UNCLASSIFIED

AD NUMBER

AD843830

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; JUL 1968. Other requests shall be referred to Commanding Officer, Fort Detrick, Attn: SMUFD-AE-T, Frederick, MD 21701.

AUTHORITY

SMUFD D/A ltr, 4 Feb 1972

THIS PAGE IS UNCLASSIFIED
DDC AVAILABILITY NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Fort Detrick, ATTN: SMUF-D-AE-T, Frederick, Md. 21701.

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
Leukocyte Alkaline Phosphatase Activity in Hematopoietic Disorders. A Correlative Study by Biochemical and Cytochemical Techniques, Meislin, Aaron Leo, Stanley L., and Wasserman, Louis R.

Four hundred thirteen simultaneous biochemical and cytochemical leukocyte alkaline phosphatase activity (APA) determinations were done on 34 normal controls and 129 patients with hematopoietic disorders. The disorders studied were chronic myelocytic leukemia, acute blastic leukemia, polycythemia vera and myeloid metaplasia (including myelofibrosis with myeloid metaplasia, agnogenic myeloid metaplasia and the "spent" stage of polycythemia). Modifications of previously described methods for cytochemical and biochemical APA determination were employed and are described.

Normal subject and patients with chronic myelocytic leukemia showed consistently low values by both methods; while those with the other disorders studied, showed broad distributions of values. Moderate positive correlation existed between the two techniques in all groups except in the normals where correlation was not significant. Mean biochemical APA values in acute blastic leukemia and chronic lymphocytic leukemia were substantially higher than those previously reported; and were appreciably higher than the simultaneously determined cytochemical values, which were generally low. Possible explanations for this discrepancy include the following: 1) Additional enzyme may be present in small quantities in lymphocytes and blast cells detectable by biochemical technique because of the large number of these cells, but not by cytochemical technique due to minute quantity per cell, 2) Evidence favors the existence of several alkaline phosphatases, which may be measured differentially by the two methods, although more recent evidence supports the homogeneity of WBC alkaline phosphatase.
Values in polycythemia vera and myeloid metaplasia varied from very high to very low enzyme activity, however multiple determinations performed at different times on the same subject tended to remain within a fairly narrow range. This was most apparent in myeloid metaplasia.

The principal diagnostic value of this determination in the hematopoietic disorders studied is in the exclusion of chronic myelocytic leukemia. If the alkaline phosphatase activity is high, the diagnosis of chronic myelocytic leukemia would seem unlikely. The cytochemical technique appeared to be more reliable in this exclusion.