NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to DoD only; Administrative/Operational Use; Oct 1968. Other requests shall be referred to Army Tank-Automotive Command, Attn: AMSTA-BSL, Warren, MI. 48090.

AUTHORITY

USA TAC ltr, 10 Apr 1974
ANALYSIS OF SOIL INDENTATION BY A TRANSLATING GROUSER PLATE

October 1968

by

J. L. DAIS
LAND LOCOMOTION DIVISION

MOBILITY SYSTEMS LABORATORY
U.S. ARMY TANK AUTOMOTIVE COMMAND Warren, Michigan

200401/3033
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Each transmittal of this document outside the agencies of the U.S. Government must have prior approval of U.S. Army Tank-Automotive Command
ATTN: AMSTA-BSL
TECHNICAL REPORT NO. 10278

ANALYSIS OF SOIL INDENTATION BY A TRANSLATING GROUSER PLATE

By

J. L. Dais

October 1968
ACKNOWLEDGEMENT

The results reported herein were in part obtained during the course of summer employment with the Land Locomotion Division of the U.S. Army Tank-Automotive Command
ABSTRACT

Soil is idealized as a weightless isotropic frictional material with cohesion, and quasi-static solutions are obtained to the two-dimensional problems of indentation by a plate with a single spud and an infinitely long plate with equally spaced spuds of uniform depth.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>Object</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Governing Equations</td>
<td>2</td>
</tr>
<tr>
<td>Analysis of the Single Spud Problem</td>
<td>4</td>
</tr>
<tr>
<td>Plate Performance Curves</td>
<td>9</td>
</tr>
<tr>
<td>Analysis of Infinite Plate Problems</td>
<td>9</td>
</tr>
<tr>
<td>Conclusions</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>Distribution List</td>
<td>24</td>
</tr>
<tr>
<td>DD Form 1473</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Configuration of Plate and Soil Before and After Small Indentation</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>Plates with Curved or Inclined Grousers</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Coulomb Yield Condition</td>
<td>14</td>
</tr>
<tr>
<td>4.</td>
<td>The σ Line and β Line Characteristic Curves</td>
<td>14</td>
</tr>
<tr>
<td>5a.</td>
<td>Stress Characteristic Field $\phi = 30^\circ$ $\theta = -25^\circ$</td>
<td>15</td>
</tr>
<tr>
<td>5b.</td>
<td>Stress Characteristic Field $\phi = 30^\circ$ $\theta = 10^\circ$</td>
<td>15</td>
</tr>
<tr>
<td>5c.</td>
<td>Stress Characteristic Field $\phi = 30^\circ$ $\theta = 62^\circ$</td>
<td>16</td>
</tr>
<tr>
<td>5d.</td>
<td>Stress Characteristic Field $\phi = 30^\circ$ $\theta = 45^\circ$</td>
<td>16</td>
</tr>
<tr>
<td>6a.</td>
<td>Configuration of Initially Square Grid After Small Plate Displacement $\phi = 30^\circ$ $\theta = -25^\circ$</td>
<td>17</td>
</tr>
<tr>
<td>6b.</td>
<td>Configuration of Initially Square Grid After Small Plate Displacement $\phi = 30^\circ$ $\theta = 10^\circ$</td>
<td>17</td>
</tr>
<tr>
<td>6c.</td>
<td>Configuration of Initially Square Grid After Small Plate Displacement $\phi = 30^\circ$ $\theta = 75^\circ$</td>
<td>18</td>
</tr>
<tr>
<td>6d.</td>
<td>Configuration of Initially Square Grid After Small Plate Displacement $\phi = 30^\circ$ $\theta = 75^\circ$</td>
<td>18</td>
</tr>
<tr>
<td>7a.</td>
<td>Plate Load and Stress Characteristic Field</td>
<td>19</td>
</tr>
<tr>
<td>7b.</td>
<td>Mohr Diagram</td>
<td>19</td>
</tr>
<tr>
<td>8.</td>
<td>Plate Performance Curves, $\phi = 30^\circ$</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Section of Infinitely Long Plate with Equally Spaced Spuds of Uniform Depth Before and After Small Indentation</td>
<td>21</td>
</tr>
<tr>
<td>10.</td>
<td>Alternative Characteristic Fields for Infinite Plate Problem</td>
<td>21</td>
</tr>
<tr>
<td>11.</td>
<td>Configurations of Grids of Initially Vertical Lines</td>
<td>21</td>
</tr>
<tr>
<td>12.</td>
<td>Collapse Loads for Infinite Plate</td>
<td>22</td>
</tr>
</tbody>
</table>
OBJECT:

The object here is to analytically investigate the action of grouser plates under applied load. The grouser plate of Figure 1 simulates a weapon spade and that in Figure 9 a bulldozer track. It will be attempted to obtain solutions in a form which can be interpreted by a designer in selecting an optimum plate geometry.

INTRODUCTION:

The problem of initial indentation of a half-space of soil by a rigid translating grouser plate will be considered as a two dimensional problem as shown in Figure 1. The plate can be taken to translate at angle θ to the horizontal; the essential analytical result is then the magnitude P and the line of action of the corresponding collapse load. Alternatively, the problem can be considered as having the inclination ψ of the collapse load specified; P and ψ are then the essential results. For definiteness in limiting the scope of the paper, solutions will not be considered for $\theta \geq \frac{\pi}{2}$.

The specification of descriptive and yet analytically simple plate-soil interface conditions for this problem is tricky and reflects judgment based to some extent on experimental and field experience. The interface is here taken to be perfectly rough unless the solution involves separation there (as in Figure 6(a)), in which case the traction vector is taken to vanish. Thus, the solution will in part determine the interface condition.

Bekker (1) stressed the practical importance of developing ground failures rather than grip failures in land locomotion. If θ is large in Figure 1, then the situation corresponds to what Bekker termed "ground" failure. If θ is sufficiently negative, then the situation corresponds to what Bekker termed "grip" failure. Deformed configurations for $\theta = -25^\circ$ and $+10^\circ$ corresponding to equal amounts of plate displacement are shown respectively in Figures 6(a) and 6(b). In Figure 6(a) the plate has lifted, and thus it is a smaller section which remains to be failed. Furthermore, the deformation is concentrated on a plane leading to the free surface. It is likely that failure (i.e. the complete splitting away of a soil mass translating rigidly with the plate) would occur at a much smaller plate displacement in an experiment or a field situation described by Figure 6(a) as contrasted with Figure 6(b).

This analysis takes the soil parameters cohesion and internal friction to be constants and neglects soil weight, end effects of the grouser plate, and soil flow out of the plane. Plate end effects become important in situations where the grouser width/depth ratio is not large. Soil weight is important in this problem if the soil is cohesionless, and also if the soil has cohesion and the grouser depth is large.
Inclusion of these effects would lead to larger loads so their neglect here could be thought of as lending an analysis on the safe side. Soil flow out of the plane becomes important in situations where the plate length/width ratio is substantial and flow can occur at an almost vertical load. A practical example of this is the tracked vehicle problem where soil bearing capacity does not substantially exceed the vehicle weight. The inclusion of this effect would lead to a smaller collapse load.

Plates are frequently designed with curved or inclined grousers as shown in Figure 2. Provided that the back face of the grouser does not approach the soil behind the plate, the present analysis is applicable. The essential plate parameters here are OD and EOD as shown in the figure.

Two dimensional indentation by an infinitely long rigid plate with equally spaced grousers is considered as in Figure 9. For this problem material incompressibility prevents plate displacements with $\Theta > 0$. Corresponding to a given value of d, distinct values Q of collapse load/unit plate length will be found. Until experiment dictates otherwise, it seems reasonable to conjecture that the solution to which there corresponds the smallest value of Q would be most descriptive of field situations.

THE GOVERNING EQUATIONS:

For a frictional material (2), the stress state is taken to obey the Coulomb limit condition; i.e. on no surface is the magnitude of the shear stress vector allowed to exceed $\tau = \sigma \tan \theta$, where τ is cohesion and $\tan \theta$ and σ are respectively the friction coefficient and normal stress on a surface. Expressed alternatively, the Mohr's circle defined by σ_i and σ_j, respectively the algebraically greatest and least principal stress components, must lie inside of or just touch the Coulomb line of Figure 3(a). If the circle touches the envelope, then as indicated by Figures 3(a) and 3(b), the equation

$$\left(\sigma_x + \sigma_y\right) \sin \phi + \left\{\left(\sigma_x - \sigma_y\right)^2 + 4\tau^2_{xy}\right\}^\frac{1}{2} = 2c \cos \phi$$

holds, where x and y axes are taken in the plane of σ_i and σ_j. In the absence of body force, the equations of plane equilibrium are
The equations (1) and (2) can be transformed into a system of two first order quasilinear hyperbolic differential equations with characteristics, usually termed \(\alpha \) lines and \(\beta \) lines, inclined at \(-\left(\frac{\pi}{4} + \frac{\phi}{2}\right)\) and \(+\left(\frac{\pi}{4} + \frac{\phi}{2}\right)\) to the direction of \(\sigma_i \).

If \(\psi \) denotes the angle of inclination of the direction of \(\sigma_i \) to the \(x \)-axis as shown in Figure 4, and \(-\frac{1}{2}(\sigma_x + \sigma_y)\) is denoted by

\[
p = -\frac{1}{2}(\sigma_x + \sigma_y),
\]

then the state of stress is determined by \(p \) and \(\psi \) wherever equation (1) holds, and the characteristic equations

\[
\cot \varphi \, dp + 2(p + c \cot \varphi) \, dy = 0
\]

and

\[
\cot \varphi \, dp - 2(p + c \cot \varphi) \, dy = 0
\]

must hold on \(\alpha \) and \(\beta \) lines respectively.

The material is rigid if the circle in Figure 3(a) does not touch the envelope. If the circle touches the envelope, then deformation can occur by plane strain in the plane of \(\sigma_i \) and \(\sigma_3 \) either by a tangential jump of velocity across an \(\alpha \) or \(\beta \) line or with zero volume change by a continuous velocity field in which the direction of algebraically greatest principal strain rate, \(\dot{\varepsilon}_{ij} \), is inclined at either \(-\frac{\psi}{2}\) or \(+\frac{\psi}{2}\) to the direction of \(\sigma_i \). The velocity equations corresponding to either of these inclinations are a system of two first order linear hyperbolic equations; for the former inclination the \(\alpha \) line is one characteristic and the line orthogonal to the \(\alpha \) line, termed a \(\gamma \) line, is a second characteristic; for the latter the \(\beta \) line is one characteristic and the line orthogonal to the \(\beta \) line, termed a \(\rho \) line, is a
second characteristic. The characteristic curves are shown in Figure 4. If \(v_\alpha, v_\beta, v_\gamma \), and \(v_\rho \) denote the projection of the velocity vector on the corresponding characteristic line, then in the former case

\[
\frac{dv_\gamma}{dx} + v_\alpha \frac{dy}{dx} = 0
\]

(6)

and

\[
\frac{dv_\alpha}{dx} - v_\gamma \frac{dy}{dx} = 0
\]

(7)

must be satisfied on \(\gamma \) and \(\alpha \) lines respectively; in the latter case

\[
\frac{dv_\beta}{dx} + v_\rho \frac{dy}{dx} = 0
\]

(8)

and

\[
\frac{dv_\rho}{dx} - v_\beta \frac{dy}{dx} = 0
\]

(9)

must be satisfied on \(\beta \) and \(\rho \) lines respectively.

ANALYSIS OF THE SINGLE SPUD PROBLEM:

Solutions exhibited will consist of the stress characteristic fields of Figures 5(a)-(d), solutions of equations (4) and (5), and velocity fields which satisfy equations (6)-(9) where they are continuous and take a tangential jump across and \(\alpha \) or \(\beta \) line where they are discontinuous. The velocity solutions, if maintained during a small plate displacement, will distort initially square grids as shown in Figures 6(a)-(d). The regions outside of the characteristic field of Figures 5(a)-(d) are taken to be rigid. A collapse load will be associated with the stress fields.

The introduction of the variables \(\xi, \theta, \) and \(\kappa \) of Figure 5 will facilitate the analysis. The inclination to the horizontal of the \(\alpha \) line which intersects the point \(D \) is denoted by \(\theta \). \(\angle EOD \) in Figures 5(b)-(d) is denoted by \(\xi \); in Figure 5(a) the inclination to the plate of the \(\alpha \) line which intersects the point \(D \) is denoted by \(\xi \); the point of intersection with the plate is labelled as \(A \). \(OD \) in Figures 5(b)-(d) is denoted by \(\xi \); in Figure 5(a) the length of the \(\alpha \) which intersects the point \(D \) is denoted by \(\xi \). An expression

The stress characteristic field of Figure 5(b) was proposed by Haythornthwaite (3).
for the collapse load will be obtained which will equilibrate the uniform stress states along the lines AD of Figure 5(a) and OD of Figures 5(b)-(c).

For plates with <EOD> sufficiently small (if $\phi = 30^\circ$, then <EOD> cannot exceed about 36°) the characteristic field of Figure 5(c) can be constructed with <BOD> = <CDG>. For <EOD> in this range, one of the fields of Figures 5(a), (b), or (c) will be appropriate depending on δ and <EOD>. Otherwise one of the fields of Figures 5(b), (c), or (d) is appropriate depending on δ and <EOD>.

An equation which relates θ to <EOD> in Figure 5(c) can be obtained by equating the length of ED to ℓ sin <EOD> and also to the length of FD times $\sin(2\theta - \phi - \pi/2)$. There results the expression

$$\sin(\pi/2 - \phi) \sin <EOD> =$$

$$2 \sin(2\theta - \phi) \cos(\pi/4 - \phi/2) \sin(\pi/2 + \phi - <EOD> - \theta) e^{(\pi/4 - \phi/2 + \theta) \tan \phi}.$$

It follows from trigonometric identities that

$$\tan(\theta - \phi) - \frac{\cos \phi \, e^{(\pi/4 - \phi/2 + \theta) \tan \phi}}{2 \cos(2\theta - \phi) \cos(\pi/4 - \phi/2) \cos(\theta - \phi)} = \cot <EOD>. \quad (10)$$

For sufficiently small <EOD>., equation (10) will have a solution for θ.

A pressure distribution which satisfies equations (4) and (5) in the fields of Figures 5(b)-(d) is

$$p = \frac{c \cos \phi}{(1-\sin \phi)} \quad \text{in OAB},$$

$$p = c \cot \phi \left[\frac{2(\pi/4 - \phi/2 + \theta - \mu) \tan \phi}{e^{(1-\sin \phi)} - 1} \right] \quad \text{in OBC},$$

and

$$p = c \cot \phi \left[\frac{2(\pi/4 - \phi/2 + \theta) \tan \phi}{e^{(1-\sin \phi)} - 1} \right] \quad \text{in OCDE}. \quad (11)$$
Equation (11) holds also in EAD of Figure 5(a).

If the characteristic field of Figure 5(b) applies, then a velocity solution for which the perfectly rough plate translates with speed V at angle $\Theta = \phi$ to the x-axis is

\[
\begin{align*}
 v_\alpha &= V \\
 v_\gamma &= 0 \\
 v_\alpha &= Ve^{-(\frac{\pi}{4} - \frac{\phi}{2} + \theta) \tan \phi} \\
 v_\gamma &= 0
\end{align*}
\]

in OCDE, (12)

\[
\begin{align*}
 v_\beta &= -V \sin \phi e^{-\mu \tan \phi} \\
 v_\rho &= V \cos \phi e^{-\mu \tan \phi}
\end{align*}
\]

in OAB,

and in OBC.

Equation (12) also applies to region EAD of Figure 5(a). The velocity vector experiences a tangential jump across the α line intersecting the point D.

A velocity solution valid for $\Theta \leq \Theta < \frac{\pi}{2}$ corresponding to the field of Figure 5(c) is

\[
\begin{align*}
 v_\alpha &= V \cos(\Theta - \phi) \\
 v_\gamma &= -V \sin(\Theta - \phi) \\
 v_\beta &= -V \tan \phi \cos(\Theta - \phi + \phi) e^{-\mu \tan \phi} \\
 v_\rho &= V \cos(\Theta - \phi + \phi) e^{-\mu \tan \phi}
\end{align*}
\]

in OCDE,

\[
\begin{align*}
 v_\beta &= -V \tan \phi \cos(\Theta - \phi + \phi) e^{-\mu \tan \phi} \\
 v_\rho &= V \cos(\Theta - \phi + \phi) e^{-\mu \tan \phi}
\end{align*}
\]

in OBC,
\[v_\alpha = \frac{V}{\cos \phi} \cos(\theta - \phi) e^{-\left(\frac{\pi}{4} - \frac{\phi}{2} + \theta\right)\tan \phi} \]
\[v_\gamma = 0 \] in OAB,

\[v_\alpha = -V \tan \phi \sin(\theta - \theta)e^{-\mu \tan \phi} \]
\[v_\gamma = V \sin(\theta - \theta)e^{-\mu \tan \phi} \] in DCG,

and \[v_\beta = -\frac{V}{\cos \phi} \sin(\theta - \theta)e^{-\left(\frac{\pi}{4} - \frac{\phi}{2} + \theta\right)\tan \phi} \]
\[v_\rho = 0 \] in FEDG.

The velocity vector undergoes a tangential jump across the curves FGC, CBA, DC and CO, and the region translates with the zone FGD.

If the stress field of Figure 5(d) applies, then a velocity solution valid for \(<\text{EDO}> + \phi \leq \theta < \frac{\pi}{2} \) is

\[v_\alpha = V \cos(\theta - <\text{EDO}> - \phi) \] in OCE,

\[v_\gamma = -V \sin(\theta - <\text{EDO}> - \phi) \] in OCE,

\[v_\beta = -V \tan \phi \cos(\theta - <\text{EDO}>)e^{-\mu \tan \phi} \]
\[v_\rho = V \cos(\theta - <\text{EDO}>)e^{-\mu \tan \phi} \] in OAB,

and \[v_\alpha = \frac{V}{\cos \phi} \cos(\theta - <\text{EDO}>e^{-\left(\frac{\pi}{4} + \frac{\phi}{2} + <\text{EDO}>\right)\tan \phi} \]
\[v_\gamma = 0 \] in OBC.
Tangential jumps in velocity occur across CBA and CO.

Figure 7 will facilitate the determination of the magnitude P and inclination θ of the corresponding plate collapse load. The inclination $(\theta - \delta)$ of the plate collapse load to η is the same as the inclination of the stress vector on OD to η and the magnitude P of the load is c times the magnitude of the stress vector. It follows from Figure 7(b) and equation (11) that

$$
\tau_{\eta} = R \cos(2\theta + 2\xi - \varphi) = \frac{P}{\ell} \sin(\delta - \xi),
$$

$$
-\sigma_{\eta} = [P + R \sin(2\theta + 2\xi - \varphi)] = \frac{P}{\ell} \cos(\delta - \xi)
$$

where

$$
R = c \cos \varphi \left[\frac{2\left(\frac{\pi}{4} - \frac{\varphi}{2} + \theta\right) \tan \varphi}{(1 - \sin \varphi)} \right]
$$

and

$$
P/R = \frac{1 - (1 - \sin \varphi)e^{-2\left(\frac{\pi}{4} - \frac{\varphi}{2} + \theta\right) \tan \varphi}}{\sin \varphi}.
$$

From equations (13), (14), and (16) there follows

$$
cot(\delta - \xi) = \frac{1}{\cos(2\theta + 2\xi - \varphi)} \left[\sin(2\theta + 2\xi - \varphi) + \frac{1 - (1 - \sin \varphi)e^{-2\left(\frac{\pi}{4} - \frac{\varphi}{2} + \theta\right) \tan \varphi}}{\sin \varphi} \right]
$$

$$
P/c = \frac{\cos(2\theta + 2\xi - \varphi) \cos \varphi}{\sin(\delta - \xi) (1 - \sin \varphi)} e^{2\left(\frac{\pi}{4} - \frac{\varphi}{2} + \theta\right) \tan \varphi} \text{ if } \delta \neq \xi.
$$
and

\[
P/\ell c = \frac{\cos \varphi}{\cos(\delta - \xi)} \left[\frac{e^{2(\frac{\pi}{4} - \frac{\varphi}{2} + \theta) \tan \varphi}}{(1 - \sin \varphi)} \right] \left[\sin(2\theta + 2\xi + \varphi) + \frac{1 - (1 - \sin \varphi)e^{2(\frac{\pi}{4} - \frac{\varphi}{2} + \theta) \tan \varphi}}{\sin \varphi} \right] \text{ if } \delta \neq \xi + \frac{\pi}{2} \quad (19)
\]

PLATE PERFORMANCE CURVES:

For applications, equations (10), (17), (18), and (19) can be conveniently represented by plate performance curves. For \(\varphi = 30^\circ \) (a reasonable value of \(\varphi \)) Figure 8 shows such curves for \(\xi = 0^\circ, 15^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ, \) and \(90^\circ \) and their use in performance prediction of plates with \(< \text{EOD} > = 0^\circ, 15^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ, \) or \(90^\circ \) will be explained. Plates with other values of \(< \text{EOD} > \) can be treated by interpolating between the curves.

If \(\delta \) is given, then ordinarily the curve for \(\xi = < \text{EOD} > \) will associate values of \(\Theta \) and \(P/\ell c \) with \(\delta \). If \(\delta \) is so small that the curve for \(\xi = < \text{EOD} > \) is not touched by a vertical line from \(\delta \), then the plate will translate with \(\Theta \), the situation thus being outside the scope of the present paper. If \(\delta \) is so large that the curve for \(\xi = < \text{EOD} > \) is not reached, then \(\Theta \) and \(P/\ell c \) can be obtained using the dotted curves; \(< \text{EAD} > \) of Figure 6(a) is then equal to \(\Theta \).

If \(\Theta \) is given, then ordinarily the curve for \(\xi = < \text{EOD} > \) will associate values of \(\delta \) with \(\Theta \). If \(\Theta \) is so small that the curve for \(\xi = < \text{EOD} > \) is not reached by a horizontal line from \(\Theta \), then the dotted line will associate a value of \(\delta \) with \(\Theta \); \(< \text{EAD} > \) of Figure 6(a) is then equal to \(\Theta \). In either case, \(P/\ell c \) can then be determined from \(\delta \) as in the preceding paragraph.

ANALYSIS OF THE INFINITE PLATE PROBLEM:

In Figure 9, if \(\delta \) is sufficiently small (less than about \(25^\circ \) if \(\varphi = 30^\circ \)), the plate will not displace. For larger values of \(\delta \), three alternative solutions are exhibited. The stress characteristic fields for these solutions are shown in Figures 10(a)-(c), where \(t \) in Figures 10(a) and 10(b) is arbitrary. If the pressure is an arbitrary
constant in these fields, then equations (4) and (5) are satisfied. The solution corresponding to Figure 10(c) requires by an amount sufficient so that the region DAOB can support the required traction along AD. A collapse load will be assigned to each of the stress fields.

Take the plate to translate with speed \(V \). Then a velocity solution corresponding to Figure 10(a) for which the region above \(\alpha \), translates with speed \(V \) at \(\Theta = 0 \) is

\[
\begin{align*}
\nu_\gamma &= 0 \\
\nu_\alpha &= \frac{V s_\gamma}{t}
\end{align*}
\]

between \(\alpha_0 \) and \(\alpha \), where \(s_\gamma \) denotes distance along a \(\gamma \) line from \(\alpha_0 \). The region below \(\alpha_0 \) is taken rigid. A velocity solution corresponding to Figure 10(b) for which the region above \(\beta \), translates with speed \(V \) at \(\Theta = 0 \) is

\[
\begin{align*}
\nu_\beta &= 0 \\
\nu_\rho &= \frac{V s_\beta}{t}
\end{align*}
\]

between \(\rho_0 \) and \(\rho \), where \(s_\beta \) denotes distance along a \(\beta \) line from \(\rho_0 \). The region below \(\rho_0 \) is taken rigid. These velocity solutions maintained through a small displacement would distort a grid of initially vertical lines as is shown in Figure 11(a). A velocity solution corresponding to Figure 10(c) for which the region above \(\alpha_0 \), translates with speed \(V \) at \(\Theta = 0 \) is

\[
\begin{align*}
\nu_\alpha &= V \\
\nu_\alpha &= 0
\end{align*}
\]

above \(\alpha_0 \). The velocity vector experiences a tangential jump across \(\alpha_0 \) and the region below \(\alpha_0 \) remains rigid. This velocity solution
maintained through a small displacement would distort a grid of initially vertical lines as is shown in Figure 11(b).

A collapse load can quite simply be assigned to the characteristic field of Figure 10(a) by noting that \(\tau = \sigma_N \tan \phi \) on \(\alpha \) lines. It then follows from \(\tau = Q \sin \delta \) and \(\sigma_N = -Q \cos \delta \) that

\[
Q/c = \frac{1}{\sin \delta - \cos \delta \tan \varphi}.
\]

(20)

For the case \(\phi = 30^\circ \) this equation is exhibited graphically in Figure 12. It follows readily from the Mohr diagram of Figure 3(a) that

\[
(1 + 2 \tan^2 \phi) \tau = \sigma_N \tan \phi
\]

on \(\rho \) lines. Then from \(\tau = Q \sin \delta \) and \(\sigma_N = -Q \cos \delta \) it follows that

\[
Q/c = \frac{1}{\sin \delta (1 + 2 \tan^2 \phi) - \cos \delta \tan \varphi}
\]

(21)

corresponds to Figure 10(b). This equation is also exhibited graphically in Figure 12 for the case of \(\phi = 30^\circ \). It follows from the geometry of Figure 10(c) that \(\ell/L = \tan <EOD>/\sin \phi \). The results of the previous sections are applicable to find \(\Theta \) and \(\rho/c \); the collapse load is then given by

\[
Q/c = \frac{\sin <EOD>}{\sin \delta} [P/\ell c].
\]

(22)

For the case \(\phi = 30^\circ \) and plates with \(<EOD> = 4^\circ, 7^\circ, \) and \(10^\circ \) the plate performance curves of Figure 8 were used to exhibit equation (22) graphically in Figure 12.

Bekker (1) analyzed this problem previously and obtained a collapse load equivalent to the one obtained here corresponding to Figure 10(a). As was discussed by Bekker (3), (4), this solution implies that the drawbar pull of tracked vehicles should be independent of spud depth and spud spacing. The solutions obtained here have the following implications for track design: As long as \(<EOD> \) is greater than roughly \(8^\circ \) of \(10^\circ \) then drawbar pull is independent of \(<EOD> \). However, for lesser values of \(<EOD> \) significant reductions of drawbar pull can result from decreasing \(<EOD> \). Such reductions would occur only in terrains of reasonably high strength soil.
CONCLUSIONS:

It is the opinion of the author that the solutions obtained for the plate with the single spud are sufficiently descriptive of field situations involving weapon spades that useful implications for spade design can be deduced.

The infinitely long plate problem, however, involves a troublesome nonuniqueness of solution, as is indicated in Figure 12. For sufficiently small inclinations of the collapse load to the horizontal, three solutions have been obtained, each having a distinct collapse load magnitude. For steeper inclinations, two solutions have been obtained, each with a distinct collapse load magnitude. It appears likely to the author that the solutions with the lowest load magnitude will best correlate with field situations. This, however, is a matter which would be more satisfactorily approached by experiment than conjecture.
Figure 1. Configuration of plate and soil before and after small indentation. Soil below the dashed curve has remained rigid. OD and < EOD > are the essential plate parameters.

Figure 2. Plates with Curved or Inclined Grousers
Figure 3. The Coulomb Yield Condition

Figure 4. The α line and β line are characteristic curves of the stress equations. Either the α and γ lines or the ρ and β lines are the characteristic curves of the velocity equations.
Figure 5(a). Stress Characteristic Field $\phi = 30^\circ$, $\theta = -25^\circ$

Figure 5(b). Stress Characteristic Field $\phi = 30^\circ$, $\theta = 10^\circ$
Figure 5(c). Stress Characteristic Field $\phi = 30^\circ$, $\theta = 62^\circ$

Figure 5(d). Stress Characteristic Field $\phi = 30^\circ$, $\theta = 45^\circ$
Figure 6(a). Configuration of Initially Square Grid after Small Plate Displacement $\varphi = 30^\circ$, $\theta = -25^\circ$.

Figure 6(b). Configuration of Initially Square Grid after Small Plate Displacement $\varphi = 30^\circ$, $\theta = 10^\circ$.
Figure 6(c). Configuration of Initially Square Grid after Small Plate Displacement $\varphi = 30^\circ$, $\theta = 75^\circ$

Figure 6(d). Configuration of Initially Square Grid after Small Plate Displacement $\varphi = 30^\circ$, $\theta = 75^\circ$
Figure 7(a). Plate Load and Stress Characteristic Field.

The line of action of the plate load intersects the line OD at its midpoint provided A lies to the right of O. If A lies to the left of O as in fig. 5(a), then the line AD is intersected at its midpoint by the plate load.

Figure 7(b). Mohr's Diagram. \(\lambda = \left(\frac{\pi}{4} + \frac{\phi}{2} \right) \).
Figure 8. Plate Performance Curves - $\phi = 30^\circ$.

Inclination to Vertical of Plate Load - Degrees

Inclination to Horizontal of Plate Displacement - Degrees

Inclination to Vertical of Plate Load - Degrees
Figure 9. Section of Infinitely Long Plate with Equally Spaced Spuds of Uniform Depth Before and After Small Indentation

Figure 10. Alternative Characteristic Fields for Infinite Plate Problem. \(\varphi = 30^\circ \)

Figure 11. Configurations of Grids of Initially Vertical Lines. Fig. 11(a) corresponds to figs. 10(a) and 10(b). Fig. 11(b) corresponds to fig. 10(c).
Figure 12. Collapse Loads for Infinite Plate. $\theta = 30^\circ$
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>U.S. Army Tank-Automotive Command</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warren, Michigan 48090</td>
<td></td>
</tr>
<tr>
<td>Attention:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Scientist/Technical Director of Laboratories, AMSTA-CL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chief Engineer, AMSTA-CR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Director, Development & Engineering Directorate, AMSTA-R</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vehicular Components & Materials Laboratory,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: General Support Branch, AMSTA-BSG</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle Systems Division, AMSTA-RE</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>International Technical Programs Division, AMSTA-RI</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Engineering Control Systems Division, AMSTA-RS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Systems Concept Division, AMSTA-RR</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Maintenance Directorate, AMSTA-M</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Quality Assurance Directorate, AMSTA-Q</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Command Management Office, AMSTA-W</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Vehicular Components & Materials Laboratory,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Research Library Branch, AMSTA-BSL</td>
<td>3</td>
</tr>
<tr>
<td>Safety & Reliability Division, AMSTA-RB</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Land Locomotion Division, AMSTA-UL</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Propulsion Systems Laboratory, AMSTA-G</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Fire Power & Sub-System Integration Division, AMSTA-HF</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Frame, Suspension & Track Division, AMSTA-UT</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Scientific Computer Division, AMSTA-US</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Technical Data Division, AMSTA-TD</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Operations Support Division, AMSTA-RP</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Combat Dev Comd Liaison Office, CDCLN-A</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Marine Corp Liaison Office, USMC-LNO</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mobility Systems Laboratory, AMSTA-U</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Canadian Army Liaison Office, CDLS(D)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>USA EL Liaison Office, AMSEL-RD-MN</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>USA Weapons Comd Liaison Office, AMSEL-RCV</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Reliability Engineering Branch, AMSTA-RTT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sheridan Project Managers Office, AMCPM-SH-D</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>General Purpose Vehicles Project Managers Office, AMCPM-GP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M60, M60A1, M4A3 Project Managers Office, AMCPM-M60</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Combat Veh Liaison Office, AMCPM-CV-D</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>US Frg MBT Detroit Office, AMCPM-MBT-D</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>XM561 Project Managers Office, AMCPM-GG</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Commanding General
U.S. Army Materiel Command
Washington, D.C.
ATTN: AMCRD-IM-G

Commander
Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Marry Diamond Laboratories
ATTN: Technical Reports Group
Washington, D.C.

U.S. Naval Civil Engineer Res & Engr Lab
Construction Battalion Center
Port Hueneme, California

Commanding General
U.S. Army Test and Evaluation Command
Aberdeen Proving Ground, Maryland
ATTN: AMSTE-EB
 AMSTE-FA

Commanding General
U.S. Army Supply & Maintenance Command
Washington, D.C. 20310
ATTN: AMSM-MR

Commanding General
18th Airborne Corps
Fort Bragg, North Carolina 28307

Commanding General
U.S. Army Alaska
APO 109
Seattle, Washington

Office, Chief of Research & Development
Department of the Army
Washington, D.C.

U.S. Army Deputy Chief of Staff for Logistics
Washington, D.C.
No. of Copies

Commander
U.S. Marine Corps
Washington, D.C.
Attention: AO-rH

Commanding Officer
U.S. Army Aviation Material Labs
Fort Eustis, Virginia
Attention: TCREC-SDL

Commanding General
U.S. Army General Equipment Test Activity
Fort Lee, Virginia 23801
Attn: Transportation Logistics Test Directorate

Commanding General
U.S. Army Medical Services Combat Development Agency
Fort Sam Houston, Texas 78234

Commanding Officer
Signal Corps
Fort Monmouth, New Jersey 07703
ATTN: CSRDL

Commanding Officer
Yuma Proving Ground
Yuma, Arizona 85364
ATTN: STEYP-TE

Corps of Engineers
U.S. Army Engineer Research & Development Labs
Fort Belvoir, Virginia 22060

President
U.S. Army Maintenance Board
Fort Knox, Kentucky 40121

President
U.S. Army Armor Board
Fort Knox, Kentucky 40121

President
U.S. Army Artillery Board
Fort Sill, Oklahoma 73503

President
U.S. Army Infantry Board
Fort Benning, Georgia 31905
President
U.S. Army Airborne Electronic & Special Warfare Board
Fort Bragg, North Carolina 26307

President
U.S. Army Arctic Test Center
APO
Seattle, Washington 98733

Director, Marine Corps
Landing Forces Development Center
Quantico, Virginia 22134

Commanding General
Headquarters USARAL
APO 9119
Seattle, Washington
ATTN: ARAOD

Commanding Officer
Aberdeen Proving Ground, Maryland 21005
Attention: STEAP-TL

Commanding General
U.S. Army Aviation School
Office of the Librarian
Fort Rucker, Alabama
ATTN: AASPI-L

Plans Officer (Psychologist)
PP&A Div, G3, Hqs, USACDCBC
Fort ORD, California 93911

Commanding General
Hq, U.S. Army Materiel Command
Research Division
Research and Development Directorate
Washington, D.C. 20025

Canadian Army Staff
2450 Massachusetts Avenue
Washington, D.C.

Commanding General
U.S. Army Materiel Command
ATTN: AMERD-RV-E, Mr. Paul Carlton
Washington, D.C. 20315
No. of Copies

Director
U.S. Army Engineer Waterways Experiment Station
Corps of Engineers
P.O. Box 631
Vicksburg, Mississippi 39181

3

Unit X
Documents Expediting Project
Library of Congress
Washington, D.C.
Stop 303

4

Exchange and Gift Division
Library of Congress
Washington, D.C. 20025

1

United States Navy
Industrial College of the Armed Forces
Washington, D.C.
ATTN: Vice Deputy Commandant

10

Continental Army Command
Fort Monroe, Virginia

1

Department of National Defense
Dr. N.W. Morton
Scientific Advisor
Chief of General Staff
Army Headquarters
Ottawa, Ontario, Canada

1

Chief
Office of Naval Research
Washington, D.C.

1

Superintendent
U.S. Military Academy
West Point, New York
ATTN: Prof. of Ordnance

1

Superintendent
U.S. Naval Academy
Annapolis, Maryland

1

Chief, Research Office
Mechanical Engineering Division
Quartermaster Research & Engineering Command
Natick, Massachusetts

1
Soil is idealized as a weightless isotropic frictional material with cohesion, and quasi-static solutions are obtained to the two-dimensional problems of indentation by a plate with a single spud and an infinitely long plate with equally spaced spuds of uniform depth.
Spade indentation
Spade holding ability
Grousers