NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; DEC 1963. Other requests shall be referred to the Army Biological Laboratory, Attn: SMUFD-AE-T, Fort Detrick, MD 21701.

AUTHORITY
SMUFD, per d/a ltr dtd 8 Feb 1972
DDC AVAILABILITY NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Fort Detrick, ATTN: SMUFD-AE-T, Frederick, Md. 21701.

ON THE AZOLES

24th Communication: On C,N-diphenyl-N'-thiazolyl-(2)-formazane and its Tetrazolium Salts (*)

The preparation of C,N-diphenyl-N'-thiazolyl-(2)-formazanes which are substituted in the 4th and/or 5th position of the thiazolyl ring, is effected either by coupling of diazotized aniline with benzaldehyde-thiazolyl-(2)-hydrazone or by coupling of diazotized 2-amino-thiazoles with benzaldehyde-phenyl hydrazones. The second procedure presupposes the diazotability of the substituted 2-amino-thiazoles.

The individual formazanes can be converted through cyclodehydration by means of N-bromo succinimide into the corresponding tetrazolium salts used as indicators for biological reduction processes, and light-proof in contrast to presently known indicators.

The action of isoamyl nitrite on C,N-diphenyl-N'-phenylthiazolyl-(2)-formazane does not produce a tetrazolium salt but a nitroso compound.

The formazanes discovered by H. von Pechmann (1) and E. Danberger (2) independently of each other as well as the tetrazolium salts produced from them through cyclodehydration and the importance of the latter as reduction indicators and vital stains have been summarized by W. Ried (3). Sometime ago, Ried, Gick and Oertel (4) have described the preparation of C,N-diphenyl-N'-thiazolyl-(2)-formazane from benzaldehyde-phenyl-hydrazone and diazotized 2-amino-thiazole. Since we have been occupied, in connection with

the investigation of thiazolyl-(2)-hydrazone (5), for sometime also with the synthesis of substituted N'-thiazolyl-(2)-formazanes and N,N'-dithiazolyl-(2)-formazanes as well as their tetrazolium salts, we are here publishing our first findings.

Starting from the benzaldehyde-thiazolyl-(2)-hydrazones described in the 12th (5) and the 15th (6) Communication, some of which contained in the 4th and/or 5th position of the thiazole nucleus methyl or phenyl groups, we obtain, by coupling them with phenyl diazonium acetate in pyridine methanol (1:1), the following formazanes: C,N-diphenyl-N'-thiazolyl-(2)-formazane (I-a); the corresponding N'-/i-methyl-thiazolyl-(2)/ (I-b); N'/-/i-phenyl-thiazolyl-(2)//(I-c); and N'/-/i,5-diphenyl-thiazolyl-(2)//formazane (I-d). These crystallize from acetone in black needles with a greenish or bluish surface sheen. They dissolve in organic solvents with an intensively blue-violet color and form complex compounds (7) of intense color with the addition of Cu²⁺ or Co²⁺.

On the other hand, it should have been possible to obtain the same formazanes also through coupling of benzaldehyde-phenyl hydrazones with diazotized-2-amino-thiazoles, provided that the 2-amino-thiazoles substituted in the 4th and/or 5th position can be diazotized in the standard manner. 2-amino-, 2-amino-5-methyl- and 2-amino-4,5-dimethyl-thiazole prove to be relatively easily diazotable. By contrast, only very little formazane I-b was obtained from 2-amino-4-methyl-thiazole and experimentation with 2-amino-4-phenyl-thiazole was unsuccessful. This variant behavior of 2-amino-4-methyl- and 2-amino-4-phenyl-thiazole in "diazotization" has already been described in the preceding communication (*). Attempts at diazotization for 2-amino-4,5-diphenyl-thiazole were unsuccessful because of the low basicity of this compound. Through the second procedure indicated above, it was therefore possible only to prepare the following formazanes: C,N-diphenyl-N'-thiazolyl-(2)-formazane (I-a), the corresponding N'/-/i-methyl-thiazolyl-(2)/ (I-b); -N'/-/i-phenyl-thiazolyl-(2); and -N'/-/i,5-dimethyl-thiazolyl-(2)/-formazane (I-f).

The identity of the formazanes (I-a and I-b) prepared in different ways, is explained by the formation of a hydrogen bridge between the hydrazone and the azo groups which involves an intramolecular bonding equilibrium in the formazyl group (8). Accordingly, the same formazane is also created by an exchange of the substituents in the N- and N'-atom. Cyclic dehydration of the above formazane to the corresponding tetrazolium salts was carried out initially with isoamyl nitrite in acetic acid. However, when treating the
yellowish-brown solutions thus obtained with 4 times the volume of ether, there were not precipitated the expected acetates but the free bases. Only after dissolving the bases in methanol bromohydracid, is it possible to precipitate the tetrazolium bromides with ether; depending on the basicity of the thiazole derivate, occasionally there becomes attached here 1 additional mol of hydrogen bromide which produces tetrazolium dihydrobromide. The relatively insoluble picrates serve for further characterization of the salts.

It was thus possible to obtain, from the formazane I-a already produced by Ried et al (4), the C,N-diphenyl-N'-thiazolyl-(2)-tetrazolium base (II-a) and/or the -tetrazolium dihydrobromide in crystalline form.

The method of dehydration with isomyl nitrite, however, was a failure for I-b and I-c as well as for the formazanes where the thiazole component also reacted in another manner under diazotization. When treating a solution of I-c in acetic acid with isomyl nitrite, there was precipitated, even without the addition of ether, quantitatively a water-insoluble compound crystallizing in red needles which could not be reduced to the original formazane by sodium dithionite. Analysis showed that a nitroso group had entered the molecule. Analogous to the nitrosification of 2-amino-4-phenyl-thiazole described in the preceding 23rd communication (*), I-c is probably also nitrosified in the 5th position of the thiazole nucleus. Since the nitroso compound is soluble in lyes, it must have the constitution of an isonitroso-thiazolone derivative III so that simultaneously the formazane structure is broken up.

For further clarification of this question, we have treated as a simpler example benzaldehyde-4-phenyl-thiazolyl-(2)-hydrazone in the same way with isomyl nitrite and obtained an easily crystallizing, yellow, very stable nitroso compound. The latter is also soluble in alkalis and the potassium salt is precipitated under cold in thin red needles. From the fact that this 5-nitroso compound did not furnish any formazane when coupled with diazotized aniline, we may conclude on the existence of the isonitroso-thiazolyl structure IV because coupling always starts in the NH-group of the hydrazone (3) which no longer exists in IV.

After it had been thus shown that isomyl nitrite cannot always be employed for cyclodehydration of thiazolyl-substituted formazanes, we utilized N-bromosuccinimide in ethyl acetate according to R. Kuhn and W. Münzing (9). We were thus able to convert the formazanes I-a to I-f into the corresponding slight to intense
yellow tetrazolium bromides II-a II-f and/or their hydrobromides. The solubility in water amounts to 1% max. but decreases with increasing magnitude of the substituents in the thiazole ring.

\[
\begin{align*}
\text{Ia-f} & \\
\text{a: } & \text{R'}=\text{R}''=\text{H}, \text{ b: } \text{R'}=\text{CH}_3, \text{ c: } \text{R'}=\text{C}_6\text{H}_5, \text{ R}''=\text{H}, \text{ d: } \text{R'}=\text{R}''=\text{C}_6\text{H}_5, \text{ e: } \text{R}'=\text{H}, \\
& \text{ R''=CH}_3, \text{ f: } \text{R'}=\text{R}''=\text{CH}_3
\end{align*}
\]

We further investigated in detail whether the above tetrazolium salts are capable of being used as test substances of biological reduction processes. They seem especially suitable for the following reasons:

1. The intensity of color of the N'-thiazolyl-(2)-formazane is greater than that of C\text{6}N,N'-triphenyl-formazane. The extinction coefficients of equimolecular solutions have ratios of 4:1 to 5:1. The staining produced in colibacteria was a deep black under the microscope (10).

2. The N'-thiazolyl-tetrazolium bromides are insensitive to light as compared to triphenyl-tetrazolium chloride (TTC). For comparison, 0.1% solutions of TTC and II-e treated with sodium bicarbonate were absorbed on filter paper and exposed to sunlight after drying. Whereas red triphenyl formazane was formed immediately in the first case, the paper saturated...
with II-e did not assume any color. In this case, no disproportioning of the tetrazolium salt can take place (11).

The investigations on thiazolyl-(2)-formazane and -diformazane are being continued.

Description of Experimentation

C₁₆H₁₃N₅S (307.4); calculated N 22.79; found N 23.07

C₁₆H₁₁S(O)₃N (323.4); calculated N 21.66; found N 21.65
I. C,N-diphenyl-N' -thiazolyl-(2) -tetrazolium-bromide-hydrobromide (II-a):

0.62 g of I-a (1/500 mol) are dissolved in 20 ccm of ethyl acetate with the addition of a solution of 0.36 g N-bromosuccinimide (1/500 mol) in 20 ccm of ethyl acetate. After adding a few drops of concentrated hydrobromic acid, this precipitates thin yellow prisms which are washed in ice-cold ethyl acetate. After re-crystallization from a great deal of 1%-methanol hydrobromic acid, the substance melts at 190°. Yield 0.8 g (85% of theoretical amount).

C_{16}H_{12}N_{5}BrS•HBr (467.2); Calculated N 14.99; Found N 15.36

The same product is obtained from the above tetrazolium base in hot alcohol with hydrobromic acid.

C,N-diphenyl-N' -/I-ethyl-thiazolyl-(2)/-formazane (I-b):

a) 4.4 g benzaldehyde-β-methyl-thiazolyl-(2)β-hydrazone (1/50 mol) are dissolved in 50 ccm of pyridine and 100 ccm of methanol and, as described above, mixed with a solution of phenyl diazonium salts prepared from 1.9 g aniline (1/50 mol). Processing is effected in the same manner. Thin black needles are obtained from acetone. Fusion point 166°. Yield 3.2 g (50% of thiazolyl).

C_{17}H_{15}N_{5}S (321.4); Calculated N 21.80; Found N 21.95

b) 2.3 g 2-amino-4-methyl-thiazole (1/50 mol) are dissolved in 60 ccm of 4nHCl and diazotised in the usual manner with 1.6 g sodium nitrite. A solution of 3.5 g benzaldehydephenyl hydrazone (1/50 mol) in 300 ccm of alcohol and 20 g of sodium hydroxide is added to the diazonium-salt solution previously cooled to -10°. After separation of the tar products, the red solution is highly concentrated over the water bath and extracted with chloroform after cooling. After evaporation to about 3 ccm of chloroform, the solution is treated with 3 times the amount of methanol. After being left to stand for several days, small black needles are precipitated. Fusion point 166°. Yield 1.3% of theoretical amount.

C,N-diphenyl-N' -/I-methyl-thiazolyl-(2)/-tetrazolium bromide (II-b):

0.32 g of I-b (1/1,000 mol) are mixed in 10 ccm of ethyl acetate with a solution of 0.2 gram N-bromosuccinimide in 10 ccm ethyl acetate which immediately precipitates orange-colored prisms which melt after re-crystallization from a small amount of methanol.
at 117°. Yield 0.3 g (80% of theoretical amount).

C_{17}H_{14}N_{5}BrS (400.3); Calculated N 17.49; Found N 17.26

C,N-diphenyl-N'-/5-phenyl-thiazolyl-(2)7-formazane (I-c):

5.6 g benzaldehyde-/5-phenyl-thiazolyl-(2)7-hydrazone (1/50 mol) are dissolved under heat in 50 ccm pyridine and 100 ccm methanol and after cooling to -5°, mixed with 1/50 mol phenyl diazonium acetate as above. After 24 hours, about 4-5 g of raw product has been precipitated. This is dissolved in 60 ccm of boiling pyridine, filtered, mixed with 5 ccm of hot water and left to cool slowly. On the following day, the crystalline precipitate is drawn off and recrystallized from acetone. We obtain black needles with a greenish sheen. Fusion point 189-190°. Yield 2.8 g (38% of theoretical amount).

C_{22}H_{17}N_{5}S (383.4); Calculated N 18.27; Found N 18.59
C,N-diphenyl-N'-/5-phenyl-thiazolyl-(2)7-tetrazolium bromide (II-C):

0.4 g of I-c (1/1,000 mol) are mixed in 10 ccm ethyl acetate with 0.2 g N-bromosuccinimide (1/1,000 mol) in 10 ccm ethyl acetate. Immediate discoloration and precipitation of orange-colored prisms which melt at 172° after re-crystallization from methanol.

C_{22}H_{16}N_{6}BrS (462.3); Calculated N 15.15; Found N 15.07
C,N-diphenyl-N'-/5-nitroso-4-phenyl-thiazolyl-(2)7-formazane (III):

0.4 g of I-c (1/1,000 mol) are mixed in 20 ccm acetic acid with isocyanate nitrite drop by drop until discoloration. Red-orange colored needles are precipitated which melt at 174° (decomposition?) after re-crystallization from acetone. The substance dissolves with a red color in diluted lyes.

C_{22}H_{16}ON_{6}S (412.4); Calculated N 18.1; Found N 18.01
N-Benzaldehyde-N'-/5-isonitroso-4-phenyl-thiazolone-(2)7-amine (IV):

5.6 g benzaldehyde-/5-phenyl-thiazolyl-(2)7-hydrazone (1/50 mol) are mixed in 250 ccm of alcohol and 5 ccm of HNCl at room temperature with a solution of 1.5 g sodium nitrite under stirring. The yellow needles precipitated are re-crystallized out of a large amount of acetone. Fusion point 208° (decomposition?).

C_{16}H_{12}ON_{4}S (308.3); Calculated N 18.17; Found N 18.01
The azine dissolves easily in a 5-% solution of hot potassium lye; when cooling, the potassium salt crystallizes into long orange-colored needles which crumble rapidly on exposure to air with the absorption of carbon dioxide. If the aqueous solution of the potassium salt is mixed with a few drops of a silver nitrate solution, the non-soluble silver salt is precipitated in small scarlet-red needles.

Monoacetyl compound of IV:

1 g of IV are heated in 10 ccm acetone hydride and red-orange colored rhombi are isolated. Fusion point 211°C.

C_{16}H_{14}O_{2}N_{4}S (350.3); Calculated N 16.00; Found N 16.37

C₆N-diphenyl-N'-[4,5-diphenyl-thiazolyl-(2)]-formazane-(I-d):

7 g benzaldehyde-[4,5-diphenyl-thiazolyl-(2)]-hydrazone (1/50 mol) are dissolved in 100 ccm each of pyridine and methanol and mixed as above at -5°C with a solution of phenyl diazonium acetate prepared from 1.9 g aniline. Initially a tar-like product is precipitated which solidifies after a few hours. It is dissolved in a little chloroform, evaporated, and mixed with 50 ccm of alcohol. After 24 hours in the refrigerator, black needles with a blue sheen are precipitated. Fusion point 172-174°C. Yield 1.8 g (22% of theoretical amount).

Better yields are furnished by the following processing of the raw product: It is dissolved in 50 ccm of acetic acid and mixed drop by drop with isosamyl nitrite until the violet color has disappeared. Four volumes of ether are added to the yellowish-brown solution when the tetrasolium salt II-d is precipitated in yellow prisms. This is dissolved in acetone and reduced to formazane I-d with a calculated amount of sodium dithionite. Yield 60-70% of theoretical amount.

C_{26}H_{21}N_{5}S (459.5); Calculated N 15.2; Found N 15.69

C₆N-diphenyl-N'-[4,5-diphenyl-thiazolyl-(2)]-tetrasolium-bromide (I-d):

0.5 g of I-d are mixed in acetic acid as above with 0.2 g N-bromosuccinimide. Upon addition of an alcoholic solution of picric acid, the picrate is precipitated in orange-colored needles.

C₁₆H₂₀N₅S·C₆H₃O₇N₃ (687.6); Calculated N 16.30; Found N 16.00
C,N-diphenyl-N' /S-methyl-thiazolyl-(2)/7-formazane (I-e):

4.7 g 2-amino-5-methyl-thiazole (1/25 mol) are dissolved in 30 ccm of 5nHCl and dissotized as customary with 3 g sodium nitrite. The diazonium salt solution is mixed at -10° with a solution of 6 g benzaldehyde-phenyl hydrazone (1/25 mol) in 100 ccm of pyridine and 100 ccm of methanol with the addition of 10 g sodium acetate under stirring. After 10 minutes, 100 ccm of water are added and the precipitate created is drawn off after two hours. The raw product is re-crystallized from a large amount of acetone. It forms black needles with a greenish sheen. Fusion point 160°. Yield 6.4 g (68% of theoretical amount).

C_{17}H_{15}N_{5} (321.4); Calculated N 21.80; Found N 21.31

C,N-diphenyl-N' /S-methyl-thiazolyl-(2)/7-tetrazolium-dihydrobromide (II-e):

0.65 g of I-e (1/500 mol) are dissolved in 10 ccm of ethyl acetate under slight heat and 0.36 g N-bromosuccinimide in 15 ccm of ethyl acetate are added to the blue-violet solution which produces immediately strong discoloration. Upon adding of concentrated hydrochloric acid, faintly yellow needles become crystallized. Fusion point 178°. Yield 0.7 g (87% of theoretical amount).

C_{17}H_{14}N_{5}BrS.HBr (481.2); Calculated N. 14.56; Found N 14.75

C,N-diphenyl-N' /S,5-dimethyl-thiazolyl-(2)/7-formazane (I-f):

4 g benzaldehyde-phenyl hydrazone are dissolved in 50 ccm pyridine and 100 ccm methanol with the addition of 10 g sodium acetate and mixed at -10° and under stirring with a solution of diazonium salt from 4 g 2-amino-5,5-dimethyl-thiazole-hydrobromide in 50 ccm of 4nHCl. After 15 minutes, 100 ccm of water are added and the precipitating raw product is left to stand for three hours at 0°. Re-crystallised from acetone, we obtain black needles with a blue sheen. Fusion point 164°. Yield 4.8 g (69% of theoretical amount).

C_{18}H_{17}N_{5}S (335.4); Calculated N 20.88; Found N 21.03

C,N-diphenyl-N' /S,5-dimethyl-thiazolyl-(2)/7-tetrazolium-bromide (II-f):

0.35 g of I-f (1/1,000 mol) are mixed in ethyl acetate with
0.2 g N-bromo succinimide. We obtain yellow needles with a melting point of 171°. Yield 0.35 g (85% of theoretical amount).

C₁₈²H₁₆₅N₂Br₂S (414.3); Calculated N 16.91; Found N 16.94

Footnotes
1) Ber. dtsch. chem. Ges. 25, 3175 [1892].
2) Ber. dtsch. chem. Ges. 25, 3201 [1892].
3) Angew. Chem. 64, 392 [1952].
10) These investigations were carried out in the Epizootic Research Institute at the Island of Riems of the Friedrich-Loeffler Institute of the German Academy of Agricultural Sciences.