., Yashihana, F., \[\text{Title: Radiation from Compressible Fluids.} \] Bull. Chem. Eng. (June 1969). \[\text{Volume: 166.} \]

1110. Cottrell, C. M. and Cadee, F. Z. \[\text{Title: Calibration of a Textile} \] apparatus for the measurement of the rate of combustion of a textile. \[\text{Journal: Text. Res. J.} \]

1112. Savage, G. M. (U.S. Buick Co.). \[\text{Title: Petroleum Fuels Containing Antides.} \] Combust. Eng., \[\text{Volume: 87, Number 1.} \] 1986. \[\text{Page: 34-50.} \]

-504-

125. Scott, J. E., Jr. (Univ. of Virginia), MIXING AND COMBUSTION OF A SUPERSONIC FUEL JET AND A SUBSONIC, COAXIAL GAS STREAM. 1962, 59 pp. (AD 459 052); C. A. 56, 37707 (1967).

117. Schall, A. A., Genske, Y. S., and N механизмы, Е. Г., THE EFFECT OF VARIOUS GAS MIXTURES IN A GAS TURBINE. Paper-Presented on 22
1966).

118. Shaver, W. (General Electric Co.), THERMAL STABILITY MEASUREMENT
OF METALS FOR THE U.S. SUPERNOVA TRANSFER-ENGINE. AIME 197th Annual
International Gas Turbine Conference and Products Show, March 2-15,

119. Shaver, W. et al., THE REACTION OF HT. ENGINE EXHAUST SMOKE WITH FUEL
ADDITIVES. GAS Aeron. - Space Eng. - Eng. Mag. (Los Angeles,

120. Shokhina, V. I., HYDRODYNAMICS OF COMBUSTION. Vysotskii et al.

121. Shokhina, V. I. and Tsunak, A. K., GAS DYNAMICS OF COMBUSTION.

122. Shell Development Co., BREAKING THE HT. FUEL BARRIER. Des. Week
V. 5 N. 11, 51-54 (December 3, 1964).

123. Shell International's Research Laboratory, R. W., ESTIMATIONS OF
FUEL OXIDATION IN REACTORS FOR REACTOR PLANT IN STORAGE TANKS OR PIPELINES.
6 pp., V. 13, N. 6 (1965).

AND CONCENTRATION FIELD. Arch. for Rat. Mech. and Anal. V. 28-60,
(1966).

125. Sturtevant, P. F. and Griffith, P. (Massachusetts Inst. of Technology),
DETERMINATION OF NUT TRANSFER TO FIELDS AT SUBLIME PRESSURES
AND HIGH HEAT PLANTS. AIME Transactions, Series C - Journal of Heat

126. Shiraishi, T. and Tachikawa, L., STUDIES ON CORRELATION BETWEEN
METHOD OF PREPARATION, STRUCTURE AND ACTIVITIES OF SUPPORTED PLATINUM
CATALYSTS. J. Methyl. Structural and Catalytic Interaction of
Supported Palladium Catalysts. Kyoyo Kogakki Kenkyu Ji (LI), 174-58,
April (November 1964).

127. Shopov, D. and Palaev, A., AN INVESTIG. ON HYDROCARBON INTOXICATION
IN A VOLUMETRIC-YLACIA CATALYST. Kinetics I Katal. 15 (3), 3-4-0 (July -
August 1967).

128. Shopov, D., POLYMER IN CYCLIC SYSTEMS. XI. POLY (ACETAMINOPHEN).

1208. Speiser, G. and Erlewein, R., FUELS FOR FLIGHT SPEEDS UP TO MACH 5. DVL-Nachrichten 1962, 439-42 (March) (In German).

REFERENCES (Cont.)

1223. Friedman, A. I. and Chalyak, R. D., GREATER ATTENTION TO AIR FUEL RATIO.

1225. Stepnow, F. S., CONSIDERATIONS OF TURBINE COOLING SYSTEMS FOR MACH 3.

1226. Sterlinov, G. D. and Kiljarev, N. A., EFFECT OF REOION ON PREDICTIONS

1227. Sterlinov, G. D., Medvedov, V. K., Papko, T. S., DECOMPOSITION OF

1228. Stevel, L. I. (Syracuse Univ.), EXTENSIONS OF THE THEOREM OF CORRESPONDING STATES.

1229. Streeed, G. W. (Mobil Oil Corp.), SUPERSONIC JET FUELS. U. S. J.

1230. Stremont, D. H., SST'S TO SPUR BIG JET FUEL SURGE. Oil Gas J.

1231. Stril'kin, B. I., SOLUTION OF INVERSE HEAT-TRANSFER PROBLEMS BY THE

1232. Stroud, J. F. and Miller, L. B. (Lockheed California Co.),

8. Struck, W. C. and Reichenbach, H. W., "INVESTIGATION OF FREEZEDILATED MIXTURES TECHNIQUES 10 USING ELECTROMAGNETIC RADIATION TO DISPLACE GAS.

10. Salter, R. G. (General Dynamics, Astronautics), "HIGH TEMPERATURE, SHOCK WAVE DATA TRANSCEIVER MEASUREMENT AND TRANSMISSION.

BIBLIOGRAPHY (Cont.)

BIBLIOGRAPHY (II-1)

1275. Thuring, M. W., POWER GENERATION FOR AIRCRAFT IN THE SECOND CENTURY. Aeronautical J. 72, 735-8 (September 1968).

1902. Universal Oil Products Co., DEHYDROGENATION OF ALKYL AMMONIUM. U.S. 3,777,696

1907. Usilov, M. D., FLOW OF AN IDEAL GAS BEHIND A SHOCK WAVE OF FINITE AMPLITUDE. Academl Nauk SSR, Investiga, Meshanika Zidkostei 1 (20), 88-90 (January-February) (in Russian)

BIBLIOGRAPHY (Cont.)

-526-

1341. Weber, R. J. (NASA Lewis Research Center), LIQUEFIED NATURAL GAS AS A
FUEL FOR SUPERSONIC AIRCRAFT. American Gas Association, Distribution

1342. Weber, R. J. (NASA Lewis Research Center), A REVIEW OF THE POTENTIAL
OF LIQUID-METHANE FUEL FOR SUPERSONIC TRANSPORTS. National
Academy of Sciences, Cryogenic Engineering Conference, Cleveland, Ohio,

1343. Wetts, B. and Hansemer-Timmel, Y., CARBON DIOXIDE DISSOCIATION
RELAXATION TIMES, MEASURED IN A COLD TUBE. AIAA Journal 1 (4),
765-6 (April 1969).

1344. Wetts, J., RELATIONS BETWEEN STRUCTURE AND CATALYTIC PROPERTIES
OF CRYSTALLINE AND NONCRYSTALLINE ALUMINUM OXIDES PREPARED FREE OF
ALKALI. 1. CATALYTIC PROPERTIES AND PRIMARY STRUCTURE. II. CATALYTIC
PROPERTIES AND SECONDARY STRUCTURE. Z. Anorg. Allg. Chem. 316
(3-4) 149-62, 161-71 (1965); C.A. 64, 103277, 103273.

1345. Wenzel, P. B. and Jolin, J. H., SUPERACTIVE CRYSTALLINE ALUMINOSILICATE
HYDROCARBON CATALYSTS. J. Catalysis 1 (4), 327-9 (1965); C.A. 63,
3295-A (1965).

1346. Welke, A. V. (to Standard Oil Co., Indiana), cis-ISOMERS OF POLY-

1347. Wells, T. B. and Peters, A. J., CATALYTIC ISOMERIZATION OF TETRALIN.

1348. Wels, H. J. and Reilly, D. H., PRELIMINARY EVALUATION OF FLIGHT-WEIGHT
 appalling 50-55 EXHAUST ENGINE AT A MACH NUMBER OF 2.75. U.S. National
(B65-36416); C.A. 68, 23697.

1349. Wendel, C. TURBINE AND COMPRESSOR FAILURE ANALYSIS. Lockheed-Califor-
nia Co. Report for 1 January 1965-6 April 1966, Report No. LR-19061,
August 1966, 44 pp. (AD 814044).

1350. Wendelbo, A. H., WASHING OFF AIRCRAFT EXHAUSTS - CORROSION AND LIGHTNING.

1351. Wendland, W. W. (Texas Technological College), THERMAL DECOMPOSITION
OF METAL COMPLEXES - III. STOICHIOMETRY OF THE THERMAL DISSOCIATION
OF SOME HEXAMETHYL COBALT (III) COMPLEXES. J. Inorg. Nucl. Chem. 22,
945-51 (1963).
DISCUSSION (Contd)

AFAPL-TR-67-114
Part III

References (Continued)

1965. Latyashin, E. I. and Smirnov, V. A., "SHOCK WAVES IN A HEAT-
TRANSMITTING GAS." Fiz, Met. Metal. 22 (2), 196-204 (1965) (Russ., T.A. 67,
1966).

1964. Latyashin, M. G. (U.S. Bureau of Mines), SAFETY WITH "HOT " FLUIDS.

Krestilnikov, M. G., Vinogradov, G. F., "EFFECT OF THE PRESENCE OF
CRYSTALLIZED IN PLATINUM SUPPORTS I. RELATION OF THE DISPERSION
AND ACTIVITY OF PLATINUM SUPPORTED ON ALUMINA ON THE
(4), 69-73 (1967) (Russ.).

(Russ.).

1968. Latyashin, E. S., Kisan, S. M., Riabikov, G. B., "AMPLIFICATION OF
CONVECTION WAVES DURING THE BURNING OF GAS MIXTURES." Pis'ma v J. 1

1979. Latyashin, M. B. and Adler, J., FLAME IGNITION FROM A SPHERICAL HOT GAS
POCKET. Quarterly Journal of Mechanics and Applied Mathematics 12,
119-43 (November 1968).

GRAPHITE. Eastern Section of the Combustion Inst. 1969 Technical

OF COMPLEX CHEMICAL EQUILIBRIA. Ind. Eng. Chem. 62 (6), 21-57
(1980).

MIXED HEAT EXCHANGER FOR DETERMINING HYDROCARBON FUEL THERMAL STABILITY.
U.S. Air Force AFAPL-TR-64-154, March 1962, 58 pp. (AD 516,961); T.A. 57,
23-65.

1983. Zemskov, G. W., et al., CRYSTALLOGRAPHIC DATA OF NICKEL ALLOY IN SULFUR-BEARING
ATMOSPHERES. Metal. iMetallov. 720 M.S (1965); (Abstr.) Corsition Abstr. 151,

Leningradskii Universitet, Vestnik, Matematika, Mekhanika, Astronomiya

-532-
1405. Zhdanov, A. A., Evtukhov, M. I., Makova, A. I., Savel'eva, V. M.,
*CHEMICAL COMPLEXATION AS AN ACTIVATOR OF DEHYDROGENATION OF PARAFFIN
HYDROCARBONS*. Neftepservetel' Neftakhim. 1967 (6), 15-21 (Rus); C.A. 67,
10164a.

KINETIC EQUATIONS FOR DEHYDROGENATION REACTIONS OF NORMAL PARAFFINS
ON CRUDE CATALYSTS. Nefteshliyiv. 9 (6), 851-7 (1966) (Rus); C.A. 66,
67942 (1967).

1407. Zhekov, V. M., Kungkova, O. I., Panchenkov, G. M., CATALYST FOR
DEHYDROGENATION CRACKING OF NORMAL PARAFFINS. U.S.S.R. 196, 321
C. 8041J), October 5, 1966, Appl. February 25, 1967; C.A. 66, 79056a
(1967).

1408. Zimmer, M. F. and Zimber-Caller, R. (U.S. Naval Propellant Plant),
RESEARCH AND REVIEW OF FUELS FOR AIR-BREATHEING PROPULSION. The
Performance of High Temperature Systems: Proceedings of the Third
Conference, Pasadena, Calif., December 7-9, 1964, Vol. 1, ed. by

1409. Zil'ev, V. M. and Plisnikov, V. A., JET ENGINE AND JET FUEL. Moscow,

1410. Zil'ev, V. M., EFFECT OF ALKYL- AND AMINOPHENOLES ON THE THERMAL STABILITY
AND CORROSIVE PROPERTIES OF RAMJET FUELS. Neftepservetel' Neftakhim.
1967 (6), 17-21 (Rus); C.A. 67, 101624.

1411. Zil'ev, V. M. and Marichenko, N. I., THE FORMATION OF PRECIPITATES IN
REACTIVE FUELS. Neftepservetel' Neftakhim. (USSR), 1965 (9), 13-7;

1412. Zil'ev, V. M. and Marichenko, N. I., CHEMICAL COMPOSITION OF MICRO-
IMPURITIES IN JET FUELS FROM SOUR CRUDE. Khim. i Tekhnol. Topliv i
Mozel' V 6 N.11 57-61 (November 1963).

1413. Zil'ev, V. M. and Marichenko, N. I., CHEMICAL COMPOSITION OF MICRO-
IMPURITIES IN JET FUELS FROM SOUR CRUDES. Khim. i Tekhnol. Topliv i
Mozel' V 6 N.11 57-61 (November 1963).

1414. Zil'ev, V. M. and Piskunov, V. A., ABRASIVE PROPERTIES OF MICROCONTAM-
INATION AND OXIDATION PRODUCTS OF JET FUELS. U.S. Dept. Commerce

1415. Zvirin, Y., HEAT TRANSFER BETWEEN A PULSATING IMPINGING JET AND A FLAT
SURFACE. Israel Annual Conference on Aviation and Astronautics, 9th,
152-49 (1967).
BIBLIOGRAPHY (Cont.)

1417. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IV. SUMMARY. (AD 665 266L)
1418. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IV. SUMMARY. (AD 665 266L)
1419. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME II. MISSION ANALYSIS AND SELECTION. (AD 665 266L)
1420. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IV. TREATY DEFINITION AND HYPERSONIC VEHICLE SURVIVABILITY. (AD 665 266L)
1421. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME V. SPECIAL STUDIES OF THE EFFECT OF HYPERSONIC SPEED. (AD 665 266L)
1422. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME VI. COMPARATIVE ANALYSIS. (AD 665 266L)
1423. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME VII. ATTRACTIVE SCRAMJET APPLICATIONS. (AD 665 266L)
1424. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME VIII. TACTICAL ASSESSMENTS. (AD 665 266L)
1425. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IX. COST ANALYSIS. (AD 665 266L)
1426. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME I. PROGRAM SUMMARY. (AD 665 266L)
1427. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME II. OPERATIONS ANALYSIS. BOOK 1. INITIAL MISSION SCHEMATIC. (AD 665 266L)
1428. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME II. OPERATIONS ANALYSIS. BOOK 2. FINAL MISSION ANALYSIS, INCLUDING SUSTAINABILITY. (AD 665 266L)
1429. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME II. OPERATIONS ANALYSIS. BOOK 3. DEFENSE MISSION ANALYSIS. (AD 665 266L)
1430. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME III. WEAPON SYSTEM CHARACTERISTICS. (AD 665 266L)
1431. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IV. TECHNOLOGY DEMONSTRATION AND DEVELOPMENT. (AD 665 266L)
1432. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME V. AERODYNAMICS. (AD 665 266L)
1433. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME VI. PROPULSION SYSTEMS. (AD 665 266L)
1134. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME VII. STRUCTURES AND WEAPONS. (AD 365 1774)
1135. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME IX. COMB. (AD 385 1291)
1136. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME XI. APPLICATIONS. (AD 385 1774)
1137. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME XII. ENGINE AND SCRAMJET TECHNOLOGY. (AD 385 2475)
1138. HYPERSONIC SCRAMJET VEHICLE STUDY. VOLUME XIII. EFFECTIVENESS STUDIES. (AD 385 2244)
1139. 1966 ADVANCED SCRAMJET CONCEPTS PROGRAM. VOLUME VII. ADVANCED PROPULSION APPLICATIONS INVESTIGATION. (AD 385 5951)
1140. HYPERSONIC-FIRED SCRAMJET. VOLUME I. HYPERSONIC FIRED SCRAMJET ENGINE DESIGN INVESTIGATION. (AD 385 3921)
1141. HYPERSONIC-FIRED SCRAMJET. VOLUME II. SCRAMJET ENGINE/STRUCTURE COALING WITH HYPERSONIC FIRED. (AD 385 3921)
1142. HYPERSONIC-FIRED SCRAMJET. VOLUME III - EFFECTIVENESS STUDIES OF HYPERSONIC SCRAMJET ENGINE. (AD 385 3921)
1143. WIND TUNNEL TESTS OF A MACH 8.5 SCRAMJET INLET MODEL AT MACH NUMBERS FROM 2 TO 10. (AD 382 4441)
1144. DUAL MODE SCRAMJET. PART I. INLET DESIGN AND PERFORMANCE CHARACTERISTICS. (AD 385 2994)
1145. DUAL MODE SCRAMJET. PART II. COMBUSTOR DESIGN AND PERFORMANCE CHARACTERISTICS. (AD 385 2994)
1146. SCRAMJET INCREMENTAL FLIGHT TEST PROGRAM. VOLUME II. SCRAMJET ENG. (AD 385 994)
1147. THE EFFECT OF EXTERNAL FUEL INJECTION ON THE FUEL-ANNEAL NOZZLE EFFICIENCY AND INLET PERFORMANCE OF A SCRAMJET SCRAMJET ENGINE. (AD 382 0980)
1148. CALCULATION OF PRESSURE LOSES IN JET ENGINE COMBUSTION CHAMBERS - TRANSLATION. (AD 385 853)
1149. A SIMPLIFIED STUDY OF OPEN-CYCLE HYPERSONIC-D Dyn-NOMIC POWER GENERATION AND AN EXAMINATION OF THE POSSIBLE ROLE OF SUPERCYCLIC COMBUSTION IN THE CYCLE. (AD 385 993)
1150. HIGH TEMPERATURE HYPERSONIC-FIRED SCRAMJET RESEARCH IN AN ADVANCED AIRCRAFT FUEL SYSTEM SIMULATOR ON FUEL ANS-8-6T. (AD 380 688)
BIBLIOGRAPHY (Contd)

1451. AEROSOL FLAMING. PART I. SHOCK-TUBE INVESTIGATION OF DICTION. (AD 858 234)

1452. FLAME STABILITY IN SUPERSONIC FLOES AT LOW GAS TEMPERATURES - TRANSLATION. (AD 826 267)

1453. LIGHT EMISSION FROM SHOCK HEATED GASES. (AD 822 877)

1454. IGNITION OF AVIATION KEROSENE BY HOT FLAMES. (AD 824 290)

1455. STEADY STATE SOLUTIONS OF THE EQUATIONS OF BURNING. (AD 815 925)

1456. IGNITION TEMPERATURES. 1. STANDARD PROPELLANT MIXTURE AND COMPONENTS. (AD 821 062)

1457. AUTOMATIC INITIATION OF FLAMMABLE K-70 FUELS. (AD 820 099)

1458. EVALUATION OF FLAME FUELS IN COLD WEATHER ENVIRONMENT. (AD 883 400)

1459. INVESTIGATION AND COMPUTATION OF THE THERMODYNAMIC PROPERTIES OF HIGH TEMPERATURE CHEMICAL SPECIES. (AD 871 171)

1460. INVESTIGATION AND COMPUTATION OF THE THERMODYNAMIC PROPERTIES OF HIGH TEMPERATURE CHEMICAL SPECIES. (AD 818 204)

1461. EXPERIMENTAL PROGRAM TO DETERMINE THE THERMODYNAMIC PROPERTIES OF SOLUTIONS OF LIQUIFIED LIGNITE GASES. (AD 801 902)

1462. EXPERIMENTAL PROGRAM TO DETERMINE THE THERMODYNAMIC PROPERTIES OF SOLUTIONS OF LIQUIFIED LIGNITE GASES. (AD 817 514)

1463. PROPULSION TECHNOLOGY: SURVEY OF RUSSIAN AND EAST EUROPEAN LITERATURE. (AD 804 773)

1464. INTERNATIONAL PROPULSION SYMPOSIUM, 1967, THE COLLEGE OF AERONAUTICS, CHAFEIELD, ENGLAND. (AD 800 526)

1465. RESEARCH ON OPERATIONAL SILKERY FUELS. (AD 802 981)

1466. RESEARCH ON OPERATIONAL SILKERY FUELS. (AD 805 075)

1467. RETRO FITTED FUEL TEST TECHNIQUE AND APPARATUS (IN CONFIGURATION). (AD 804 16A)

1468. JET FUEL DECONTAMINATION STUDIES. (AD 818 061)

1469. STUDY OF AVIATION-FUEL FILTERS/SEPARATORS. (AD 829 543)

1470. LUBRICITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS. (AD 822 766)
1471. EVALUATION OF THE AERONAUTICAL ENGINE LABORATORY LIGHT TRANSMISSION AND SPECTROGRAPH FIBER METHOD OF ANALYZING ATMOSPHERE FUEL FOR OILID CONTAMINATION. (AD 915 2772)

1472. KET-5 THERMAL STABILITY STUDIES. (AD 932 1029)

1473. ANALYSIS OF TRACE METALLIC CONTAMINATION IN JET FUELS BY NEUTRON ACTIVATION. (AD 932 1027)

1474. THE STUDY OF HYDROCARBON FUEL VAPOR PHASE DEPOTICS. (AD 923 798)

1475. THE STUDY OF HYDROCARBON FUEL VAPOR PHASE DEPOTICS. (AD 919 929)

1476. THE STUDY OF HYDROCARBON FUEL VAPOR PHASE DEPOTICS. (AD 919 1666)

1477. LIQUIDITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS. (AD 921 976)

1478. FUNDAMENTAL INVESTIGATION OF THE DEGRADATION OF HYDROCARBON FUELS. (AD 921 979)

1479. DETERMINATION OF THE EFFECTS OF COPPER IN STABILITY PROBLEMS ENCOUNTERED WITH GAS TURBINE FUELS. (AD 921 979)

1480. DEVELOPMENT OF JET FUEL TANK DECCANTS. (AD 917 9461)

1481. EXPERIMENTAL INVESTIGATION OF HYPERSONIC FLOWS -- TRANSLATION. (AD 926 966)

1482. ON THE INFLUENCE OF THE ADDITION OF HEAT TO HYPERSONIC FLOWS -- TRANSLATION. (AD 926 795)

1483. REAL GAS PROPERTY EFFECTS ON FLOW AND HEAT TRANSFER IN THE ENTRANCE REGION OF A PARALLEL PLATE CHANNEL. (AD 927 940)

1484. FREE-FORMED CONVECTION HEAT TRANSFER IN A CURVED CHANNEL. (AD 917 991)

1485. EFFECT OF FLOW INCLUDING CHEMICAL REACTION -- TEXT IN FRENCH. (AD 917 991)

1486. MICROWAVE MEASUREMENTS OF NON-EQUILIBRIUM AIR PLASMAS BEHIND SHOCK WAVES CONTAINING ELECTROCHEMICALLY GASES. (AD 917 950)

1487. SCRAMJET THERMAL PROTECTION PROGRAM. (AD 818 153)

1488. SCRAMJET THERMAL PROTECTION PROGRAM. (AD 818 154)

1489. HEAT TRANSFER IN THE VICINITY OF A 15 DEGREES COMPRESSION CORNER AT MACH NUMBERS FROM 2.5 TO 4.4. (AD 818 954)

1490. HEAT TRANSFER TO SUPERCRITICAL KERNELE. (AD 825 272)
BIBLIOGRAPHY (Cont.)

1491. On one-dimensional frictionless compressible gas flow with heat addition and area change under particular consideration of the subsonic regime. (AD 816 786)

1492. On the effect of vibrations on nuclear boiling heat transfer at near saturated conditions. (AD 816 402)

1493. Supercritical pressure liquid hydrogen heat transfer data compilation. (AD 816 438)

1494. Heat transfer in coaxial systems. (AD 820 902)

1495. Offset rectangular plate-fin surfaces -- heat transfer and flow friction characteristics. (AD 822 954)

1496. Oblate flow headers for heat exchangers -- the influence of inlet velocity profiles. (AD 822 955)

1497. Notes on the progress of free-flight trials to measure heat transfer at Mach numbers up to 5. (AD 816 971)

1498. Hypersonic ramjet heat transfer and cooling program. Volume V: control system studies and experiments. (AD 912 770)

1499. Heat transfer from a cylindrical source to liquid in porous media. (AD 819 824)

1500. Transient heat transfer measurement with thin-film resistance thermometers -- data reduction techniques. (AD 823 515)

1501. Study of heat transfer characteristics of hot-gas igniters. (AD 821 540)

1502. The motion of pure acetilene through shock waves -- translation. (AD 816 435)

The feasibility of utilizing hydrogen-rich fuels for high speed air craft depends upon the endothermic and exothermic capacity of the hydrocarbons, and the combustion properties of the products. As Rankin and Carman combustion rates for this type of fuel must be augmented by thermal, and exothermic reactions. These have been studied. The rate of thermolysis can be accelerated by means of additives. The rate of endothermic combustion, in hydrocarbons, can be increased by the use of high pressure catalysts based on platinum and palladium. The stability of such catalysts is inversely proportional to the pore size of the support. The stability of the catalysts is affected by composition. Dispersed catalysts have some advantages over the type catalyst and some indications of possible reaction have been observed at 3/4 of the 80% catalysts. The hydrogen-rich hydrocarbons have been more active than the standard laboratory catalyst, although none is of magnitude better. Wall catalysts have the advantage of low pressure drop and are showing efficiency benefits also. Calculations show that diffusion limitations can be avoided if the stoichiometric is no more than about 3 miles thick. Satisfactory operation with both improved bed catalysts and wall catalysts has been demonstrated in the fuel system simulator with both hydrogen-rich and oxygenated fuels. Recent transfer studies have been carried out with N/C. These 2.12/184 and 2.12/24 fuel in small diameter test sections under mass fluxes up to 6.75 Btu per hour per square foot. Studies on the effect of high temperatures on the thermal stability of various fuels were carried out with emphasis on methods of measuring deposits on the surface. Combustion and electron back scattering are the methods of present choice and an instrument based on the latter principle has been designed. Mathematical models are being devised to represent the various portions of an endothermic fuel system with present emphasis on the development of heat transfer correlations and a model for the dehydrogenation of Decalin. Physics, properties for Decalin and JP-4 are included. Calculation of the rate of evaporation of normal octane and 3.12/184 from these two studies indicate similar rates of reaction and temperature coefficients.
Fuel thermal fuels
Advanced fuel systems
High velocity fuels
Fuel properties
Supercritical combustion
Chemical catalytic reaction
decomposition
Catalysts
Self-catalysts
Reactor kinetics
Kinetic models
Heat with
Thermal reaction
Hydrocarbon fuels
Literature survey
Thermal stability
Deposit measurement