NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUL 1968. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: SMUFD-AE-T, Frederick, MD 21701.

AUTHORITY

Army Biological Defense Research Lab ltr
dtd 22 Oct 1971
DDC AVAILABILITY NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Fort Detrick, ATTN: SMUFD-AE-T, Frederick, Md. 21701

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland

MAR 4 1969
Best Available Copy
Insulin effect

A. MEZIK & B. UHLIK

Effect of endogenous insulin upon the activity of the alkaline
phosphatase of the blood. Lišć. vjesn., Zagreb, 1954, 76: 609-610 (translated from
Serbo-Croatian by Claudius F. Mayer, M.D., July 1959).

(From the Institute of Chemistry of the Veterinary Faculty of the University
of Zagreb, and the Institute of Veterinary Medical Research, in Zagreb).

(*FOOTNOTE: A voluminous paper on this investigation will be in print, it is
announced, in a short time at another place).

An observation of one of the authors that during the development of a per-
ornally provoked, twice repeated and successive hyperglycemia (i.e., with the Staub-
Truogott type of double glucose loading) will also change the concentration of the
anorganic phosphate in the blood, has suggested to the authors that under the above
mentioned experimental conditions they should try to learn also the behavior of the
alkaline phosphatase of the blood. In this respect, they were little or in no way
interested at first in the recognized relation between the activity of the mentioned
phosphatase on one hand and the action of the insulin on the other hand. Taking
advantage of the known fact that during the development of hyperglycemia, provoked
in the described, physiological manner, insulin will also appear in the blood, they
have expected that the outlined relation would be explainable, perhaps in the best
way, precisely under the above mentioned experimental conditions. The investigations
were carried out on rabbits. The following were established: during the transient
hyperglycemia (provoked by double successive physiological application of the glu-
cose) the activity of the alkaline phosphatase of the blood will also change, and
the changes occur at definite symmetrical relationship to the development of hyper-
glycemia. The activity of alkaline phosphatase of the blood changes several times
during the transient hyperglycemia. One of these changes, namely the weakening of
the activity is at which the intervention of insulin begins. The analysis of the
described action leads to the unquestionable conclusion that the insulin controls
(breaks) the activity of the alkaline phosphatase of the blood. During the develop-
ment of the above mentioned hyperglycemia, the well-known activating function of
the glucose (the MAUER-SUICCHIO effect) is also well distinguished, and percep-
tible is also the mild increase (slight increase) of the activity in the phase of
weakening of the insulin intervention (GAMBASSI-MATARRAZZO effect) and the obtained results are in accordance with the observations according to which the activity of the alkaline phosphatase is also increased in alloxan diabetes. On the contrary, the obtained results are entirely contradictory to the observations of HIROSHI according to which the insulin does not act as an effector upon the activity of alkaline phosphatase. The results of the described investigations allow the possibility that the chronically weakened activity of phosphatase in the case of the Gierke disease could be also in a certain relation with the described inhibiting action of the insulin. And in such a case, the above-mentioned disease could be characterised as an "afermentosis", and not only because of the weakening of the phosphatase but also above all as an effect of the deranged activity - of the adaptive protease insulinas, which is responsible for the disappearance of the endogenous insulin.

LITERATURE:

1. Unpublished. - See in the volume v.61 (p.187, 1939) of Arch. intern. phamnay. ther., the article by A. KIRKEND and W. CIGLAR.

7. BUSCHENUS G. & E. KRENCLER & G. WALT, Ferment chemical studies to the clinical and constitutional correlation research, Berl., 1941, p. 141. - See also GAMBASSI G. &

(Translation of German summary)

The authors utilized the formation of the endogenous insulin during hyperglycemia, which was produced by the double glucose load according to STAUDI-FREUGOTT, for the explanation of the interaction between insulin and alkaline phosphatase. Rabbits were used as experimental animals. It was shown that the activity of the ald
Insulin effect

Alkaline phosphatase changed several times during the course of the experimentally produced hyperglycemia. One of these changes, namely the weakening of the activity, corresponds regularly to the formation phase of the hyperglycemia at which the effect of the insulin begins to show. The explanation of this action leads to the unquestionable conclusion that insulin inhibits the activity of the alkaline phosphatase. The authors still point out that the weakened effect of the blood phosphatase can be in the Gierke disease/in a certain relation with the established inhibitory effect of the insulin.