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ABSTRACT

Resnlts reported here are on the development of
techniques to determine material yield and/or fracture
under multiaxial stress loadings at strain rates to
102/second. An evaluation of various methods of biaxial
and triaxial loading was made in order to determine a
suitable method of testing both structural and ablator
materials. Hence, the loading method and tubular speci-
men configuration are for nonhomogeneous, nonisotropic,
brittle materials as well as more conventional ductile
metals. A Biaxial Strain-Rate Machine has hzen built
and some preliminary tests conducted. Details of the
design and instrumentation are presented as well as pre-

liminary data on an aluminum alloy.
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INTRODUCTION

Determining material response, i.e. strength, stiffness,
ductility, and fracture under rapid loading or impulsive
loading conditions, has become a necessity as structural
applications are subjected to such lcadings. Blast load-
ing of structures from conventional blast or nuclear
devices, high energy forming techniques and high velocity
impact are present applications requiring dynamic material
properties. train rates to lO—lOz/second are common in
blast loadi..g problems and rates to 105—108/second are
possible in shock type loads.

Techniques have been developed to investigate material
behavior under high strain-rate uniaxial stress loading,(l-G)
and high strain-rate data have been generated on a variety of

materials. (/14

Test techniques are difficult, particularly
at the highest strain rates, and must be carefully reviewed
before accepting published data. Material response under
hig~ strain-rate biaxial or triaxial stress loading is even
more difficult to obtain, and only a few attempts at obtain-

ing fundamental data have been made.(ls_lg)

The most reliable multiaxial stress, high strain-rate data
on a wide variety of materials is found in recent flat plate
work, where experimenters have impacted one plate into another,

- \
(19-24; Strain

thereby creating a uniaxial strain loading.
rates are los/second and higher in the shock front produced
upon impact and decrease as the shock front is attenuated.
The conventional stress-strain curve cannot be obtained from

these tests, but yield (or fracture) at various strain rates can




be studied to some extent by measuring the "elastic" wave
magnitude as the shock front is attenuated. These data can
be compared to uniaxial stress data by resorting to some as-
sumed yield/fracture criterion. A general yield/fracture
criterion, however, cannot be obtained from these tests.

The discussion here will not include the flat plate ex-~
periments, since only statically determinant loadings are

considered.

After searching the available literature on means of creat-
ing a statically-determinant biaxial loading, the method of
loading a tubular specimen with axial load and internal or
external fluid pressure was selected as the most suitable
for nonhomogeneous, nonisotropic materials. On this basis
a machine cgpable of producing these loadings for strain

rates to lOz/second was designed and constructed.
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SECTION I

BIAXIAL AND TRIAXIAL LOADING SYSTEMS

To date, multiaxial high strain-rate loading systems have
been limited to homogeneous, iscotropic (or at least nearly
isotropic) materials of low or moderate strength and rea-
sonable ductility, nanely, poly-crystallire metals such

as aluminum (or aluminum alloys) and soft steels. The
following review of the techniques used on these materials
was used to determine the system most adaptable to the more
difficult materials.

Lindholm and Yeakley have used a small tubular specimen
simultaneously subjected to tension and torsion at strain
rates to 10—30/second.(15) Duringy the test, the directions

of pr:=cipal stresses and strains are not fixed, but rotate

as the specimen is loaded. Although this technique works

well for ductile metals, instrumentation and interpretation

of data would be difficult for brittle, anisotropic materials.
Furthermore, the small specimen used would impose difficulties

for ncnhomogeneous materials, such as ablative composites.

Gerard and Papirno used a thin membrane snecimen placed over
a large diameter cylinder and loaded by an air blast.(ls)
Their results are for strain rates to 1-4/second on ductile
metals. This method produces only equal biaxial tension,

and would impose serious limitations on the interpretation

of the data for nonhomogeneous, brittle materials.
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Hoge used small hollcw cywl:indrical test specimens with part

of the axial loaé (prcduced from évnamic internal £fluid
< s . (27 - s
pressure) carried dby an external roz.t ) By verving the

4
by changing specimen geoxetry, different ratios of axial te
circumferential loads can be achieved. The method is clever
Dr

put suffers from end effects whic

Chalupnik ané Ripperger perforzed experiments using the
(42
split iHopkinson bar technique‘“) uncder constant hydrostacic

i
vielé and/or Iracture is coverneé by hydrostatic pressure,
and offers less fawvor fcor materials iittle affectaed by hvdro-

static pressure.

.. - . . . .— i = . s .
triaxial "guasistatic” methcds. UWork Hy Davis on thip

typical, and presents classiczl wor: on static behavior of
26 ~
1 (26-32) . : 1

metals. Gthers have dore similar work on metals using
thin walled tubes subjected to tension and internal pressure
. . R . (33; 34 N . <
or torsion. Cornet and Grassz,( ! Ely,( ) and Babal z2ad
(35)

have performed static experizents on thin walled
tubes of pbrittle maierials under axiai tension or cnmpression
and ianternal pressure. This syster is rcaarly adapiable ¢

the nonhomogeous materials and was sclected as the best method

for multiaxial studies on various materials. Before proceeding

witn detailed discussion of the

ot

ubular ssecimen technique,
several other methods of biaxia: or triaxial loading will be
reviewed.
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R . : - 2 e Nagai (36 X
Biaxial stress tests were performed by Naca1‘3 ) and by Wenl,
< 37 . _— s < . ~ .
et.a;.,( ) using a spinrning @isc. The results and technigues

s
are elegant and afforé a reliatively simpie method of produc-
h

-~ -

tribution would@ be difficult to specify.

-

Hy

lat plates under uniform tension in two directions have been

(38) and Ikagami.‘39) This is

usecé by Johnson and Shiratori

Drobably the simdlest biaxial test to visuwalize, but is re-
trictecé to tension-tension tests. Furthermore, elimination

of ené effects is Giffiiculr for small strains and virtually
impossible f£or larger deformations.

(20) _ s o . e b s o
suggesced a notchec Specinen, wWinerebdy biaxial

Mznj2ine
tresses are produceé@ at the base of the notch. This techni-
Gue, which could be performed at low and intermediate strain
rates for investigations of the fracture of brittle materials,
a2y pe useful in conjunction with more general loadings. The
nucched specimen technigue, however, woulé be restricted to

brittle hozmocgeneous materials.

The most classical triaxial test is loading under hydrostatic
(21) (42)

ressure. Bridgman's extensive work and that of Pagh

0

present results on a variety of materials. Tests under hydro-

static pressure are routinely performed on geological mater-
; 42,44 " < 4 a . .
1als( +24) where vield/fractu-e is very much a function of

(45)

pressure. A rij is being designed by Logan to conduct

dynamic axial load tests under static pressure on geological
materials following the driving unit design of Maiden and

(10)

Green. This type of test, 1.e. dynamic axial load under

static hydrostatic pressure, is attractive for studying the

o
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fracture of composites and other ablative materials. The

study could easily include the very high stain rates using
[}

the technigue of Chalupnik and Ripperger.(l"’

Of the various specimen configurations and loading methods
reviewed, the thin walled tube subjected to axial tension or
compression and internal or external pressure is the most
adaptable to a wide variety of materials. Many materials can
be either machined or fabricated directly into a tubular shape.
The loading of this configuration allows tests in all guad-
rants of principal stress space, i.e. tension-tension, comu-
pression-compression, tension-compression, compression-
tensicn, and the directions of principal stresses are known

and f£ixed during the test.

Strain rates approaching those where stress waves can no
longer be averaged are readilv attainable; on the order of
10—102/second for most materials. PFigher rates, where stress
gradients exist in the specimen gage section must be avoided
because of uncertainties in the data interpretatiorn. Multi-
axial stress tests at higher strain rates, in ine region of
102-104/second, are apt to yield cnly quantitative results,
at best, for any specimen configuration. Applying the same
techniques as for the split Hopkinson bar(z) cannot be done
because end effects produced by the biaxial loading of any
configuration will require "large" specimens, thereby violat-
ing the requirements of the technique.(s) Uniaxial strain,
flat plate, experiments may be conducted for multiaxial load-
ing for strain rates of 104/second and greater as long as the

gage section of the specimen (target) is sufficiently large

[FWEIN W




that side reflections do not enter until the test is com-

pleted.(zo) However, this technique is readily adaptable only
to statically indeterminate uniaxial strain. Because of these
complications, this multiaxial loading study was restricted to E

rates up to lO—lOz/second.




SECTION II
SPECIMEN CONFIGURATION

Suitable dimensions for a biaxially lcaded tubular specimen

of a nonhomogenous, nonisotropic composite material were
determined based ipon previously obtained uniaxial stress
data(46). The prime consideration was the need for specimens
which would represent the bulk properties of the material.
Therefore, from information concerning the behavior of typical
ablator composites as a function of specimen size,(46) a
minimum wall thickness of 0.250 inch was determined. Al-
though the wall thickness could be made larger without
impairing the data, significantly smaller thicknesses would

result in data influenced by the specimen size.

Once the wall thickness was determined, the outside diameter
was fixed based on as large as possible outside diameter to
wall thickness ratio (D/t) with reasonable cross-sectional
area. This portion of the specimen design was coupled
closely with the loading piston design study discussed in
Secticn III. BRriefly, calculating the piston dynamics with a
specimen size as an initial condition, it was determined
that specimens with a wall thickness of 0.250 inch and a
(D/t) ratio greater than 10 would require driving systems
incompatible with the design criteria of the basic machine;
in particular a quick acceleration to a rate of 10/second

on a high strength composite material such as quartz phenolic.

Having fixed the wall thickness and outside diameter, the

only remaining parameter was specimen length. This parameter
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was influenced by maximum machine dimensions (dictated by

limits placed on the elastic deformation of the machine dur-
ing a test), maximum rate considerations, and a requirement,
based on previous uniaxial stress work, of having a minimum
unsupported speciren length-to-diameter {(%2/D) ratio of 1.33.
The final over all length was determined to be 6.0 inch with

5.0 inch of unsupported length.

Although the specimen was designed about a composite material,
aluminum alloy was considered the best material for initial
testing because of its medium strength, good ductility, and
ease of fabrication. Therefore, an aluminum specimen was
designed using smaller wall thickness (0.125 inch) for a
higher (D/t) and a shorter length for a smaller (&/D) ratio
made possible by the homogeneity of the material. Photegraphs
of the aluminum and composite (in this case Micarta) speci-

mens are shown in Figure 1.

Specimens for testing under axial tension are being designed.
for the composite materials, the difficult task ocf assessing
‘he efficiency of various mechanical interlocking arrange-
ments, compatible with specimen fabrication, is in progress.
For metallic materials, long specimens, with relatively small
diameters and thin walls are being designed along with suit-
able mechanical gripping techniques. The tubular metallic
specimens for axial tension may be considerably smaller in
diameter and longer in length because of the elimination

of buckling associated with the compressive axial loadings.
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SECTION III

MACHINE DESIGN

The machine described here (shown in Figures 2 and 3) develops
a biaxial state of stress by applying an axial load and a cir-
cumferential load (by fluid pressure) on a tubular specimen
through two independent gas-operated cylinders. A 12.5 inch
bore cylinder is used to provide the axial load to the speci-
men while a 6 inch bore cylinder s used to load an auxiliary
piston which, in turn, pressurizes a fluid for circumferential
loading of the specimen. The specimen is pressurized inter-
naily for circumferential tension, and externally for circum-

ferential compression.

The machine is operated by charging each cylinder with gas,
which may be air, nitrogen, or helium, introduced at eqgual
pressure into a large reservoir in back of the piston, and
into a small reservoir in front of the piston. The piston
moves forward when the small reservoir is exhausted by flow

through an orifice.

LCxhaust of tre small reservoir is initiated through the open-
iny of a fast acting valve mounted downstream of the orifice.
Piston velocity, and hence the rate of loading, is controlled
by the type and pressure of the working gas, the orifice size,
and, to some extent, the specimen. 1In addition, a variable
hydraulic damper is attached to each piston to damp undesir-
able piston oscillations.

11
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Figure 2 Schematic Diagram of Biaxial Medium

Strein-Rate Machine

12




3

Photograph of Biaxial Medium Strain-
1

Rate Machine

Figure 3




The piston requirements for this rachine were based on
developing 10% minimum strain on a high strength material

with a medium elastic modulus, such as gquartz phenolic, at
strain rates of 8-10/second. For a 6 inch long specimen

tube, the piston must achieve velocities of 50-60 inches/sec-
ond; and have at least a 0.6 inch stroke to meet these require-
ments. Additional criteria were low mass, good rigidity,

accurate guidance, and high strength.

To pre. ~t the proper dimensicns based on the above criteria,
a mathematical analysis was made of the piston motion as
influenced by type and pressure of the gas, piston mass and
area, reservoir volumes in front of and behind the piston,
and the orifice size. The piston friction, specimen reaction

(from uniaxial stress data(46)),

and piston damper effect
were alsc included. A schematic of the iteration of the
various parameters is sh 'm in Figure 4. The analysis

was coded in the Dartmouth Basic language on a General
Electric 235 computer. The program computed the velocity
and displacement of the piston, and the gas pressure in the
small reservoir at incremental times. The complete analysis
and typical results are contained in Appendix B. Previous
work wvith the Medium Strain-Rate Machines and comparisons
with the preliminary Biaxial Machine Tests have shown good

correlation of computed to experimental data.(47)

On the basis of the computer analysis, a 12.5 inch diameter
titanium piston was selected for the axial loading source
and 6 inch diameter steel pistons were selected to press-
urize the fluid. Assuming helium gas at a pressure of 3000
psi, :t was determined that velocities of 60 inches/second

could be obtained by the 12.5 inch axial loading piston with

t—
[ES




guartz-phenolic specimens. Maximum capabilities of the

machine are listed in Appendix A.

{INITIAL VALUES)

2%—in.0..
Yi—in. WALL
——————>  SPECIMEN SIZE \5_in. LONG
|
v
> GAS PRESSUxc {He , 1500 psi)
A l
J M ORIFICE—GAS VOLUME {CALCULATED )
\
——> PISTON SIZE  WEIGHT {10—in. DIA. STEEL)
1
A A w

> DAMPING FORCE REQUIRED  {SCALED UP)

¥
A YRLOQTY VS, TIME

S —

Figure 4 Flow-chart of Parameters Investigated
During Piston Motion Study

The 12.5 inch piston was designed to operate in one direction
only. Figure 5 shows a cross-secticn through the cylinder
assembly. Note that the piston is braced to increase its

stiffness and that the piston stem is hollow to allow a

15
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means of egress fcr instrumentaticon cables. Because of the
unidirectional movement of the piston, the axial compression
Obtainad on the lower e€nd of the piston and axial tension

9]0 Because either end of the piston rod may

g 8 &
£
®
8
B
"

o
o
f

-

attached to the specimen for axial loading, the damper

assexbly also may be connected oa either end.

he 6 inch pistons arxe not braced and may be operated in
either direction. ({Details of a system similar to that used
here may be found in Reference 47). However, because of the

unidirectional nature of the axial loading piston, two & inch

0

vlinder assemblies were utilized, one for circumferential
loading during axial tension and one for circumferential
loading during axial compression. Therefore, the 6 inch

assemblies effectively operate unidirectionally.

The fast-acting valves connected to the £front reservoir of
each cylinder provide a means of evacuating the reservoir
in mininum time. Between the reservoir and the fast-acting
valve is an interchangeable orifice plate which meters the
flow of gas from the frcnt reservoir, and thus controls the
velocity of the piston.

Figure 6 showis a cross-section through a fast-acting valve.
The valve body consists of two chambers. The lower chamber
has an entrance port from the main cylinder and an exit port
to the exhaust line. The orifice plate is located in the
entrance port and a valve plate seals the exit port. The
valve plate is connected to the piston in the upper chamber
by a piston rod which passes through the chamber wall. Low
pressure gas drives the piston and valve plate forward,

sealing the exit port. The front reservoir of the main

17
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cyiinder is now filled with high pressure gas. The high
pressure gas acting on the back of the valve plate reinforces
the seal. To actuate the valve, high pressure gas is intro-
duced to the front of the piston. Due to the large area

of the piston compared to the area of the valve plate, the
piston is driven backwards, breaking the exit port seal. The
high pressure in the lower chamber then acts on the bottom

>f the valve plate as well as the top. Because the area under
the plate is increased by the area of the rod, the valve plate
is accelerated backwards as the high pressure gas flows from
the front reservoir of the main cylinder through the orifice
plate and out the exit port. The piping diagram for the
piston cylinders and the fast-acting valve is shown in

Figure 7.

The control panel for the machine is shown in Figure 8. The
upper panel controls the 12.5 inch cylinder for all conditions.
The lower panel controls either of the two 6 inch cylinders.

In addition there is a small panel next to the machine which
may operate any of the cylinders (with low pressure air).

This panel is used only for setup.

The machine frame was designed to resist separating forces
of 400 x 103 lbs. by using prestressed column-and-tie rod
construction (shown in Figure 1). The constructioun is
essentially that of two frames with a common middle plate.
As on.y one end of the machine is used at a time, threading
the tie rods through the middle plate allows each end of the
tie rods to be stressed separately. Calculations {outlined
in Appendix C) show deflections of the order of 0.002 inch

under maximum raived axial load (340 x lO3 1bs.}).
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The alignment of the machine, which is necessary to eliminate

bending stresses, is very good. The main cylinder and the

6 inch cylinders are on a common axis within 0.002 inch.

The frame plates are paraliel to within 0.0005 inch (measured .
between two diagonal columns). Tests on a simulated specimen

of steel, instrumented with independently measuring, diagonally

oppcsed, strain gages, showed uniform deformation across

the section.

Adjustment for specimen length and preload are made through
a positioning mechanism for the 6 inch cylinders (Figure 2).
Each cylinder is mounted in a tubular screw threaded into a
hollow flanged nut. The nut and screw have buttress threads
for maximum load-carrying ability. Axial displacement is
effected by rotating the nut by a worm and worm gear while
preventing rotation of the cylinder and screw.

The specimen is mounted in a package which serves to support
and seal the tubular specimen, to provide a closed pressure
chamber, and to pr--.4de support for pressure transducers and

strain gage seals. Four designs of specimen packages are

required to test the four quadrants of the stress plane.
Great care is taken in the design of the packages to isolate
the axial piston from the action of the pressurized oil in

order to insure independent action of the two cylinders.

Figure 10 shows a cross-section through the circumferential
tension/axial compression package. A photograph of the
assembled package is shown in Figure 11. (All specimen
packages are completely assembled outside the machine and

installed just prior o a test). The package consists of a
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piston rod adaptor (axial load cell), core rod, tubular speci-
men, base, ring piston, actuating pins, base nlug, and pres-
sure transducer. Thie specimen is bondcd to the piston rod
adaptor and the base to seal the internal fluid during as-
sembly and inicvial portions of a test. The core rod has
several functions. It serves tc 2lign the assembly, it seals
the upper end of the oil chamber, and it reduces the volume

of pressurizing fluid required to stress the specimen. Reduc-
tion of fluid volume reduces allowable fluid compressibility

which, in turn, reduces oil piston strcke requirements.

The nose of the ring piston has a land that cushions the end
of its stroke by metering the fluid flow between the base
and the core pin. The metering arrangement reduces the
possibil .ty of catastrophic piston impact if premature fail-
ure of the specimen occurs during a test.

Strain gages may be mounted on both the internal and external
surfaces of the specimen. Internal leads for strain gages
exit through passages in the core rod. The leads pass
through seals at the outer surface, and then through the

hollow center of the main piston rod and damper rod.

The external pressure package is identical in operation to
the internal package described above. The external load is
applied by the fluid contained in an outer steel jacket
sealed at both ends. Provisions for stress ard strain mea-
suremen*s are similar to those for internal pressure.
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SECTION IV

INSTRUMENTATION

Instrument:cicn for che Diaxial Machine consists of various
comoinations of load cells, pressure transducers, strain
gages, optical extensometers and other transducers. In order
to record the many data channels with minimum time skew be-
tween channels, a system using a fourteen channel wide band

FM tape recorder was assembled.

Figure 12 is a schematic diagram, for a single transducer;
of the components invelved in the signal conditioning and
data recording. The transducer bridge netvork provides the
capability for insertion cof a series of parallel calibration
resistors (maximum of four), across vne active arm in order
to electrically simulate test conditions. The bridge network
is a Honeywell Accudata 102 which is coupled to a Honeyweil
Accudata 120 DC amplifier. A null indicator circuit may be
connected across any of the fourteen channels to balance the
bridge system. From the amplifier, the data are recorded

by a fourteen channel, 400 KHz passband, FM tape recorder

(Consolidated Electrodynamics Corporation).

This tape system has several advantages ovar alternate re-
cording systems. One is the very low time skew Letween any
two data channels, one usecond for this system. Otvher ad-
vantages include continuous recording regardless of the time-
of-test, no triggering requireme its, high signal %o noise
ratio, availability of time base expansion and permanent

records.

27




OUTUDRW TUTXRTY OY) UO J10ONPSURIY, OUQ

28

L ]

4304003y
ddys
TANNYHO ¥L

X0 uUOTILIUSUNIAGUI JO WRIBRTA DTIVWOYDS 2T obBry
——‘lll’il"illl IIJ
_ HOLDATHS "1ANMYID “ “ll HOLIA3S
_ HOLYDIONI 11NN THHNYHD ¥042313$
i | | wo1LvERrIYD NOILY¥EITYD
® S ———
. R | | . 7
) . 70 i _ @ 1 IN
, R 7 _ ol Ve e
_ _ * & Yo -
| ’ | _ o o
— I!Iullll:.". _ — — ’ . ) ! o *
“ “zo»cuaz_. | “ | |
[ _ 4432__ _ o | T R
| . 9\\_ ~ | _ ¢ L ./ * ”‘a
| ) ) | H " \is.!...llﬂ QJX]':
_ [ ] - v _ _ f &?
— . /l:o., _ “.r A r » o
o Lo P G v e e mas e S e s —-
_ =4 o ©o LINDHID NOILLYHEITYD
r je sy bome fans mane BGS SPED Guing Sy Gammn DR li‘!M w f
LIN2¥1D 1NN \
U1 1VdHY NYOMLAN FONYIYE
-llll]’li”'— ﬂ"l-l POEL. GEES SRS DEPES AP | ek, J
“ _ T " ¥EONASNYYL
| m“_ 7 _
3 . _
v C | _
r!l‘]i‘lL r"llllllllL Fli llllll L




Load cells and pressure transducers are calibrated through
the system by static loads. Load cells are calibrated
against a Morehouse (0.02% accuracy) proving ring while pres-
sure transducers are calibrated against accurate (0.1%) bour-
don tube pressure gages. Strain gages are calibrated through
the system by electrical simulation only; however, :the re-
sistance of each gage is measured just prior to testing to
five significeat figures in order to achieve maximum accuracy

in strain simulation calculations.

The rec action of fourteen channels of data to a computer-

compatible form is achieved by direct analog to digital

h

conversionr of the data from the analog tape svstem. The
block diagrzm of the entire system from data sensor to data
output is shown in Fiqure 13. This conversion technique
omits all intermediate steps (recording data on film from
oscillioscopes, manual digitizing of data, etc.) thereby
r-ducing the cumulative system error as well as retaining
the analog data for future reference. The error through

this system is approximately 20.5% of full scale.

The analog to digital (A/D) converter (14 Bit plus sign) used
in this system is interfaced to an IBM 1800 central processor.
The particular processor used has 16 x 103, 16 bit word
storage as well as an assoc-ated 5 x lO5 word disk stor:zage
unit. This flexible system has the capability to digitize,
store the data in digital form, input the proper scale

factors and print an¢ plot the various reduced data in a

usable and convenient form.
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SECTION V

PRELIMINARY DATA

Initial tests of the Biaxial machine were conducted on
6061-T651 aluminum alloy. This material was purchased in
3 inch diameter rolled rod stock from which test specimens
of 2.5 inch 2.D. by 2.25 inch I.D. by 5 inch long right
circular cylinders were machined. Some additional speci-
mens, 0.375 inch O0.D. by 0.500 inch long cylinders, were
also fabricated for evaluation by other techniques.

Figure 14 contains data from several tests on the Biaxial
machine. Two of the tests are with compressive axial load
only and one test is with tensile circumferential lcad with
an axial compressive preload. The behavior of the circum-
ferentially loaded specimen was cbtained by using elasticity
equations for thick walled tubes and converting internally
measured pressure to stress on the outside diameter of the
tube, where the strairs were measured. Strains greater than
0.75% were not obtained because of loss of gage continuity
as the tube expanded. This condition will be remedied in
future tests by more flexible lead wire arrangements. As
shown, good correlation between the various data was ob-
tained including comparison tests with 0.375 inch diameter
by 0.500 inch long samples tested on the Medium Strain-Rate
machine. Figure 15 shows a specimen tested in compression
only while Figure 16 shows a specimen tested in circum-
ferential tension only.

As shown in Figure 15, these aluminum tubes buckled after

about 3% deformation. Although all samples tested in com-~
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pression buckled on the lower end of the specimens, incipient
buckling (i.e. shown by bulging) occurred on the upper end of
the specimens. Figure 17 shows the stress, strain, time

data for a specimen instrumented with strain gages at three
positions along the outside wall axis and one gage on the
inside wall. During the elastic portion, excellent agreement
was obtained between all gages. After yield, however, only
the center two gages agreed closely. The gages on the ex-
tremes departed from the center gages, especially towards

the end of the test when the specimen buckled. The specimen
load drops at buck:iing and then remains constant until the
end of the test (not shown in the figure). The erratic
behavior of the inside center strain gage after 6 seconds
into the test is probably the result of the strain gage

de-bonding from the specimen.

Figure 18 shows the strain-time behavior for a specimen in-
strumented as above but lo-ded with internal pressure only.
The data are from the three strairn gages on the external sur-
face. DNote that only small deviations between gages were
recorded. From these data it has been shown that the material
behavior in the center of the specimen is not influenced by

the end constraints for small deformations.
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APPENDIX A

SPECIFICATIONS FOR BIAXIAL MACHINE

I. Axial~Load Piston

Diameter = 12.5 in
Effective Area = 114 in2
Mass = 0.146 1lb - secz/in

Max. Gas Pressure = 3000 psi

Gas Tyoe = Air, Helium, Nitrogen

Max. Force @ 3000 psi = 342,000 1lbs

Max. Travel = 1.76 in

Max. Force @ End of 1.76 in. Travel = 263,900 lbs
Material = Titanium

Gas Volume = 1232 in>

II. Circumferential-~Load Piston

Diameter = 6.0 in

Effective Area = 27 inz

Mass = 0.046 1b - secz/in

Max. Gas Pressure = 3000 psi

Gas Type = Air, Helium, Nitrogen

Max. Force @ 3000 psi = 81,0600 1lbs

Max. Travel = 2.0 in

Max. Force @ End of 2.0 in. Travel = 37,090 1bs
Material = Steel

Gas Volume = 127 in3
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III. Biaxial Compression Specimen

IV. Biaxial

V. Machine

Max. Length = 10 in

Max. 0.D. = 4 in

Max. Working Height = 18 in
Max. Working Dia. = 9 in

Max. Access Dia. = 12 in
Tension Specimen

Max. Length = 11 in

Max. 0.D. = 4 in

Max. Working Height = 21 in
Max. Working Dia. = 9 in }

Max. Access Dia. = 12 in

0.D. Height = 11 ft

Base Area = 20 sq ft

Weight = 1900 1bs

Column Prelez2d = 400,00 1lbs (Total)
Max. Frame Deflection at 340,000 1b

Load = 0.002 in
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APPENDIX B

ANALYTICAL STULCY OF PISTON MOTION

The assumptions made in the derivation and solution of the

equations of piston motion are as follows:

a. The small and large reservoir pressures
and volumes are functions of time.

b. An isentropic expansion occurs in the
small reservoir and sonic flow exists
in the orifice.

c. Such constants as orifice coefficient and
friction forces on the piston can be found
by comparing analytical results with the
results of actual tests.

d. The specimen force can be aporoximated by

a series of linear load-displacement curves.

Definitions -
3

VI = Initial volume of small reservoir (in~}

V1 = Volume of small reservoir (in3)

V3I = Initial Volume of large reseivoir (in3)
vy = Volume of large reservoir (in~)

P, = Initial gas pressure in reservoirs (psi)
Pl = Gas pressure in small reservoir (psi)

P, = 5as pressure in orifice throat (psi)

P3 = Gas pressure in large reservoir (psi)

& = Diameter of orifice (in)

A = Effective area of piston (inz)

A, = Area of orifice (in2)
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]
M = Mass of piston (lb—sec‘?/in) ]
F, = Friction force (1b) 1
F2 = Specimen force (1b)
F3 = Damping forcc (1b)
a = Acceleration of piston (in/secz)
S = Displacement of piston (in)
SI = Initial position of piston (in)
K = Ratio of specific heats
Cp = Specific heat at constant pressurz (BTU-1lb/°R) )
R = Universal Gas Constant (ft-1lb/1b-°R)
JL SPECIMEN FORCE %
f <
~ FLOW
N ORIFICE
FRICTION AND ——+— SMALL RESERVOIR
1 INERTIA FORCES ] X VOLUME V|
PRESSURE Py
. —=—+1—— MOVABLE PISTON
3 AREA A
ﬁ ) [ ﬁ MASS M
i PRESSURE | -
UNBALANCE ——+—- LARGE RESERVOIR
_ FORCE .~ VOLUME V3
f PRESSURE P3
>~
Figure B-1 Force System for Piston Motion Study
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1. Balancing forces -

Ma

(P3—Pl) A - Fl-Fz-F3

1
: [A(P3—Pl) - F,-F, F3]

M)
]

Critical pressure in orifice throat -

k_
2] ¥t .

p2 = Pl [E:T] (Sonic velocity)

p/

=— = 0.528 (For air)

p
; 1
1 2. Initial temperature -

— o
TI = 530°R
k-.

Let
P1
g = §i (ratio of pressure to
I initial pressure in
small reservoir)
Then -
k-1
F K
T, =T_. g
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3. Determination of Pl—

The mass flow rate of an ideal fluid through an

orifice is:

k+1 1
2 5z
we = 223.8 2271 | S <Eg) k ~(fg) 1b/sec
R Tl Pl Pl
where -
Pl = Pressure in small reservoir (lbs/inz)
T, = Temperature of air in orifice ({°R)
el
A, = Area of the Orifice (in“)

and for air -
K =1.4
Cp = 0.24 BTU-1b/°R
R

= 53.3 £t-1b/1b-°R

Substituting and rearranging -

2
2\/p P (c k
W = 223.8 | ™ I 1 _P___ (0.528)
£ 4 R P T_,P.\ k-1
! o) %
E.)
k+1] )1
K 2
~(0.528) 1b/sec
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Lol

2

2\ P C k

= 223.8 (Eg.) 1 ) _E [ (0.528)k
R TI

oy 2
ki) 1
k 2
-{0.528)
And:
S|
95
I
k+1
2k
L Wf =ay 9 lb/sec

Lages

4. From the ideal gas law -

P.V. = W(t) RT

171 1
Where ]
P. = 1b/in® (absolute)
vV, = in3
L=
R = ft-1b/1b-°R
Then:
W(t) = PV 1
12R k-1
k

'IIg

g 1 P 1
Wit) = 757307 \R k-1
K
g




Let -

(mass of gas left in small reservoir at any time)

1 Also - £
r
gt = Pr Vi / W, dt
2R T, J,
Let -
Pr Vg

3 T 12(330)R

4 W(t) = ay - j{ Wf dt

5. Considering the piston displacement (S)

v, = (5, - S) &
a*s _ _1 a1
a2 A g2

The damping force (F3) is proportional to the

piston velocity
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Let Q = Constant of proportionality

Then -
F =Qé§ .-ggzl

3 at A dt

v

2v s @ d]
t--2 [A(P3 Py) " F)Fy f M aE
dt

2 2

2v, A%, AP, [F e ] o

a2 M M 175 M dt

When the piston advances, V3 increases -

Vy = Voo + <VI - vl>

Vir .
Py =Py 75

Let:
. k
o - A%Fr Var
4 M
. A2 Pp
57N
Then -
2V -k v
a’i _ . A - Qdl
5 =059 -0y NV +Vp = Vy) [Fl * Fz] M dt
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6. Eguating expressions for wii) -

1 £

3
&, V., © = - w. 4t
2 V1 ¢ o3 £ Gt

o
Differentiatinc with respect to time -
1-k k+l
- P - 7

. dvl % 11 g X gq . 2x
2%& YT x &7 T T us

3x-1
2k .
ct 32 - - at Vl
Let -
*1 =
16=-"_
2
i - . k-1
. T 2k
Ft' E:rw 027_:( c_..\fl ‘i
ac [‘6- "9 & v,
Equations to be solved:
2V -
a i T LA
AL —_——— = - <+ V - <+ == EN-
22 759 7 % V3p + ¥ — %) i (F1*F,
w
0 dvl o3
M g in /sec
x
_ 7 \'
- . &9 _ «. g -Kad—-l 1
dt 6 Z dt vl

By reducing equation A into two first order differential
equations the three resulting simultaneous equations

(21, A2, B) may be solved numerically by a Runge-Kutta
method.
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16 T I 1 : I 1

Y- -

10 }— —~ E

2500 psi

o
|

Velocity In Inches / Saoc.

l

Sl v a5k

I | 1 1 1 1 f
1 2 3 4 5 6 ]
Time In Millisecs ]

Figure B-2 Example of the Effect of Initial Reservoir
Pressure on Piston Velocity
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SOOI W e

16 l . T | T i

FEIrY 2% TN § W I 0 T T T S A A T ¥ 7

- Demping Fecior = 0

12 _
5
) - Dzmpina facisr = 500 _
/
/
s 8 Damping - 1
<L Facar = 2000 3
g ]
£ i
= |
g :
S ' —~— ;
'g 4 / — 3
] i
2 _
. | 1 | !
1 2 3 4 5 6\
Time In Millisecs
_2 S —
-4

Figure B-3 Example of the Effect of Damping on Piston
Velocity
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vy

Straln (%)

N

3000 psi He
1.25%in. Orifice
Specimen: 2.50ia. U.D. x2.08in. !

x 5.0:n. Gage Length - /

Average Strain Raie = 13/ sec.

Time ( Millisecs)

Figure B-4 Predicted Axial Strain on a Quartz
Phenolic Tube
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I ] | | i
3000 psi He

5 0.500in. Orifice
Specimen : 2.50in. 0.D. x 2.00in. 1.D.
X 5.0in. Gage Length

i A

PR WV 79V L VESHD SO

al- — 3
— i
c 3T T |
7 |
|
2 . |
1 _— — 1
Average Strain Rate = 10/ sec.
1 i l ! |
1 2 3 4 5

Time ( Millisecs )

Figure B-5 Predicted Circumferential Strain on a
Quartz Phenolic Tube
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. TENS 10K NUT
B FRAKE PLATE
} / |
N\~ £ RO }
Ay ]
E{ ;
' COLUMN

FRANE LOAD

COLUMN CORAPRESSIVE LOAD

3
D i
?} i 3
1
I ——— e rop TEnsiLE LoAD 51
Figure C-1 Force System for Frame Preload ;
Definitions:
P = Preload (1b) j
‘ C = Column Compressive Load (1b) ]
E T = Tie Rcd Tensile Load (1b) 3
* A, = Column Area (inz)
A, = Tie Rod Area (in®)
Lc = Column Length (in)
3 L, = Tie Rcd Length (in)
3 F = Frame Load (1b)
E = Modulus of Elasticity (lb/inz)
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Assuming elastic behavior, the ratio of force tc deflection

for the tie rod and column are:

A
C _ . [o]
KR I
C L Cc J
- -
T _ g t
& L
t | Tt ]

e
Pl ———\——- —Resultant Force - Seflection Curve

Column | Wt For :
( Compression) f For Prestressed System
U=—==="=- l. { Tensile )

Tie Rod
{ Tensile )

- ] = Deflection

Figure C-2 Force - Deflection Behavior of Tie Rods

If the tie rcd is loaded in tension to a load "P", the
rod stretches a distence "At". If the column is loaded by

the same force "P", it compresses a distance “Ac". Figure C-2
shows the relationship of these deflections. For shrunk tie

rod construction the rod is stretched a distance "At", the
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clamp nut is run down to contact the frame plate, and the

rod is relaxed. As the rod relaxes, its length decreases.

At the same time, the column starts to deflect in compression.
As shown in the figure, when the rod is loaqded with a force "P",
the column load is zero. As the rod load decreases to load

"Q%", the coiumn load rises to lcad "Q" and the system is in
equilibrium.

The decrease in rod deflecticn and increase in coiurn deflect-
ion is equal to "d". 1If a frame load "F" is now applied to
the prestressed system, such as to increase the rod tension,
the rod will deflect a distance "x". When the frame load "F"
equals the prelozd "P". the column no longer is loaded and

any increase in frame loau 1is carried by the tie rods. The
allowable frame deflection is then "d". 1In this machine the

frame load will not exceed 80% of the preloaad.

To calculaze d:

Q_P
d” i
C
9 _ P
ut-d At
Pd P(“t—d)
Q=3 =73
c t
A
i PO A, i 8B
PO +P, b F3
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But:
PL_ PL
fx‘_ = FDL A = EA—C
t 2o c c
. -1
g=2 P, e
E LC Lt
In particular, if L, =L_=1L
C [

o]
0
VI
="
e
N
| DS

e T
|
4eTleN

=
1
1
—
>
+ [t
>
bemeesed

If the frame load acts to increase the column load in con-

tradistinction to the previous case, the limiting deflection
1s dependent on the column allowable stress. In the figure,
the deflectior will be to the left of the tie rod-column

intersection point.

Thus it can be shown that a decrease in deflection is obtained
with a prestressed construction whether the load to be resisted

acts to shorten or lengthen the column.
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